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ABSTRACT 

In this paper an original system for the analysis of harmony and 
polyphonic music is introduced. The system is based on signal 
processing and machine learning. A new multi-resolution, fast 
analysis method is conceived to extract time-frequency energy 
spectrum at the signal processing stage, while support vector 
machine is used as machine learning technology.  
Aiming at the analysis of rather general audio content, experi-
ments are made on a huge set of recorded samples, using 19 
music instruments combined together or alone, with different 
polyphony. Experimental results show that fundamental frequen-
cies are detected with a remarkable success ratio and that the 
method can provide excellent results in general cases. 

1. INTRODUCTION 

Analysis of real music content, not necessarily available in sym-
bolic form, still remains a very challenging problem in spite of 
decades of very interesting research in the domain. One of the 
most promising analysis directions consists of the combination of 
consolidated signal processing techniques with intelligent agents, 
to improve the often ambiguous results of time-frequency analy-
sis with smart decision systems trained by a consistent prelimi-
nary knowledge. The expected, introduced approximation in the 
results is acceptable as far as the performance is able to meet a 
quality of service that can be considered useful by users. 
We are interested in providing fast (real-time) music analysis on 
audio content possibly without any kind of symbolic or metadata 
information being preliminary available, i.e. when the musical 
content is presented to the analysis tool in a pure digital sample 
format. In these cases, which better correspond to real world 
applications, extremely high precision and confidence in the 
results is very difficult to obtain but it will be shown that 
achieved results may be indeed interesting and useful for several 
practical purposes. In particular our research aims at real-time 
human machine collaboration in the musical domain and espe-
cially at content identification and classification for automatic 
processing control in the multimedia domain; integration with 
other forms of analysis (rhythmic pattern, instrument etc.) for 
mutual consolidation is envisaged. 
This paper is organized as follows: the second section shortly 
presents the state of the art in the domain of our research; after a 
system overview the fourth and fifth sections introduce and 
explain the proposed time-frequency algorithm for music analy-
sis, followed by a description of the approach used to exploit this 
method with support vector machines; the sixth section presents 

experimental results whereas the last sections concludes the 
paper with a short description of the project on which we are 
working and some final remarks about current new directions. 

2. RELATED WORK 

The main goal in polyphonic music analysis is to translate re-
corded polyphonic music into some meaningful symbolic repre-
sentation such as note onsets, note durations, pitches, etc.  
Though polyphonic music transcription is still a very challenging 
task, some progress has been recently shown. Marolt use a neural 
network to extract polyphonic piano scores exploiting the audi-
tory model and adaptive oscillator networks [1]. Goto extracts 
the melody line and baseline by estimation of the predominant 
harmonic in the different frequency regions [2]. Bruno et al. 
develop a system to support polyphonic transcription for differ-
ent instruments based on audio models, pitch tracking and a 
neural network bank [3]; Bello constructs a blackboard system 
using both high level knowledge and data from bottom-up proc-
essing [4]. Based on spectrum smoothness and harmonicity, 
Klapuri uses the predominant frequency estimation and 
recursively removes the corresponding sound from polyphonic 
note mixtures for multiple frequency estimations, with excellent 
results [5]. The system in [6] makes chord analysis by a speech 
recognition tool. Monti and Sandler develop a blackboard system 
for piano polyphonic note recognition by fuzzy inference [7]. 
Cemgil designs a polyphonic transcription system based on 
Bayesian inference and probability models [8].  

3. SYSTEM OVERVIEW 

The proposed music analysis and transcription system is mainly 
composed by a signal processing block followed by a learning 
agent. Compared to the human listening system, the signal proc-
essing stage is a time-frequency signal analysis tool similar to 
cochlear filters, whereas the learning machine plays a role simi-
lar to the one of the human brain. A filter bank energy spectrum 
analyzer is used as signal processing component, and support 
vector machines (SVM) as intelligent agent. Figure 1 shows the 
main system block diagram. First, the music signal is processed 
by a complex resonator filter bank, and the energy spectrum is 
calculated in function of time and frequency. This spectrum is 
then smoothed by a low pass filter bank, and finally the peaks are 
picked from the smoothed energy spectrum to produce the input 
vector to the SVM. In the training phase, the extracted peaks are 
used with the target output to produce the SVM note recognizer; 
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in the application phase, the SVM note recognizer uses the peaks 
vector to perform multi pitch tracking.  The SVM note recog-
nizer consists of 88 two-classes classifiers for 88 notes (piano 
extension); each two-classes SVM classifier recognizes if an 
input sample includes the corresponding note or not.  
 

Figure 1: The overall architecture of the proposed system 

4. TIME-FREQUENCY SIGNAL ANALYSIS 

The first stage in the proposed polyphonic transcription system is 
a time-frequency energy spectrum analyzer. Music signal is 
time-varying within a wide frequency range, and the time-
frequency analysis must be multi-resolution for optimal results. 
One commonly used time-frequency energy spectrum analysis 
method is a spectrogram based on Short Time Fourier Transform 
(STFT), which can be described as follows: 
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In equation (1), w is the window function, which determines the 
time and frequency resolution of the STFT. An STFT-based 
energy spectrum can be obtained with a good computation-
efficient FFT, but it pays a high price for such a fixed-length 
transform in musical terms. The window function is independent 
from the frequency ω, so the spectrum has the same time and 
frequency resolution for all frequency bands; this makes STFT-
based analysis critical when different time and frequency resolu-
tions are required, like in music. 
A more general time-frequency energy spectrum analysis of 
time-varying signals is proposed as follows: 
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The window function w in equation (2) depends on the frequency 
ω; this means that time and frequency resolutions can be changed 
according to frequency. At the same time, equation (2) can also 
be expressed like: 
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Equations (1) and (2) are more suitable to express a transform-
based implementation whereas equation (3) is more straightfor-
ward to implement a filter bank with impulse response functions 
expressed by equation (4).  
In order to implement such an energy spectrum analyzer, an IIR 
filter bank is a reasonable choice; the order of the filter bank 
needs to be as low as possible to reduce the computation cost. In 
our polyphonic analysis system, a first-order complex resonator 
filter bank has been exploited.  
The first-order complex resonator impulse response can be de-
scribed as: 

tjretI )()( ω+−=                    (5) 
The decay factor in (5) determines the exponent window length 
and the time resolution; at the same time it determines the fre-
quency bandwidth (i.e. the frequency resolution).  
Equation (3) can be further modified like: 
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 are the impulse responses of a first 
order complex resonator filter and real low pass filter bank; their 
transfer functions are defined as follows: 
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 with the exponent decay factor of the impulse response  
         )( mm mapr ω=                          (9)  

Equation (6) shows how the energy spectrum is implemented by 
a first order complex resonator filter and real filter bank. The 
second convolution denotes the low pass filtering, which is used 
to smooth the energy spectrum.  
 

 
Figure 2: The architecture of the time-frequency energy 

spectrum analyzer 

In Figure 2 the output of the complex filter is energy, which then 
passes through the low pass filter L to be smoothed. For a com-
plex resonator, when the input only includes the frequencies 
around the resonator oscillation frequency, the magnitude of 
filter output is almost stable; otherwise the filter output shows 
some beats of input frequencies and oscillation frequency, and its 
absolute value oscillates. In order to maintain the time-frequency 
resolution, the low pass filter has the same impulse response 
exponential decay factor as the complex filter of the correspond-
ing frequency channel. 
The time-frequency resolution distribution can be set efficiently 
and flexibly through the map function between the frequency and 
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the exponential decay factor of the filter impulse response (equa-
tion (9)). When implementing the filter bank, it is first needed to 
define the center frequency ω of the complex resonator filter 
bank: in our system, ω for the mth filter is defined as follows: 
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In equation (10), StartNoteNum is a parameter indicating the 
lowest note number (MIDI note numbers are used) in the consid-
ered range, and r is a resolution parameter used to denote how 
many filters are used to cover the frequency band of one semi-
tone. This definition is convenient to map our multi-pitch track-
ing to western music notation. The map function can then be 
defined as like: rm=kωm. The parameter k is a constant for all the 
frequencies; this makes the ratio between the resonator filter 
bank bandwidth and center frequency a constant, so it is a con-
stant-Q filter bank. The center frequency of the filter in the filter 
bank changes here according to an exponential law (10). 
 
For practical applications, a fast implementation has been devel-
oped for the complex resonator filter bank. The basic idea is to 
reduce the redundancy in computation: it is not necessary to keep 
the same sampling frequency of the input for every filter in the 
filter bank. For the filters with lower center frequencies, the 
sampling rate can be decreased.  At the same time, because the 
main frequencies of music notes vary according to the exponen-
tial law, the high frequency regions need only a lower frequency 
resolution. This means that a shorter duration signal frame is 
enough for the frequency analysis. To combine multi-resolution 
analysis and computation efficiency, other multi-rate filter banks 
have been proposed in music analysis [16,17,18].  
In [17] and [18] the multi-rate filter bank is used to separate the 
signal into several octave-spaced subbands and then a sinusoids 
analysis is performed in every subband. In [16], similarly to [17] 
and [18], signal is first separated into several octave subbands by 
multi-rate filter bank and the following detailed frequency analy-
sis is performed by FFT. On one hand, our multi-rate complex 
resonator filter bank uses a similar approach to first separate the 
signal into the several octave-spaced subbands; on the other hand 
differently from other cases, it still keeps the constant-Q fre-
quency resolution for the detailed frequency analysis in every 
subband, whereas for example in [16] the FFT used in this phase 
has an equally spaced frequency resolution.  
 
The proposed algorithm is especially conceived for multi pitch 
tracking based on short signal frames, which in a large majority 
of frames corresponds to a monotone or polyphonic stationary 
situation. In the spectrum extraction algorithm, first the signal is 
separated into 8 octave-spaced frequency bands by the dyadic 
sampling mulitrate filter bank according to the architecture 
shown in Figure 3. As mentioned before, similar ways have been 
used in [16,17,18]. At the same time, since the required fre-
quency resolution at higher frequencies is lower, shorter time 
frames are used to compute the energy spectrum in order to 
reduce the computation cost further. Detailed information is 
shown in Table 1. 
As shown in the table, the downsampling begins from the sixth 
frequency band; this is a reasonable choice to make the ratio 
between sampling rate and analysis frequency about 20 or more, 
according to an experimental rule of thumb. Finally the spectrum 

peaks are independently extracted in different frequency bands; a 
small overlap between neighbor frequency bands is used to find 
the spectrum peaks for the frequency bin at the edge of the fre-
quency band. . Every frequency band includes 60 frequency bins 
(the overlapping frequency bins are not considered here). The 
introduced filter bank has several advantages. First the energy 
spectrum is extracted according to a logarithmic law, so the 
frequency resolution at low frequencies is high and up to about 1 
Hz.  Second, the fast implementation makes it practical for appli-
cations. Third, it is flexible and different time frames in different 
frequency bands can be chosen: this is useful in many cases. 
 

LPF  2   

Filter Bank 

Filter Bank 

LPF   2   Filter Bank 

S(n)

… 

 
Figure 3: Block diagram for the proposed filterbank im-
plementation 

Table 1: values used to reduce complexity in the analysis 
filter bank 

Band 
Number 

Sampling 
Rate (Hz) 

Frequency 
Range (Hz) 

Used 
samples 

Duration time 
(Sec) 

1 689.06 25.96--55.00 680 0.9861 
2 1378.12 51.91--110.0 680 0.4934 
3 2756.25 103.8--220.0 1360 0.4934 
4 5512.5 207.7--440.0 1360 0.2467 
5 11025 415.3--880.0 2720 0.2467 
6 22050 830.6--1760 2720 0.1234 
7 44100 1661--3520 2720 0.0617 
8 44100 3322--7040 2720 0.0617 

 
As a final remark, wavelets can also provide another constant-Q 
filter bank solution, often preferred for audio compression and 
music synthesis because of the orthonormal or biorthornormal 
characteristics; but it has more rarely been used for music analy-
sis because the commonly used dyadic sampling fast Discrete 
Wavelet Transform (DWT) only provides a very coarse fre-
quency resolution, which is far from the requirements of music 
analysis. On the other hand the orthonormalization or bior-
thonormalization are not necessary for music analysis, and more-
over a wavelet solution is implemented by FIR needing much 
more computation resources than IIR.  
 

5. MACHINE LEARNING: SUPPORT VECTOR 
MACHINE CLASSIFICATION 

As remembered, tracking multiple pitches in polyphonic music is 
still a very challenging task, especially because some harmonics 
of different music notes may overlap together. For such a prob-
lem, it is reasonable to consider a learning machine as classifier 
as this corresponds to an ear-brain scheme for trained humans 
(see again Fig. 1). 
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5.1. Support Vector Machine 

Only a simple introduction to support vector machine (SVM) 
classification is given here. For more detail, please refer to some 
authoritative literature [9,10,11]. Two are the key concepts be-
hind SVM classifiers: the first is to find an optimal hyperplane 
for linearly separable classification problem based on the struc-
ture risk minimization (SRM) inductive principle. The second is 
to nonlinearly map input data from an input space to a high-
dimension feature space, where a nonlinear classification prob-
lem in the input space can become linearly separable.  
To better explain SRM, we can start from the following machine 
learning problem: in the case of m samples with n-dimension 
input vector x and known output class label vector y,  

))...(( 1,1,1 mm yxyx   n
mx ℜ∈  }1,1{ +−∈my      (11) 

it is requested to find a learning machine f, with a decision func-
tion y=f(α,x) to classify the new samples. The learning process 
aims at adjusting the parameter α for minimizing the expected 
real risk R(α) on the new samples. If a function L is selected as 
loss function, P(x,y) is the unknown probability distribution, and 
assumed the sample data are i.i.d. (identically drawn and identi-
cally distributed) it is possible to write ([9]): 

),()),(,()( yxdPxfyLR ∫= αα            (12)                

Since P(x,y) is unknown, R(α) can not be directly computed.  
Based on the empirical risk minimization (ERM) inductive prin-
ciple, usually the empirical risk Remp(α) is used to train the learn-
ing machine instead of R(α). For example if the least-squares 
method is selected as loss function, the empirical risk is ([9]): 
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The learning machine trained on ERM may show a very small 
training error on the training set but bad performance on the new 
samples and cause the so-called overfitting problem; in other 
words the ability of generalization of the machine is not good. 
To control the generalization ability of machine learning, Vapnik 
provides the structure risk minimization (SRM) inductive princi-
ple ([9]), on which a machine is trained in terms of both empiri-
cal risk and the generalization ability. Based on SRM, a linear 
SVM selects the maximum margin hyperplane classifier, which 
is considered to have the best generalization ability. The margin 
is defined as the distance between the hyperplane and the closest 
sample vector. Without entering too much into detail, it can be 
shown that the maximum margin hyperplane classifier for a 
linearly separable problem can be obtained by solving a quad-
ratic optimization problem. To make a nonlinear classification, 
the input data are nonlinearly mapped from the input space to the 
high-dimension feature space, where a nonlinear classification 
problem in the input space can become linearly separable.  
On one hand SVM transforms a nonlinear classification problem 
into a linear classification problem in a high-dimension feature 
space, on the other hand it does not need to operate in the feature 
space and all the necessary computation is directly performed in 
the input space by using the kernel function. Three commonly 
used kernel functions are radial basis function (RBF) kernel, 
sigmoid kernel and polynomial kernel ([11]).  
Recently, SVMs have also been explored to resolve some music 
related issues such as music genre classification [19]. 

5.2. Support Vector Machine in polyphonic music 

To define a learning system, it is first needed to specify the input 
vector and the type of machine. Spectrum scaled to a logarithmic 
axis was selected as the input vector; this is a reasonable choice 
for common western music. In fact, the fundamental frequency 
and corresponding partials of a music note can be described as 
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using again MIDI note numbers for note k. Supposing that the 
energy of every music note mainly distributes over the first 10 
harmonics, and 0)( ≈m

kfEnergy  for 11≥m , the frequency ratio 
between one note partials and the fundamental frequency of 
other music notes is as follows:  
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This means the first 10 partials always completely or nearly 
overlap with another fundamental frequency; as the fundamental 
frequencies follow an exponential law (14), so most of the en-
ergy is concentrated in frequency bins that are exponentially 
spaced and then equally spaced according to a logarithmic axis.  
The note recognizer consists of 88 classifiers ranging from A0 to 
G8 (piano extension); every two-classes classifier recognizes if 
an input sample includes the corresponding note or not. For what 
concerns the machine type, neural networks have been tested in 
past experiences [12], but finally SVM has been chosen as it 
shows several important advantages. First, SVM is based on 
SRM and provides the theoretical support and related tools for 
controlling the ability of generalization, whereas a neural net-
work design often depends on heuristics and easily leads to an 
overfitting problem. Secondly, SVM can achieve a global solu-
tion while the neural network can only converge to a local solu-
tion. Finally in our case, the input vector is composed by the 
extracted spectrum peaks that only exist in some frequency bins, 
so the input vector is sparse and high-dimension; SVM can proc-
ess such sparse input vector very efficiently. In our experiments 
the input vector size is sometimes up to 960 and SVM can still 
work well; this property is very useful. On the contrary, neural 
networks with hidden layers training are very time consuming 
for high-dimension input vectors. 
In practice, the LIBSVM [13] software has been used as major 
tool. To train a SVM classifier, it is first needed to select a kernel 
function; the library provides linear kernel, RBF kernel, sigmoid 
kernel and polynomial kernel. Indeed the linear kernel is a spe-
cial case of RBF kernel [14], sigmoid kernel is not valid under 
some conditions [15], and polynomial kernel classifier needs too 
long training times for such a high-dimension classification 
problem; RBF has then been chosen as kernel function. 
When using the RBF kernel, two parameters C and γ  specify the 
function: C is the penalty parameter of the error term, and γ is the 
RBF kernel parameter ([14]); an optimal (c,γ) is needed to make 
the classifier perform well on unknown new samples. This is 
achieved by grid-search using the crossing-validation. We try 
several (c,γ) pairs and pick the pair, by which the trained classi-
fier has the best crossing-validation accuracy. Hundreds of clas-
sifiers have to be trained and every classifier has more than 
100,000 training samples (see next section for more details), so it 
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is impossible to run an extensive grid-search to find (c,γ). A 
subset is selected from the training samples, and this subset is 
used to find the good (c,γ) by grid-search and crossing-
validation. Then the parameter pair (c,γ) is selected that will be 
used to train the classifier on the complete training set. Finally 
the trained classifier has to be tested. Experimental results are 
presented in the next section. 

6. EXPERIMENTS AND RESULTS 

In real cases, polyphonic music to analyze may be the combina-
tion of the sounds from several different instruments, as well as 
from a single instrument. We decided to design two kinds of 
multi-pitch analyzer, a general-purpose one used to analyze 
multitimbre polyphonic music, and another one assuming the 
polyphonic music limited to only a single defined instrument, 
such as piano or guitar. Two main experiments have been de-
fined for the two kinds of recognizer.  
A good validation requires thousands and thousands of poly-
phonic samples, which were produced by selected combinations 
of the recorded monophonic samples from RWC Music Instru-
ment Sound Database. In total 1027 monophonic samples from 
19 music instrument have been used, and every monophonic 
sample was pre-processed to normalize amplitude and faded to a 
one second duration time. Every polyphonic sample first needs 
to be processed by the fast filter bank to produce 960 bins-wide 
spectrum as the input vector to SVM. Three measures, note error 
rate (NER), chord error rate (CER) and note classification rate 
(NCR) have been used to evaluate the transcription performance. 
The NER is the ratio between the number of errors in recognized 
fundamental frequencies and total number of fundamental fre-
quencies (i.e. notes) in the correct transcription. CER is the 
percentage of sound chords where one or more pitch identifica-
tion errors occurred [5]. The recognizer consists of tens of classi-
fiers for the different music notes; NCR is the rate of correct 
classifications in the single two-class note classifier.  
In the first experiment, 88 two-class classifiers have been inde-
pendently trained and tested for notes from A0 (MIDI note num-
ber 21) to C8 (MIDI note number 108) for the multi-timbre 
analyzer. The polyphonic samples in training and test sets are 
random instrument and pitch combinations. For instance to pro-
duce a two-note polyphonic sample, first two different notes 
between A0 and C8 are randomly chosen, the two selected notes 
being e.g. C2 and C3; among the 19 instruments, there are eight 
instruments including C2 in their range and twelve including C3. 
At this point a note C2 from one of the eight instruments and a 
note C3 from one the twelve instruments are randomly selected 
and added together to produce a two-note polyphonic sample. A 
total of 150,000 training samples and 200,000 test samples (with 
no overlap between the two sets) were produced with polypho-
nies from two to six notes, with a large percentage of musically 
meaningful combinations.  

Table 2: Test result of general-purpose recognizer 

 Note Error Rate 
(NER) 

Chord Error Rate 
(CER) 

2-note polyphonic samples 2.9%  
3-note polyphonic samples 5.8% 17% 
4-note polyphonic samples 9.8% 31% 
5-note polyphonic samples 14% 49% 
6-note polyphonic samples 20%  

The NER and CER of the general-purpose recognizer are re-
ported in Table 2. 
The five curves in the top part of Figure 4 show instead the NCR 
for the 88 notes classifier under test from two- to six-notes poly-
phonic samples; the horizontal axis denotes the corresponding 
note according to MIDI note numbers. The bottom part of Figure 
4 shows the number of instruments (in the performed experi-
ments) containing a certain note in their extension; the horizontal 
axis denotes again the corresponding note according to MIDI 
note numbers. It can be noticed from the figure that when a note 
has more music instruments able to play it, the corresponding 
music note classifier has lower NCR.  
 

Figure 4: Note Classification Rate and Instrument Number in 
Every music note  

 
When music instruments of the analyzed polyphonic music 
sequence are known in advance, it may be better to run the multi-
pitch analysis by a specialized recognizer, which is trained by 
the samples of the corresponding instruments only. For example, 
it may happen (and it is rather intuitive) to obtain a better per-
formance by making the multi-pitch analysis of piano music by a 
recognizer trained only by piano samples.  
In the second experiment, a single instrument multi-pitch tracker 
was trained for piano, guitar and violin. The preparation of train-
ing and test data is almost same as in the first experiment. For 
each of the three instruments, samples from three different in-
strument producers are available. The setup information of the 
second experiment is presented in the following Table 3. 

Table 3: Setup information of the second experiment 

 Piano Violin Acoustic Guitar 
Training  Polyph. Samples 90000 60000 60000 
Test  Polyphonic Samples 80000 50000 50000 

Note Classifiers 88 38 34 
Instrument Samples 324 222 225 

 
Tables 4 and 5 show the NER and CER for the 3 single instru-
ment recognizers.  

Table 4: Note Error Rate (NER) of the 3 single instru-
ment recognizers. 

 Piano Violin Acoustical Guitar 
3-note polyphonic samples 3.7% 3.0% 2.7% 
4-note polyphonic samples 6.8% 4.1 % 4.8% 
5-note polyphonic samples 10% 6.6 % 8.6 % 

86 - DAFx'05 Proceedings - 86



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFX-05), Madrid, Spain, September 20-22, 2005 
 

 

Table 5: Chord Error Rate (CER) of the 3 single instru-
ment recognizers 

 Piano Violin Acoustical Guitar 
3-note polyphonic samples  12% 5.0% 3.0% 
4-note polyphonic samples  21% 13 % 10% 
5-note polyphonic samples 32% 37 %  30% 
 

Table 6: Comparison with the state of art 

  NER (our result) NER ([5]) 
2-note polyphonic samples 2.9% 3.9% 
3-note polyphonic samples 5.8% 6.3% 
4-note polyphonic samples 9.8% 9.9% 
5-note polyphonic samples 14% 14% 
6-note polyphonic samples 20% 18% 
 
Compared with the state of art ([5]) the general-purpose recog-
nizer has similar results, as shown in Table 6. The single-
instrument recognizer shows an even better performance than 
general purpose recognizer (experiment 2 above).  

7. STILE 

The music analysis system presented above is part of a wider 
r&d Swiss project (partially funded by CTI 6893.2) named 
STILE (Sound for human-Tuned Interactive Living Environ-
ments). STILE aims at developing a novel class of sound and 
music rendering devices that are conceived for a seamless inter-
action with human beings in their living and working environ-
ments. The overall system will provide a transparent interface 
between conventional or specific sonic/musical content and 
listeners to highly improve their experience by enhanced listen-
ing conditions. The core technology of STILE is based on music 
oriented sound analysis (partially presented in this paper), per-
ceptually relevant 3D signal processing, and non-invasive diffu-
sion devices and control sensors.  

8. CONCLUSION 

In this paper we presented a new system for harmonic and poly-
phonic music analysis. The system is based on signal processing 
and machine learning. An efficient multi-resolution, fast time-
frequency analysis method is introduced to extract energy spec-
trum in the signal processing stage; support vector machines are 
used as “intelligent” technology. Results show a state-of-the-art 
performance on a wider and unrestricted test scenario.  
Future work includes a set of extensive tests on real music cases; 
at the same time the technology will be integrated with an al-
ready existing timbre (instrument) analysis tool to consolidate its 
results by more precise identification of event starts. 

9. REFERENCES 

[1] M. Marolt “A Connectionist Approach to Automatic Tran-
scription of Polyphonic Piano Music,” IEEE Transactions 
on Multimedia, vol. 6, no. 3, June 2004. 

[2] M. Goto“A Predominant-F0 Estimation Method for Poly-
phonic Musical Audio Signals,” Proceedings of the 18th In-

ternational Congress on Acoustics (ICA 2004), pp. II-1085-
1088, April 2004. 

[3] I. Bruno, S. L. Monni, P. Nesi “Automatic Music Transcrip-
tion Supporting Different Instruments,” Proceedings of the 
Third International Conference WEB Delivering of Music 
(WEDELMUSIC’03). 

[4] J.P. Bello “Towards the Automated Analysis of Simple 
Polyphonic Music: A Knowledge-based Approach,” PhD 
thesis, Queen Mary, University of London. 

[5] A. P. Klapuri “Multiple Fundamental Frequency Estimation 
Based on Harmonicity and Spectral Smoothness,” IEEE 
Trans. on Speech and Audio Processing, vol. 11, no. 6, No-
vember 2003. 

[6] A. Sheh and D. Ellis, “Chord segmentation and recognition 
using em-trained hidden Markov models,” in 4th Int. Sym-
posium on Music Information Retrieval ISMIR-03, October 
2003  

[7] G. Monti, M.Sandler “Automatic polyphonic piano note 
extraction using fuzzy logic in a blackboard system” Proc. 
of the 5th Int. Conference on Digital Audio Effects (DAFx-
02), Hamburg, Germany, September 26-28,2002. 

[8] A.T. Cemgil “Bayesian Music Transcription” PhD thesis, 
University of Nijmegen. 

[9] V. Vapnik, The Nature of Statistical Learning theory, 
Springer-Verlag, New York, 1995. 

[10] N.Cristianini and J.Shawe-Taylor, An Introduction to Sup-
port Vector Machines and other Kernel-based Learning 
Methods, Cambridge University Press 2000. 

[11] C.Burges, “A tutorial on support vector machines for pat-
tern recognition”, Data Mining and Knowledge Discovery, 
2(2):121--167, 1998. 

[12] G.Zoia, R.Zhou, D. Mlynek "A multi-timbre chord/harmony 
analyzer based on signal processing and neural networks", 
IEEE Int. Workshop on Multimedia Signal Processing – 
MMSP2004, Siena, Italy, September 2004 

[13] Chang, C.-C and C.-J.Lin . LIBSVM: a library for support 
vector machines. Software available at 
http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001. 

[14] C-W.Hsu, C-C.Chang and C-J.Lin “A practical guide to 
support vector machine classification,” available at 
http://www.csie.ntu.edu.tw/~cjlin/libsvm. 

[15] C. Cortes and V. Vapnik “Support-vector network,” Ma-
chine Learning 20, 273–297, 1995. 

[16] Keren, R., Zeevi, Y. Y., and Chazan, D “Multiresolution 
Time-Frequency Analysis of Polyphonic Music,” Proc. of 
the IEEE-SP International Symposium on Time-Frequency 
and Time-Scale Analysis, Pittsburgh, PA, U.S.A., pp. 564-
568, Oct 6-9, 1998. 

[17] Levine, S. N. “Audio Representations for Data Compression 
and Compressed Domain Processing,” PhD thesis, Stanford 
University, CA, U.S. A., 1998. 

[18] Jang, H.K., and Park, J. S. “Multiresolution Sinusoidal 
Model with Dynamic Segmentation for Time-scale Modifi-
cation of Polyphonic Audio Signals,” IEEE Trans. on 
Speech and Audio Signals, Vol. 13, No. 2, pp. 254-262, 
March 2005 

[19] Xu, C., Maddage, N. C., Shao, X., Cao, F., and Tian, Q 
“Musical Genre Classification using Support Vector Ma-
chines,” Proc. of ICASSP, Singapore 2003. 

 

87 - DAFx'05 Proceedings - 87


	P_082.pdf
	POLYPHONIC MUSIC ANALYSIS BY SIGNAL PROCESSING AND SUPPORT VECTOR MACHINES
	1. INTRODUCTION
	2. RELATED WORK
	3. SYSTEM OVERVIEW
	4. TIME-FREQUENCY SIGNAL ANALYSIS
	5. MACHINE LEARNING: SUPPORT VECTOR
	5.1. Support Vector Machine
	5.2. Support Vector Machine in polyphonic music

	6. EXPERIMENTS AND RESULTS
	7. STILE
	8. CONCLUSION
	9. REFERENCES

	Zoia
	Zhou


