
Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

AUDIO RENDERING SYSTEM DESIGN FOR AN OBJECT ORIENTED AUDIO VISUAL
HUMAN PERCEPTION ASSESSMENT TOOL

Ulrich Reiter

Institute of Media Technology
Technische Universität Ilmenau, Germany
ulrich.reiter@tu-ilmenau.de

ABSTRACT

The cognitive processes behind human bimodal (audio visual) per-
ception are not well understood. This contribution presents an ap-
proach to reach a deeper understanding by means of subjective
assessments of (interactive) audio visual applications. A tool de-
veloped for performing these assessments is introduced, and the
audio rendering system design of that tool is explained: its mod-
ular character, the signal processing flow as well as the possible
reproduction setups are discussed. Finally, an example for the as-
sessment of geometrically based room simulation and preliminary
test results are given.

1. INTRODUCTION

Opposite to subjective assessments of audio or visual only presen-
tations, subjective assessments of audio visual presentations still
remain a field of scientific research full of question marks. To
give an example: in its 1999 dated “Question ITU-R 102/6” [1]
the study group 6 of the International Telecommunication Union
(ITU) has declared the existing methods for the subjective assess-
ment of audio systems with accompanied visual presentation to
be insufficient. Yet there have not been significant contributions
nor public discussions since then, and the same statement unfortu-
nately is valid for the subjective assessment of systems where the
auditory and visual domain are considered equally important.

One of the reasons for this is that there exists an already large
variety of audio visual systems with very different areas of appli-
cation. It is common ground to assume that the perceived quality
of a system is depending on the expectations of the user, which
themselves depend on the area of application, on the presentation
environment, etc. The distinction between systems can be based
upon a number of different criteria. It is difficult to compare these
systems, and even more difficult to derive knowledge about the
cognitive processes behind human bimodal perception from as-
sessments performed on these systems.

Yet without a better understanding of these processes, further
enhancements of these applications in terms of “experienced real-
ism for the user” will be hard to achieve. In this paper a tool is
presented which is capable of performing basic audio visual sub-
jective assessments for the evaluation of the human bimodal cog-
nitive processes. Due to its modular concept it can be extended to
allow more specific tests with focus on auditory, visual as well as
audiovisual phenomena.

For the tool, an object oriented approach was chosen. There-
fore, the tool itself as well as the audio visual content to be assessed
are object oriented. On the one hand this means that the part of the
software responsible for the audio rendering is based on a modular

design, where modules can be easily exchanged with other mod-
ules. This concept will be presented in section 2 of this article. On
the other hand this means that the audio visual content itself (the
“scene”) is organized in a hierarchical way, so that elements of the
scene can be transformed, scaled, exchanged with other elements
and re-used in other scenes. This concept was widely introduced
with the VRML 2.0 standard [2], a concept which ran into the
current ISO/IEC 14496 standard MPEG-4, where a scene descrip-
tion called BIFS (BInary Format for Scene description) based on
VRML is used [3]. For the auditory part of the scene description,
A(udio)BIFS and A(dvanced)A(udio)BIFS is used.

Therefore the tool presented here is actually an MPEG-4
player with an advanced audio render engine called TANGA which
allows to use arbitrary algorithms for the rendering of audio. As an
example, different methods for the real time calculus of early re-
flections in an interactive environment could be compared and as-
sessed subjectively by only exchanging modules or “components”
in the player, but leaving the scene description itself unaltered. The
player has been developed over the last three years in the IAVAS
project [4] at the Institute of Media Technology, Technische Uni-
versität Ilmenau, Germany.

The visual display part of the test setup consists of an acousti-
cally transparent screen of 2.80m of width and a video projector,
the auditory part is described in subsection 2.5. The test lab is in
accordance with ITU-R BS.1116 [5].

2. MODULAR AUDIO ENGINE

In the Tanga System, the processing of audio signals is done
through Tanga Components. Each Tanga Component constitutes
a signal processing unit with a given number of output and in-
put channels. The audio signal arriving at the input channels is
then transformed by the signal processing logic implemented in
the Component. Therefore the Tanga System can be expanded to
virtually any audio functionality by means of writing a new plug-
in.

The system uses the ‘PortAudio’ API for audio input and out-
put to any multichannel sound card and supports many different
drivers on different platforms, e.g. ASIO and DirectSound on Win-
dows and ALSA on Linux [6]. Latency of the Tanga System de-
pends on the Tanga Components themselves, but is dominated by
the time necessary to calculate the early reflections and late rever-
beration parts of a scene’s room impulse response (RIR).

The Tanga System consist of three main parts: the Tanga En-
gine which provides the link between the Tanga System and the
underlying Audio API, the Tanga Components which provide the
signal processing units and some helper classes.

DAFX-1

69 - DAFx'05 Proceedings - 69

http://www.imt.tu-ilmenau.de
mailto:ulrich.reiter@tu-ilmenau.de

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

2.1. The Tanga Engine

The TangaEngine class is defined as an abstract interface and
hides the details of the underlying audio API to the rest of the
system. This interface is currently implemented through the
PaTangaEngine class, which provides a ‘PortAudio’ based
render engine. It could be replaced with any audio API that pro-
vides some means of real time audio output.

One of the most important requirements for the Tanga Engine
is that it should provide a DAC output timestamp. This should be
the time when the samples being buffered will be played at the au-
dio output, which is essential for synchronization purposes. ‘Por-
tAudio’ was chosen because it provides such a timestamp and has
in general very good real time support. Whereas ‘PortAudio’ also
provides audio streams in blocking read/write mode, this feature is
not useful for the Tanga Engine and we rely on the non-blocking
audio streams which use a callback function for filling the output
buffers.

This callback function invoked by ‘PortAudio’ is used to con-
trol the Tanga Engine, since ‘PortAudio’ ensures that this function
is always called in time such that the output buffers are filled as
needed by the audio hardware.

2.2. The Tanga Components

The signal processing units of the Tanga System are implemented
through classes derived from the TangaComponent class. This
base class defines the basic functionality and layout of any com-
ponent of the system:

• Each component has a number of output channels and of
input channels.

• It provides methods for attaching buffers to those input and
output channels.

• The principal method is the perform() method, which will
read the samples from the input buffer, perform some signal
processing action on them and then write the result to the
output buffer.

The buffers are implemented in the TangaBuffer class,
which provides some basic buffer handling methods, as well as
a method to fill the entire buffer with silence.

An example for a TangaComponent is the TangaMix
component, which is used to mix n input signals into m output sig-
nals by using an n × m matrix. The matrix is set using a method
that requires an array of n · m float values as its parameter and
an instance of such a TangaMix component should have n in-
put and m output buffers attached. This component can be used to
implement, for example, an MPEG-4 AudioMix node.

2.3. Helper classes

These are classes that are used by the different components or by
the engine itself, but have no specific, common layout or function-
ality. They mainly provide mathematical operations, as for exam-
ple in the TangaVbap class. This is a class used to compute the
mixing matrix for the TangaMix component, which will distrib-
ute the audio signals from the sound sources to the attached loud-
speakers according to the VBAP algorithm. For more details on
this see subsection 2.5 on loudspeaker setups.

A simplified UML (Unified Modeling Language) diagram for
the Tanga Engine, some Tanga components and a helper class can
be found in fig. 1.

2.4. Signal processing

As the Tanga Engine is part of the IAVAS MPEG-4 Player, the
audio input will be provided by the corresponding nodes of an
MPEG-4 scene being played. Usually this will be an AudioSource
node attached to a Sound or a DirectiveSound node. In order to
explain how the system works, for now we will only consider the
case of Sound nodes which have an AudioSource node attached to
them.

A TangaSource component will then be used to grab the
audio samples from the MPEG-4 audio stream and write them into
a TangaBuffer. Such a component has only one output chan-
nel and no input channel. The perform() method of this com-
ponent will grab the correct audio frame with the Composition
Time Stamp (CTS) corresponding to the provided DAC output
timestamp and eventually multiply the samples by an intensity fac-
tor as defined in the Sound node.

At the end of the signal processing line we have a TangaMix
component with a number of input channels corresponding to the
number of Sound nodes present in the scene and a number of out-
put channels corresponding to the number of loudspeakers used.
The mixing matrix of this component is set through the TangaVbap
helper class which is fed by the current locations of the Sound
nodes.

To ensure that the components are performed in the correct
order, the engine interprets the MPEG-4 scene graph. The call-
back() method invoked by ‘PortAudio’ will first go through all the
Sound nodes defined in the scene calling the perform() method of
the associated TangaSource components, and then, at the end,
the TangaMix component’s perform() method will be executed,
which fills the final output buffers. Fig. 2 illustrates this. When Di-

Figure 2: The order in which the Tanga Components are performed
is derived from the MPEG-4 scene graph.

rectiveSound nodes are used in the scene and a physical approach
based on early reflections and late reverberation is used for aural-

DAFX-2

70 - DAFx'05 Proceedings - 70

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

Tanga Components

Tanga Helper ClassesTanga Engine

PaTangaEngine

-m_numOutChannels: int

-m_outputBuffers: TangaBuffer**

-m_pVbapTangaMix: TangaMix*

+defineLoudspeakerSetup(): void

+getOutputLatency(): double

TangaBuffer

-m_pBuffer: TangaSample*

+setBufferSize(framesPerBuffer:const size_t)

+getSample(i:size_t): TangaSample&

+writeSilence()

TangaComponent

#m_numInChannels: unsigned int

#m_inputBuffers: TangaBuffer**

#m_numOutChannels: unsigned int

#m_outputBuffers: TangaBuffer**

#attachInputBuffers(pBuffers[]:TangaBuffer*)

#attachOutputBuffers(pBuffers[]:TangaBuffer*)

+TangaComponent(numInChannels:int,numOutChannels:int)

+perform(outputTimeStamp:double)

TangaEngine

+registerSoundNode(pSoundNode:SoundNodeInterface*)

+unregisterSoundNode(pSoundNode:SoundNodeInterface*)

+start()

+stop()

TangaMix

-m_mixMatrix: float*

+perform(outputTime:double)

+setMixMatrix(mixMatrix:float*)

TangaSource

-m_pAudioData: unsigned char*

-m_pAudioNode: AudioNodeInterface*

+TangaSource(pAudioNode:AudioNodeInterface*)

+perform(outputTime:double)

+setIntensity(intensity:float)

TangaVBAP

+TangaVBAP()

+computeGains(): float*

+setLocation(location:const Vector3&)

Figure 1: Simplified UML diagram for the Tanga Engine, Tanga components and helper class.

ization, the signal processing evidently becomes more complex.

2.5. Loudspeaker setups

As the panning of sound sources in the horizontal plane is based
on Ville Pulkki’s Vector Base Amplitude Panning (VBAP), an ar-
bitrary loudspeaker setup can be used for the reproduction of audio
[7]. It is easily possible to change the position or number of loud-
speakers used. A higher number of loudspeakers in the setup adds
to the accuracy of localization, because phantom sources are of
higher precision. On the other hand, more loudspeakers also de-
mand higher computing power. It is therefore necessary to find
a balance between number of loudspeakers and perceived preci-
sion of phantom sources. Two experimental setups with 8 resp. 12
loudspeakers located in a circular array with equal angles between
the speakers are currently being tested. They will be compared to a
‘classic’ 5.0 or 5.1 surround loudspeaker setup according to ITU-R
BS 775.1 [8].

The algorithm implemented is also suitable for VBAP in a
future 3D loudspeaker setup. Whether it is desirable to have an
elevation component and what its effects on human audio visual
perception are in this context still needs to be evaluated.

3. EXAMPLE: GEOMETRICALLY BASED ROOM
SIMULATION

A number of different methods for the numerical calculus of
early reflections are widely known, among them the mirror source
method, raytracing method, beamtracing method and some others.
Common among them is that they are all based on the geometri-
cal description of the room. (In the MPEG-4 context this is called
the ‘physical approach’.) As yet, a room acoustic calculus method
based on the mirror source method has been implemented in the
tool. Starting from the position of sound source and receiver and
the acoustically relevant objects of the scene, a mirror source ‘tree’

is generated. MPEG-4 allows the author of a scene to define which
objects of a scene are to be considered in the acoustic calculus.
Each node of the tree represents a mirror source, and its position
in the tree indicates its order. It is therefore possible to change the
order of mirror sources to be computed dynamically. The ‘tree’ is
only traversed up to a level where the maximum order is reached.

To further control the mirror source calculus, a maximum to-
tal number of mirror sources to be computed can be set. Mirror
sources can be sorted according to their contribution to the overall
simulation (e.g. the sound level coming from these mirror sources),
and thus the simulation can be further fine-tuned. In case more
than one sound sources are located in a scene, a sound ‘forest’
made up from a number of ‘trees’ is generated.

In an assessment performed to evaluate the suitability of the
audio engine for interactive real time applications, the following
test setup was chosen: A room acoustic simulation based on the
mirror source method was performed, while test subjects were
asked to play a game of catch the ball within the virtual room (see
fig. 3), using the mouse as a navigation device like known from
ego-shooter games. Each contact with the ball increased the test
subject’s score, and subjects were asked to reach a score as high as
possible. The score reached by each test subject was expected to
represent the subject’s involvement with the scene. Placed at three
possible locations was an omni-directional sound source reproduc-
ing three different sound snippets (spoken words, acoustic guitar
music, and a funky drum / bass / guitar tune). After each round
(approx. 20 sec long), test subjects were asked to rate the amount
of agreement between visual and auditory impression of the scene
during that round on a continuous scale of 0 - 100. To enter the rat-
ing a virtual slider on the screen was used, whose position could be
modified using the computer mouse. After entering a rating, a new
combination of sound snippet, location of sound source and order
of mirror sources was accidentally determined. The whole test ses-
sion took about 20 - 25 minutes for each test subject. Eight laymen
and three expert listeners participated. In a second assessment, the

DAFX-3

71 - DAFx'05 Proceedings - 71

Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

Figure 3: Test subjects were asked to play a game of catch the ball
within the virtual room. An omni-directional sound source was
spatialized using the mirror source method.

same test subjects were presented with a video/audio recording of
the game (passive assessment). The order of presentation of the
scenes was the same as in the preceding active assessment of that
subject. Again, after each round test subjects were asked to rate
the amount of agreement between visual and auditory impression
of the scene.

Unfortunately, the test results did not render significant data
regarding audio-visual perception. Yet, some tendencies can be
clearly seen. As the laymen very often did not use the provided
scale from 0 - 100 to its full extent but only a small part of it,
their ratings varied to a great degree. Because a normalization of
the data causes a number of problems detailed for example in [9],
we decided not to take this data into account and rely only on the
experts’ ratings. Of course, with a number of three remaining test
subjects the results are not representative any more.

The tendencies which can be derived from this data can be
summarized as follows: for interactive applications (e.g. where
the user can move freely inside the scene) the number of mirror
sources necessary for a satisfying auditory impression is lower
than for applications where the user can only participate in a pas-
sive way (by watching and listening). The two parameters maxi-
mum order of mirror sources and maximum total number of mir-
ror sources allow a very good control of scalability of the system.
This will be further studied in the near future when the system is
completely operative.

With regard to the test proceedings, extra care has to be taken
to clearly indicate to the test subjects what the attributes are that
should be rated. This topic and a number of related problems are
discussed in detail in another publication [10].

4. OUTLOOK

Another very interesting approach to the problem of room acoustic
simulation in real time applications is the MPEG-4 ‘perceptual ap-
proach’ introduced by Jot [11]. As the name suggests, it is based
on perceptual parameters which have been derived from psycho-
acoustic experiments. The simulation process is not based on the
geometry of the room anymore, but on parameters which describe
subjective acoustic properties of that room. An enhanced version

of this approach based on Miller Puckette’s ‘Pd’ [12] has already
been evaluated in the IAVAS context [13] and will be carried for-
ward into the Tanga Engine. This is especially interesting be-
cause it will allow a direct comparison (regarding subjective qual-
ity and measured computing power necessary) between the two
approaches.

5. ACKNOWLEDGEMENTS

Thanks go to Mathias Schwark, who did the design and most of
the implementation of the Tanga Engine, and who has helped with
section 2 on the modular character of the audio engine.

6. REFERENCES

[1] Question ITU-R 102/6, Methodologies for subjective assess-
ment of audio and video quality, International Telecommuni-
cation Union, Geneva 1999.

[2] ISO/IEC 14772-1, The Virtual Reality Modeling Language
(VRML), 1997

[3] ISO/IEC 14496-1, Coding Of Audio-Visual Objects:
Systems, Final Draft International Standard, ISO/IEC
JTC1/SC29/WG11 N2501, October 1998.

[4] Kühhirt, Uwe; Drumm, Helge; Reiter, Ulrich; and Ritter-
mann, Marco: “Application Systems for MPEG-4”, in Pro-
ceedings of the 2002 IEEE 6th International Symposium on
Consumer Electronics (ISCE 2002), Erfurt, Germany, Sep-
tember 2002.

[5] Recommendation ITU-R BS.1116-1, Methods for the sub-
jective assessment of small impairments in audio systems in-
cluding multichannel sound systems, International Telecom-
munication Union, Geneva 1997.

[6] PortAudio, an Open-Source Cross-Platform Audio API,
http://www.portaudio.com/

[7] Pulkki, Ville: “Virtual Sound Source Positioning Using Vec-
tor Base Amplitude Panning”, in J. Audio Eng. Soc., Vol. 45,
No. 6, 1997 June, pp 456-466.

[8] ITU-R BS. 775, Multichannel Stereophonic Sound System
With and Without Accompanying Picture, Geneva 1994.

[9] Mason, Russell: “Elicitation and measurement of auditory
spatial attributes in reproduced sound”, PhD Thesis, Univer-
sity of Surrey, 2002.

[10] Reiter, Ulrich; Köhler, Tom: “Criteria for the Subjective As-
sessment of Bimodal Perception in Interactive AV Applica-
tion Systems”, in Proceedings of the 2005 IEEE 9th Inter-
national Symposium on Consumer Electronics (ISCE 2005),
Macau, SAR, June 14-16, 2005, pp 186-192.

[11] Jot, Jean-Marc: “Real-Time Spatial Processing of Sounds for
Music, Multimedia and Interactive Human-Computer Inter-
faces”, in ACM Multimedia Systems Journal, vol. 7, no. 1,
January 1999, pp 55-69.

[12] Pure Data (Pd), a graphical Computer Music System,
http://pd.iem.at/

[13] Dantele, Andreas; Reiter, Ulrich: “Description of Audiovi-
sual Virtual 3D Scenes: MPEG-4 Perceptual Parameters in
the Auditory Domain”, in Proc. IEEE Int. Symposium on
Consumer Electronics 2004, Reading, UK, September 2004,
pp 87-90.

DAFX-4

72 - DAFx'05 Proceedings - 72

http://www.portaudio.com/
http://pd.iem.at/

	P_069.pdf
	AUDIO RENDERING SYSTEM DESIGN FOR AN OBJECT ORIENTED AUDIO VISUAL HUMAN PERCEPTION ASSESSMENT TOOL
	1 Introduction
	2 Modular Audio Engine
	2.1 The Tanga Engine
	2.2 The Tanga Components
	2.3 Helper classes
	2.4 Signal processing
	2.5 Loudspeaker setups

	3 Example: Geometrically Based Room Simulation
	4 Outlook
	5 Acknowledgements
	6 References

	Reiter

