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ABSTRACT

Timing and dynamics are two important factors in music perfor-
mance. Research on dynamics-related issues is comparatively rare
because data on dynamics is difficult to obtain from music per-
formance. Nevertheless, research of this kind is vital to the un-
derstanding of music performance and here we are investigating
ways to identify the intensities of individual notes in a mixture of
simultaneous notes. The approach to this problem is dividedinto
two stages. The first stage consists of obtaining the magnitude of
the fundamental frequency of an individual note to determine its
intensity out of a mixture of simultaneous notes, on condition that
the corresponding pitches of which are given. Two simultaneous
notes one or two octaves apart are also included in this study. The
second stage consists of generating, artificially, a mixture of notes
from a recorded single-note database, subsequently referred to as
“estimated mixture”. The time lag between individual notesin the
estimated mixture is adjusted, so that the residual betweenwhich
and the input comes to a minimum. The proposed method is veri-
fied with real data and the result is satisfactory.

1. INTRODUCTION

Timing and dynamics are two important factors in music perfor-
mance. The “tone-colour” of piano playing, for example, is jointly
determined by these factors [1]1. It is pointed out in [2], however,
that research on dynamics-related issues, unlikely timing, is rela-
tively rare because data on dynamics is difficult to obtain from real
piano performances, as it is most unusual for a piece of pianomu-
sic to be entirely monophonic, i.e. constituting only of single notes
being played at a time. The norm, instead, is to have at least 2notes
being played a time, forming mixtures of simultaneous notes. The
dynamic level is, in fact, a combination of the intensities of indi-
vidual notes in a mixture. Existing research in this respecttends to
obtain data from digital pianos or computer-monitored pianos, for
there are optical sensors to detect key pressing speed or final ham-
mer velocity (in the case of computer-monitored pianos) to deter-
mine intensities of individual notes, while studies on acoustic sig-
nals are confined to dynamics of the whole mixture. An overview
of research on timing and dynamics in piano performance can be
found in [2, 3].

This problem is closely related to the area of blind source sep-
aration. Certain source separation algorithms have been specially
designed for music signals [4, 5, 6, 7] and their results are encour-
aging. Nevertheless, the algorithms in [4, 5] are applied toseparate

1In [1], the term “agogics” is used instead of “timing” but their mean-
ings are basically the same.

sources from different musical instruments, while the algorithms
in [6, 7] focus on music transcription, which is closely-related to
our study. A music transcription system aims at turning acoustic
signals into a score-like representation including pitches, onsets
and durations of notes being played. A detailed review of different
systems can be found in [8]. Although the intensities of notes are
usually either ignored or roughly estimated in these transcription
systems, these systems provide valuable information of pitches,
onsets and durations of notes, making the problem of finding in-
tensities of individual notes trackable.

The objective of our study is to determine the intensities of
individual notes in a mixture provided that pitches and the approx-
imate onsets of notes in the mixture are given. The range of notes
used in our experiments is from C2 (f0 = 65.4 Hz) to C6 (f0 =
1046.5 Hz), encompassing 4 octaves2. The intensity of a note is
represented by its MIDI velocity which is an integer rangingfrom
0 to 127. A greater MIDI velocity indicates greater intensity. The
magnitude of the fundamental frequencyf0 of an individual note is
obtained to determine its MIDI velocity out of a mixture of simul-
taneous notes. For maximum reliability of experimental results,
these mixtures and notes of the single-note database are recorded
under identical acoustic condition and technical setup. Two simul-
taneous notes one or two octaves apart are also included in this
study. The time lag between individual notes in the estimated mix-
ture is adjusted, so that the residual between which and the input
comes to a minimum. The proposed method is verified with real
data and the result is satisfactory.

The rest of the paper is organized as follows: related work is
reviewed in Section 2, the proposed method is presented in Section
3, experimental results are given in Section 4, before a conclusion
drawn in Section 5.

2. RELATED WORK

An early attempt to investigate the intensities of mixturesis found
in [9]. In this empirical investigation, it is shown that themaxi-
mum amplitudes are linearly proportional to piano hammer veloc-
ities. There is a linear relationship between the sum of the peak
amplitude of the individual notes and the peak amplitude of the
two-note mixtures. In addition, it is found that the sum of the peak
amplitudes of the individual notes is slightly less than thepeak
amplitude of the two-note mixtures.

A later empirical investigation come in [10], which laid the
foundation of our study. This work investigates whether therel-

2To refer a specific pitch, C4 to B4 denotes the octave from middle C
to B. C3 to B3 denotes the octave below middle C. C5 to B5 denotes the
octave above the middle C and so on.
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ative peak amplitude of recorded piano notes can be reliablyin-
ferred from the magnitudes of their fundamental frequency (first
partial) and the second partial, which are measured in the spec-
trum near the note onset. It finds out that the peak RMS increases
with the increase of MIDI velocity at a range of MIDI velocity.
The magnitudes of their fundamental frequencies and the second
partials generally increase linearly with the peak RMS. However,
the peak RMS, and the magnitudes of their fundamental frequen-
cies and the second partials vary substantially across pitches, even
though the strings of different pitches are hit by the hammerat the
same hammer velocity.

3. PROPOSED METHOD

3.1. Problem formulation

The time-domain signal of a single note with pitchp and intensity
v is denoted asxp,v(t). The time-domain signaly(t) is a mixture
of n simultaneous notes and is modeled as the superposition of the
time-domain signals of its individual notes

y(t) = xp1,v1
(t) + · · · + xpn,vn

(t) (1)

wherepi andvi are the pitch and the intensity of the notei respec-
tively. A note with a greater indexi has a higher pitch, i.e., the
pitch of note 1 is lowest while the pitch of the noten is highest.
In our study, the pitch of each note in the mixture is known, i.e.,
eachpi is known, but each intensityvi and each signalxpi,vi

(t)
are unknown.

In order to estimate eachxpi,vi
(t), there is a single-note data-

base we recorded containing of all pitches from C2 to C6 played
at a range of intensities. There are 7 intensity levels including the
MIDI velocities 30, 40, 50, 60, 70, 80 and 90. The recording setup
will be discussed in Section 3.2.

A notei with pitchp and intensityv in the database is denoted
asx̂pi,vi

(t). An estimate ofy, ŷ, is the superposition of the notes
in the database:

ŷ(t, v̂1, . . . , v̂n, τ1, . . . , τn)

= x̂p1,v̂1
(t − τ1) + · · · + x̂pn,v̂n

(t − τn) (2)

where v̂i is the estimated intensity, andτi is the estimated time
lag of the notei. The estimate (̂y) has the same pitches ofy. The
reason of having the time lag variables is that the onsets ofx and
x̂ may not be the same, because the strings are hit by the hammers
at slightly different times. For example, it is shown in [2] that the
melody note is consistently found to precede the other notesin
the accompaniment by around 30 ms, even the pianist intendedto
play all notes simultaneously. This is because the melody note is
usually played louder so the corresponding hammer will arrive at
the strings earlier.

The error of the estimate is measured by the sum of the squared
errorse:

e =
NX

t=0

(y(t) − ŷ(t, v̂1, . . . , v̂n, τ1, . . . , τn))2 (3)

whereN is the time length ofy ande is the power of the residue
signaly − ŷ.

The problem is to find the optimal intensitiesv̂∗ = {v̂∗

1 , . . . , v̂∗

n}
and the optimal lagsτ∗ = {τ∗

1 , . . . , τ ∗

n} to give an optimal̂y∗ such

that the sum of squared errorse is minimum. In other words, find-
ing the optimal intensity of a note in a mixture is to classifyit into
one of the 7 intensity levels. The time lagsτ are discrete sampling
periods. A sampling period is equal to 1/(sampling frequency) =
1/(44100 Hz) = 0.0227 ms. We will find the optimal intensities
and lags in two stages as shown in Figure 1. In these two stages,
a single-note database is used. The proposed method is applied
to two-note mixtures but it is extendable to tackle multi-note mix-
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Figure 1: The flow of the proposed method.

3.2. Creation of the single-note database

The notes in the database were played by a computer-controlled
piano which was a Yamaha Disklavier DU1A upright piano, Mark
III series. During the recording session, both the top lid and the
front face of the piano were open. The sound was recorded with
a RØDE NT1000 condenser microphone placed approximately 20
cm above the keyboard and 18 cm in front of the C5 piano strings.
This close-miking setup reduced the effect of room acoustics. The
microphone was connected to an RME Fireface 800 Audio Inter-
face, which acted as a microphone preamp and an A/D converter,
and transferred the signals to a PC digitally through a firewire ca-
ble. The signals were stored in WAV format. The sampling fre-
quency was 44.1 kHz and the number of bits per sample was 24.
All notes from C2 to C6 were recorded. Each note was played at
the MIDI velocities 30, 40, 50, 60, 70, 80 and 90 and lasted for1
second. The notes played at MIDI velocities below 30 have very
similar peak values to the MIDI velocity 30. The notes playedat
the MIDI velocities above 90 have very similar peak values tothe
MIDI velocity 90. Therefore, the database only contains thenotes
played in the range between 30 to 90. These 343 note samples con-
stitute the single-note database. The reason of recording all notes
is that the magnitudes off0 vary considerably across pitches as
demonstrated in [10].

3.3. Stage 1: Finding the optimal intensities v̂∗ of individual
notes

It is shown in [10] that the magnitude of the fundamental fre-
quencyf0 increases with the increase of the MIDI velocity. Sim-
ilar result was obtained in our study. Thef0 magnitude of the C
notes is shown in Figure 2. Thef0 magnitude generally increases
monotonically with the MIDI velocity. Therefore, given thef0

magnitude of a note recorded in the same experimental setup of
recording the notes in the single-note database, its corresponding
MIDI velocity can be uniquely determined. There are two cases of
finding the MIDI velocity of each note in a mixture.
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Figure 2: f0 magnitude of C2, C3, C4, C5 and C6 against the
MIDI velocity.

3.3.1. Case 1: Non-overlapping f0

The sound of a piano note consists a series of frequency compo-
nents. The lowest frequency component is the fundamental fre-
quency (f0) or first partial. Other components which are approxi-
mately the multiples of thef0 are also called partials. For example,
thef0 of C4 is 262 Hz. Its second partialf1 is approximately equal
to262×2 = 524 Hz, the third partialf2 is262×3 = 786 Hz, and
so on. The first case of finding individual intensity is that thef0 of
a note does not overlap with the partials of other notes, suchas G4
in a C4-G4 mixture. Thef0 of G4 is 392 Hz so it does not overlap
with the frequency components of C4. Noted that in a mixture,the
f0 of the lowest note does not overlap with the partials of any other
notes. Therefore, finding the optimal intensity of the lowest note
always belongs to Case 1.

Before going into the details, the notation is presented first.
The Fourier spectrum ofy is Y . A pitch is equal-tempered if itsf0

follows the equal temperament tuning. The standard A4 is 440Hz.
Thef0 of the equal-tempered pitchp is denoted asf0(p) sof0(p)
equals 440 Hz ifp is A4. Thef0(x̂p,v) is thef0 of x̂p,v. It is found
by firstly finding the Fourier spectrum̂Xp,v of x̂p,v. Then in the
magnitude spectrum|X̂p,v |, a peak is picked in the region of±
half semitone at the equal-tempered pitchp. The frequency of this
peak isf0(x̂p,v). The magnitude atf0(x̂p,v) is |X̂p,v(f0(x̂p,v))|

or simply |X̂p,v(f0)|. If a mixturey contains the pitchp, thef0

magnitude ofp in Y is |Y (f0(p))|. It is determined in the way that
in the magnitude spectrum|Y |, a peak is picked in the region of
± half semitone at the equal-tempered pitchp. Then the peak is
|Y (f0(p))|. Here are the steps to determine the optimal intensity
v̂∗

i of a notei with the pitchpi:

1. Find the Fourier spectrumY of y by FFT

2. Find the magnitude off0 of the notei in |Y |, denoted by
|Y (f0(pi))|.

3. The optimal̂v∗

i is thev̂i having the closestf0 magnitude in
the single-note database:

v̂∗

i = arg
min

��|Y (f0(pi))| − |X̂pi,v̂i
(f0)|

�� for all v̂i (4)

3.3.2. Case 2: Overlapping f0

If the f0 of a note overlaps with the partials of other notes, such
as C5 in a C4-C5 mixture and G5 in a C4-G5 mixture, thef0

cannot be used directly to determine the intensity. In the case of
the C4-C5 mixture, Thef1 of C4 is approximately equal to thef0

of C5 (Figure 3 (a) and (b)). The magnitude at thef0 of C5 in the
spectrum of the C4-C5 mixture is contributed by both thef0 of C5
and thef1 of C4. A naive method is to subtract thef1 magnitude of
C4 from the mixture at that frequency. However, unless they are
exactly in phase, the magnitude at that frequency in the mixture
spectrum is not equal to the addition of thef0 magnitude of C5 in
the C5 spectrum and thef1 magnitude of C4 in the C4 spectrum.
In Figure 3 (c), the spectrum of the C4-C5 mixture recorded under
the same experimental setup is shown. The notes in the mixture
and the single notes all were played at MIDI velocity 70. The
magnitude at thef0 of C5 (equivalently,f1 of C4) in the spectrum
is even lower than both the magnitude of the individual C4 and
C5 at that frequency. In order to find thef0 magnitude of C5, the
C4 note must be removed from the mixture. To remove the lower

0 500 1000
0

50

100

Frequency (Hz)

M
ag

ni
tu

de

f
0

f
1

f
2 f

3

(a) C4

0 500 1000
0

50

100

Frequency (Hz)

M
ag

ni
tu

de

f
0

f
1

(b) C5

0 500 1000
0

50

100

Frequency (Hz)

M
ag

ni
tu

de
(c) C4−C5 mixture

0 500 1000
0

50

100

Frequency (Hz)

M
ag

ni
tu

de

(d) C4−C5 mixture (C4 removed)

Figure 3: (a) The spectrum of C4. (b) The spectrum of C5. (c)
The spectrum of the C4-C5 mixture. (d) The spectrum of the C4-
C5 mixture from which C4 is removed. All notes were played at
MIDI velocity 70. Hamming window was applied from the onsets
and its length was 16384 (372 ms).

note in a two-note mixture, the intensity of the lower note isfirstly
estimated so the corresponding lower note signal in the database
x̂p1,v̂1

is subtracted from the mixturey to giveỹ. However, before
the subtraction can be done, the time lagτ̃1 between the mixture
and the lower note signal must be found.

ỹ(t, τ̃1) = y(t) − x̂p1,v̂∗

1
(t − τ̃1) (5)

If the lower note is successfully removed from the mixture, the
magnitude of thef0 of the lower note in the mixture spectrum has
a very small value. Therefore, the lagτ̃1 is chosen if it gives the
minimumf0 magnitude of the lower note in the mixture spectrum
for a lag range fromτmin to τmax.

Ỹ (f, τ̃1) = FFT(ỹ(t, τ̃1)) (6)

τ̃∗

1 = arg
min

|Ỹ (f0(p1), τ̃1)| for τmin ≤ τ̃1 ≤ τmax (7)

The τmin andτmax will be determined by the experiment in Sec-
tion 4. After the lower note is removed, the intensity of the upper
note can be estimated by using the method in Case 1. In Figure
3 (d), C4 is removed from the C4-C5 mixture by using the above
method so only C5 is left. Thef0 of this C5 is close to thef0 of
the C5 in the single-note database.
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3.4. Stage 2: Finding the optimal time lags τ∗

3.4.1. Method 1: Exhaustive search

The simplest way to find the optimal lags is to use exhaustive
search which calculates the errors for all possible time lags. Letk
be the number of samples in the range fromτmin to τmax, andn be
the number of notes in the mixture. Then the search space contains
kn points. A better way is to use optimization techniques to reduce
the search space. However, the error function is non-differentiable
and discontinuous as the function depends on the series of signal
values ofy andx̂, and the discrete lagsτ . To solve this problem,
we use the pattern search algorithm in [11] implemented by [12].

3.4.2. Method 2: Pattern search

The pattern search algorithm is a class of direct search algorithms.
At each iteration, the pattern search algorithm searches a set of
points, called a mesh, around the current point. The algorithm
constructs the mesh by adding the current point to a scalar multiple
of a fixed set of vectors called a pattern. The scalar multipleis
called the step-length parameter. If the algorithm finds a point in
the mesh that improves the objective function at the currentpoint,
the new point becomes the current point at the next iterationof the
algorithm, and the step-length parameter increases to expand the
mesh. If the algorithm fails to find a point improving the objective
function, the step-length parameter decreases to shrink the mesh
and the algorithm does not change the current point at the next
iteration. Further details can be found in [12, 11].

In this paper, the objective function is the residual power in
Equation 3. The optimization variables areτ1 andτ2, the lags of
the lower note and the upper note respectively. The patternsused
are(0, 1), (1, 0), (0,−1), and(−1, 0). This means that at each it-
eration, the algorithm searches in the direction of north, east, south
and west. It tries to find a point in the mesh that best improves
the objective function. If such point is found, the step-length pa-
rameter is multiplied by 2; otherwise, the step-length parameter
is multiplied by1/2. The initial step-length parameter is set to
1. In the pattern search algorithm, a starting point(τ̂1, τ̂2) is re-
quired. We calculate the starting point from the phase shifts. The
phase off0 of the shifted single note from the database would be
close to the phase off0 of that note in the mixture. Therefore,
it is reasonable to guess the starting point by shiftingx̂pi,v̂∗

i
by

τ̂i. Such that the phase of thef0 of x̂pi,v̂∗

i
in the spectrumX̂ ,

(∠X̂pi,v̂∗

i
(f0)), is equal to that of thef0 of x̂pi,v̂∗

i
in the spectrum

Y , (∠Y (f0(x̂pi,v̂∗

i
))), so the starting point is(τ̂1, τ̂2) where

τ̂i = −
∠Y (f0(x̂pi,v̂∗

i
)) − ∠X̂pi,v̂∗

i
(f0)

2πf0(x̂pi,v̂∗

i
)

(8)

For the upper note in Case 2 (overlappingf0), Y is replaced bỹY .
Moreover, the error function is highly nonlinear as shown in

Figure 43. The error map is generated by the exhaustive search
method. The reason for the nonlinearity is that shifting a period
(1/f0) of x̂pi,v̂∗

i
gives a similar error value. If̂x has strongf1 or

evenf2, shifting a half period (1/(2f0)) or one third of the period
(1/(3f0)) will also give a similar error value. If there is only one
starting point, it is easily trapped into a local minimum. Toavoid

3A full-colour error map is available at
http://www.cse.cuhk.edu.hk/∼wmszeto/dafx05/demo.htm.

this problem, a set of starting points are generated. The newstart-
ing points are formed by shiftinĝτi by various1/si periods in the
range fromτmin andτmax wheresi is an integer:

Ti = {τ 1
i , . . . , τmi

i } (9)

where τ̂i = τk
i for somek, τk+1

i − τk
i = 1/(si · f0(x̂pi,v̂∗

i
)),

τmin ≤ τk
i ≤ τmax for all k, τ 0

i < τmin, andτmi+1

i > τmax.
A starting point(τk1

1 , τk2

2 ) is in the Cartesian product ofT1 ×
T2. The integer variablesi is equal to 3 for the pitchpi of a note
is equal to or below C3, and it is equal to 2 otherwise. A grid
of starting points is shown in Figure 4. In the pattern searchal-
gorithm, bound constraints are added to avoid duplicated search.
For the dimensionτi, the bound of a starting point(τk1

1 , τk2

2 ) is
τki

i ±1/(2·si ·f0(x̂pi,v̂∗

i
)). From each starting point, the algorithm

searches for a local minimum. The estimated global minimum is
the minimum of these local minima.
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Figure 4: The error map ofτ1 and τ2 of a C2-A2 mixture. A
white line connects a starting point and its corresponding local
minimum. x̂p1,v̂∗

1
is C2 at MIDI velocity 70 and̂xp2,v̂∗

2
is A2

at MIDI velocity 70. The periods of these C2 and A2 are 676 and
401 samples respectively. The variabless1 ands2 are equal to 3 so
along each axis, adjacent starting points are separated by one third
of the period. The period is the period of C2 for the x-axis andis
the period of A2 for the y-axis. The residue-to-signal ratioat the
global minimum (133, 63) is 0.0159.

4. EXPERIMENTS AND EVALUATIONS

Since the search range of Stages 1 and 2 depends on the variabil-
ity of the computer-controlled piano, we need to determine the
search range in order to obtain a better result. The procedure will
be presented in Section 4.1. After the search range is found,we
will test our proposed methods on real data. In Section 4.2, we
will evaluate the method of finding optimal intensities in Stage 1.
The exhaustive search and the pattern search methods in Stage 2
will be compared in Section 4.3. Finally, we will show the overall
performance of our proposed methods.

4.1. Finding the search range and residue-to-signal ratio

In this experiment, the objective is to determine the searchrange,
i.e., the minimum lagτmin and the maximum lagτmax, and inves-
tigate the residue power of the same single notes. As the computer-
controlled piano is a mechanical device, each playing of thesame
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note at the same MIDI velocity is slightly different from time to
time. In order to study this variability, all notes from C2 toC6
were played at the MIDI velocity 70 for 4 times except C2, C3,
C4, C5 and C6 which were played 6 times. Similar to two-note
mixtures, the residue power and the time lags are defined as be-
low. xi(t) is thei-th time of a note being played. The aim is to
find the optimal time lagτ i,j

∗ such that the sum of squared errors
(residue power)ei,j is minimum and the residue power is

ei,j =
NX

t=0

(xi(t) − xj(t − τ i,j))2 (10)

whereN = 22049 (500 ms).
The average absolute lag is the average of all|τ i,j | for i 6= j.

The residue-to-signal ratio (RSR) ofxi(t) andxj(t) is defined as

RSRi,j =
1

2

� ei,jPN

t=0
(xi(t))2

+
ei,jPN

t=0
(xj(t))2

�
(11)

All discrete time lags were tested in the range from -1323 sam-
ples (-30 ms) to 1323 samples (30 ms) to find the optimal lags . The
mean and the standard deviation of the average RSRs were 0.0315
and 0.0405 respectively, while the mean and the standard deviation
of the average absolute lag were 87.6 samples (2.00 ms) and 30.1
samples (0.684 ms) respectively. The minimum lagτmin and the
maximum lagτmax are decided to be -441 samples (-10 ms) and
441 samples (10 ms) respectively. The residue-to-signal ofsin-
gle notes can be used to compare the residue-to-signal of two-note
mixtures.

4.2. Stage 1: Finding the optimal intensities v̂∗

A wide range of two-note mixtures was chosen as below. The
lower note was the note C2. The upper note was selected in the
way that the mixtures included all possible intervals in an octave
and also a double octave. As a result, the mixtures were C2-C♯2,
C2-D2, C2-D♯2, C2-E2, C2-F2, C2-F♯2, C2-G2, C2-G♯2, C2-A2,
C2-A♯2, C2-B2, C2-C3 and C2-C4. This selection rule was re-
peated for the lower note C3, C4 and C5 except C5-C7 which
was discarded because C7 was out of the investigating range C2
to C6. Therefore, there were 51 two-note mixtures consisting of
102 notes under test. These mixtures were recorded in the same
experimental setup in Section 3.2 as the notes in the single-note
database. Each note in all mixtures were played at MIDI velocity
70 and lasted for 1 second. The two notes in a mixture had the
same onset and offset.

The method proposed in Section 3.4 was tested to find the op-
timal intensities. The time lengthN of a mixturey is 32768 (743
ms) for C2-C♯2, C2-D2 and C3-C♯3, andN is 16384 (372 ms) for
other mixtures. A longer time length is required for those three
mixtures because thef0 of the pair of the notes in the mixtures are
very close. The Hamming window was applied before FFT.

The result is shown in Figure 5. The successful rate is 93.1%.
95 of 102 notes were correctly classified to MIDI velocity 70.The
misclassified notes are C4 in C2-C4, C3 in C3-C♯3, C3 in C3-D3,
C4 in C3-C4, C6 in C4-C6, D♯5 in C5-D♯5, and C6 in C5-C6. This
may be due to the variability of the notes played in the computer-
controlled piano as shown in Section 4.1.

4.3. Stage 2: Finding the optimal time lags τ∗

Given the correct MIDI velocity (70), the exhaustive searchmethod
in Section 3.4.1 was used to find the global minimum with the
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Figure 5: The MIDI velocity found. All notes were played at MIDI
velocity 70. 95 of 102 notes were correctly classified to MIDI
velocity 70. The successful rate is 93.1%. The pairs of the lower
note and the upper note in the x-axis from left to right are C2-C♯2,
C2-D2, C2-D♯2, . . . , C2-B2, C2-C3, C2-C4, C3-C♯3, . . . , C5-B5,
C5-C6.

range ofτ in [τmin, τmax]. Then given the same MIDI velocity
70, the method of the pattern search in Section 3.4.2 was usedto
estimate the global minimum. This experiment aims to verifythe
correctness of the pattern search method. If one of the localmin-
ima coincides with the global minimum, the global minimum is
correctly estimated as shown in Figure 4.

The result is that the pattern search method correctly found
the global minimum of all 51 two-note mixtures. This means that
the pattern search method and the exhaustive search method gave
the same result. We also investigated the reduction in the number
of search points of the pattern search method comparing to the
exhaustive search method. The reduction was calculated as

Reduction in search points= 1 −
Np

Ne

(12)

whereNp is the number of search points in the pattern search
method andNe is the number of search points in the exhaustive
search method.

The result is shown in Figure 6. The average reduction is
99.1%. The number of search points in the pattern search method
is much less than that in the exhaustive search method, whichis
(441 × 2 + 1)2 = 779689. There is a decreasing trend of the re-
duction for the higher pitches. This is because a higher pitch signal
has a shorter period so the number of starting points increases.

4.4. Overall performance

We tested the overall performance by using both the optimal inten-
sities and the optimal lags found in the previous sections. In the
first testing condition, the optimal intensities found in Section 4.2,
including the misclassifications, were used to find the optimal lags
by the pattern search method proposed in Section 3.4.2. There-
fore, the first testing condition shows the overall performance of
our proposed method. In the second testing condition, The op-
timal intensities (MIDI velocity 70) were assumed to be correctly
found and they were used to find the optimal lags by the exhaustive
search method proposed in Section 3.4.1. This testing condition
provides a benchmark for the overall performance. We compare
these two testing conditions by the residue-to-signal ratio (RSR)
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Figure 6: The reduction in search points of the pattern search
method comparing to the exhaustive search method. The pairsof
the lower note and the upper note in the x-axis from left to right
are C2-C♯2, C2-D2, C2-D♯2, . . . , C2-B2, C2-C3, C2-C4, C3-C♯3,
. . . , C5-B5, C5-C6.

of two-note mixtures:RSR = e/
PN

t=0
(y(t))2 wheree is the

residue power defined in Equation 3.
The residue-to-signal ratios of the first and second testingcon-

ditions are depicted in Figure 7. The first testing conditionper-
formed worse only in the case of the misclassifications of optimal
intensities. For the first testing condition, the mean and the stan-
dard deviation of RSR were 0.0351 and 0.0705 respectively. For
the second testing condition, the mean and the standard deviation
of RSR were 0.0143 and 0.0091 respectively. The results are com-
parable to the case of the single notes. Demonstrations are avail-
able at http://www.cse.cuhk.edu.hk/∼wmszeto/dafx05/demo.htm
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Figure 7: The residue-to-signal ratio. The pairs of the lower note
and the upper note in the x-axis from left to right are C2-C♯2, C2-
D2, C2-D♯2, . . . , C2-B2, C2-C3, C2-C4, C3-C♯3, . . . , C5-B5, C5-
C6.

5. CONCLUSIONS

In this study, we formulate the problem of finding individualinten-
sity and relative onset of notes in a mixture. A two-stage method
is proposed to tackle this problem. The experimental resultshows
that 95 of 102 notes are correctly classified to MIDI velocity70.
The successful rate is 93.1%. All optimal time lags are foundby

the pattern search algorithm. Comparing to the exhaustive search
method, there is a great reduction of the number of search points in
the pattern search method. In the future, mixtures containing more
than 2 notes will be examined. Moreover, mixtures containing the
notes with the MIDI velocity not in the single-note databasewill
also be investigated. Another possible extension is that, in order to
improve the successful rate, if the ratio of the residual power to the
signal power is greater than a certain threshold, the neighboring
MIDI velocities can be searched iteratively.
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