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ABSTRACT

Estimating the frequency of sinusoidal components is tisé fir
part of the sinusoidal analysis chain. Among numerous faqu
estimators presented in the literature, we propose to stndsti-
mator proposed in [1] known as the derivative algorithm. fksa
to a trigonometric interpretation of this frequency estionave are
able to propose a new estimator which improves estimatidiope
mance for the frequencies close to the Nyquist frequendyowit
any computational overload.

1. INTRODUCTION

Among numerous other applications, the estimation of tlee fr
guency of a sinusoidal signal is the first step of the sinwsoid
analysis chain. Therefore, many methods have been proposed
achieve this goal. Some use the Short-Time Fourier Tramsfor
(STFT) as a starting point, often implemented by the FastiEpu
Transform (FFT). As a consequence, these estimators aa oft
called “FFT-based” estimators.
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Next, this new estimator is compared in Section 5 to existing
phase-based methods and to the Cramér-Rao Bound (CRB). Both
complex and real tones are used to compare these estimators.

2. ESTIMATING THE FREQUENCY OF A SINUSOID

In this section, we propose to study the relationship betvibe
amplitudes of a sinusoidal signal at two different momeritet
s be a cosine signal with amplitudeand frequencyw = 2rtf in
radians per second$ {n Hz) at two different timeg andt — A:

s(t)
s(t—A)

acogwt + @)
acofw(t—A)+ @)

@)
)

The difference and the summation of this signal ahdt — A can
be written as:

A first class of these estimators considers some values of thewith & anda”, two amplitudes:

power spectrum around a frequency component to fit a polyalomi
The location of the maximum of this polynomial gives the |Bec
frequency of the sinusoidal component [2, 3, 4]. In this pape
will focus on a second class of estimators which explicithe the
phase of the FFT to estimate the frequency. Some estim&iairs t
belong to this class will be used to compare the estimatqrqsed

in this article: the reassignment method [5], a phase-veccag-
proach [6], and the derivative estimator [1].

It is proposed in [7, 8] to consider the signal derivative e o
tain a precise estimation of the frequency of a sinusoidaims
nent. Next, an improvement of this estimator is given in [Mhis
new estimator — also called the derivative estimator — has be
compared to existing frequency estimators in [9, 10]. Inl&s®
publication, the authors underline a potential defect: ghgor-
mance of the derivative estimator decreases when the fneyue
be estimated gets close to the Nyquist frequency.

In Section 2, we study the relationship between the ampgud
of a single sinusoidal component at two different moments.aveé
then able to propose two estimators of the frequency of desig
nusoid. These estimators are extended in Section 3 to tleeofas
the estimation of the frequencies of multiple sinusoidahpo-
nents. We will show that the first is identical to the derivatésti-
mator that performs nicely in the low-frequency region aadlip
in the high-frequency one. The second estimator shows symme
rical properties as it performs nicely in the high-frequenegion
and badly in the low-frequency one. A new estimator, which is
combination of these two estimators, is then proposed. #eldd
in Section 4, this new estimator still requires only the catagion
of two FFT.
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st)—st—4A) = & cogwt+d) 3)
stt)+st—4) = a’coqwt+q¢’) @)
a = 2asin(wh/2) (5)
a’ = 2acos(wp/2) (6)
andg and¢’, two phases:
¢ = ¢twh/2 (7
¢ O—WA/2+ Tt (8)
It follows that:
%/ = 2sin(wd/2) 9)
%ﬂ = 2cos(wA/2) (10)

Two frequency estimators can be derived from Equations 9
and 10. These two estimatofs andf* consider respectively the
subtraction and the addition of the sigisalt timest andt — A:

L arcsin o
A 2a
l a//
——arccoy —
A S(2a>

These equations show that the frequency of a sinusoidedisign

be estimated using the amplitude of the signal and those -of so
called “difference” and “sum” signals computed using thgnsi

and its delayed version.

f- (11)

f+ (12)
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2.1. Discrete-Time Signals

In the case of discrete-time signals, the two frequencyrestirs
f~ and f* can be easily implemented using a one-sample delay,

i.e. by settingA = 1/Fs, whereFs is the sampling frequency. In
that case, Equations 1, 3, and 4 become:
2
s(n) = acos(—nfn) (13)
Fs
s (n) = sn—sn—1) = a cos f:—’:fnJr(d) 14)
st(n) = sn)+s(n-1) = a’cos fz—?fnﬂd’)

Equations 11 and 12 show that and f+ are based on the
calculation of amplitude ratios’/a anda”’/a. The problem is
now to evaluate these amplitudes. If we consider that theasig
under test (i.e. for which the frequency is being estimaigdt)-
cally stationary, e.g. for a duration corresponding\t@amples,
then a good estimator of the amplitudes is based on the earian
calculation ofs, s7, ands™ (which are all zero-mean signals):

vas) = &£ = E3sNsm? o~ a2

vars) = s = F3Nts m? ~ a?/2

var(s’) st2 = LsNdstn)? ~ %2
so that:

a~+/2vars), & ~ \/2vars™), anda’ ~ \/2var(st).

Replacinga, &, anda” in Equations 11 and 12, and considering
A = 1/Fs, the two estimators become:
B Fs . var(s™)
f = —arcsinf Y——= 15
n (Zy/var(s) ) (13)
F /
T 2,/var(s)

i+ = (16)

2.2. Behaviors of the Estimators

The behaviors of the two estimatofs and f* above have been
analyzed for single-tone signals of constant frequendibs.sam-
pling frequency has been setfg= 44100 Hz and the tone fre-
quencies ranged from 0 to the Nyquist frequerfey/'2) by step of
10 Hz. We set her&l = 2048 for the practical experiments. The
results of the simulation are represented on Figure 1. Weoban
serve that the estimation error bf increases as the frequency of
the analyzed signal grows. On contrary, the estimatiorr efré™
increases as the frequency gets close to 0.

The behaviors of these two estimators are closely linkeleo t
properties of the mathematical functions arcsin and arcsesl
in Equations 11 and 12. These functions are not linear teansf
functions. If the argument gets close to 1, a small error hvdid
to a non-negligible error on the estimated frequency.

Moreover, the argument of the arcsin function used in Equa-
tion 11 leads to 1 for the Nyquist frequency and the argumént o
the arccos function used in Equation 12 leads to 1 for thaifreqy
0.

Itis then useful to consider thie™ estimator if the frequency of
the analyzed signal is belof/4 and to consider thé+ estimator
otherwise. By doing so, the influence of errors is minimized.

Since we do not have any information concerning the approx-
imative frequency o§, we arbitrarily favorf ~:

f+_ if f~>Fs/4andf™ > Fs/4
o otherwise

f+

i an
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Figure 1: On top, estimation error of T versus the frequency of
the analyzed sinusoidal signal. At bottom, estimationresfof +.
It appears that the errors of these two estimators are symicady

distributed around frequencysf4.

2.3. Influence of Noise

To study the influence of noise on these estimators, we addis-Ga
sian noisey to a constant-frequency cosine sigrdkee Equation

13), the resulting signal being:

() =x(n) +y(n)

The Signal-to-Noise Ratio (SNR) is defined as the ratio be-
tween the energy of the sinusoid and the energy of the noist i
scale. For zero-mean signals liker y (ands), the variance can
be substituted to the energy, thus we have:

SNR= 10Ioglo<

var(x)
var(y)

) (18)

As can be seen on Figure 2, thié estimator gives good re-
sults for SNR above 40 dB. Below 40 dB, a bias can be observed,
i.e. the estimated frequency gets “attracted” to a givequeacy,
in our caseFs/4. Indeed, at very low SNR we get:

var(s) ~ var(y) and va(s™) ~ var(s™) ~ 2vary)

and it follows, from Equations 15 and 16, that the estimated f

quencies are then:

f+ = b arccos(%)

f- = & arcsin(%)

Fs/4

Fs/4 (19)

3. ESTIMATING THE FREQUENCY OF MULTIPLE

SINUSOIDS

The estimators studied in the previous section are limitethé
analysis of only one sinusoid. Yet, most musical signalgaian
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Figure 2: Frequency estimated using" fdefined in Equation 17
for a cosine and Gaussian noise mixture of given SNR, velngus t
frequency of the cosine.

multiple frequency components. To estimate the frequencfe
these components using the same principles, we must estih@at
amplitude, the amplitude of the “difference” signal, and #mpli-
tude of the “sum” signal of each component.

Let sbe a signal made up with sinusoidal components:

P
> ()
=1

2n
ap cos(— fpn+ (pp)
Fs

To estimate the frequencidg, we define:

sn) =

sp(n) =

s (n) =
st(n) =

s(n)—s(n—1) =

ZE:lSE(”)
s(n)+s(n—1) i)

Zp:l Sp (n)

wheres, andsg are sinusoidal components of frequenigy It
can be shown that each frequenigycan be estimated using the

following equations:
F d F a’
fo = —arcsin| = ) and f; = —arccoq -
T 2ap T 2ap

whereap, & p, anda’y, are respectively the amplitudes &, s;,
and s;g. To estimate these amplitudes, the analyzed signsl
windowed and a Discrete Fourier Transform (DFT) of diés
applied. The (periodic) Hann window will be used impliciity
the remainder of the paper, prior to every DFT, see for exardg!
for a discussion. The size of the DFT is chosen so that theteso
difference of the frequencies of two components is at IEg&\.
In this case, each componesat Sp ands‘g will give rise to a local
maximum located at the DFT inddo so that:

(kp— 0.5)Fs (kp+0.5) Fs
P S f AP EY)TS
N <Tp< N
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It can be shown that:
|Slkp]| = Kap, [S™[kp]| = Ka'p, and|S" [kp]| = K&a"p
K=2

kas
()

whereW is the spectrum of the analysis windewused in combi-
nation with the Fourier transform (see [9]). The frequenstynea-
tors of f, are then:

with
1

_ Fs . (1S7]k
fh = = arcsm( |2\S[[k§]]\‘ > (20)
fy = % arcco ‘28|+S[[II<(E]] “ ) (21)
By setting
Sk = DFT[s(n)—s(n—1)] = SK/Fs
Sk = DFT[s(n)] = 9SK

where S" is the spectrum ofn-th derivative of the signas (S
being the spectrum of the signal itself), we find:

_ R 1Skl
fp = T[arcsm(ZFs \S)[kp]\

that is the estimator known as the derivative estimator gseg
in [1]. The estimatorf,;r is then an enhancement of the derivative
estimator for the frequencies abadvg/4, see Equation 19.

Thanks to the spectral estimation available using the DFT of
the signal, we can take advantage of the index of the locai-max
mum to choose between the two estimatfysand f':

~ fo
b=t

4. IMPLEMENTATION

if ko < N/4

otherwise (22)

The use of the estimator defined in Equation 22 requires ttre co
putation of three DFT, see Equations 20 and 21. Yet, it can be
noted that:

S|k = DFT[s (n)] = DFT[s(n)]—DFT[s(n—1)]
Stk = DFT[s"(n)] = DFT[s(n)]+DFT[s(n—1)]
LK = DFT[s(n)

so that only two DFT are needed:
Solk] = DFT[s(n), ---,s(n+N —1)]
and
S 1]k =DFT[s(n—1),---,s(n+N —2)]
This way, for each local maximum with indekp of the power
spectrum S| (P = §), the estimated frequency is:
|So[kp] +S-1[kp]|

2[Sp[kp]]

To generate the contour plot of Figure 3, we used the protocol
detailed in Section 5.1. We can observe that using the pegpos
estimator, the precision of the estimator is roughly indeleat of
the frequency of the analyzed complex exponential. Theoperf
mance of this new estimator will be deeply studied and coagpar
in the next section.

5 arcsin( 2ol =Salkll)
= arcsm( zﬁso[kp]\ P ) if kp <N/4 23)

% arcco ) otherwise
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maximum at indeX; is:

fu= 22 (Lu(S(0p)) ~ £(Sh(0)

where/(8,) is the unwrapped version ef(S,) (the phase of,),
with respect to/(S,), the phase of the preceding spectrum.

For the sake of simplicity, we consider normalized frequen-
cies in our experiments. We now use a 4-kHz sampling frequenc
and frames oN = 128 samples. The SNR ranges frer20 dB
to 100 dB. We evaluate 400 different frequencies in the ctamsd
range. For the limited frequency range, the lower boundtiscse
0.24 and the upper bound to2B (normalized frequencies). For
the whole frequency range, the lower bound is set to 0 and the
upper bound to ®. These bounds are exclusive, so that the first
evaluated frequency in the entire range i8025. For each fre-
quency, 30 different phases are evaluated from Ot1to &t each
evaluation, the noise is randomized. For all the tested odstithe
detection is operated by picking the greatest local maxirimtne
power spectrum.

An interesting element to compare with is the Cramér-Rao
Bound (CRB), defined as the limit to the best possible peréore
achievable by an estimator given a dataset.

Normalized Frequency (0 to 0.5)

Normalized Frequency (0 to 0.5)

Signal to Noise Ratio (=20 to 100 dB)

5.1. Complex Case

We consider a complex exponentia{of amplitude 1) in a Gaus-
sian complex noisg:

Normalized Frequency (0 to 0.5)

<

B3
>

=
|

exp(jon+ ®)
yn) = 10 SNX20(n)

Signal to Noise Ratio (—20 to 100 dB)

wherew is the frequency (in radians per sample) ansl a Gaus-
sian noise of variance 1. The variance of signal pag 1, and
the variance of the noise paris var(y) = 62 = 10-SNR/10_ The
analyzed signal is= x+y.

For the case of the estimation of the frequeanyf a complex
h exponential in noise, the lower Cramér-Rao bound is [11]:

Figure 3:Level curves of the frequency error versus the SNR and
the frequency of the analyzed complex exponential for tastie
mators: {; defined in Equation 20 (equivalent to the derivative
estimator) on top, a‘ defined in Equation 21 in the middle, angl f
defined in Equation 23 at bottom. The level curves grow fraen t
right to the left.

var() > 607 _ 6 5o (24)
“@N(NZ_1) N(NZ_1)

5. PERFORMANCE
wherea is the amplitude of the exponential (heae= 1), and the
The performance of the proposed estimator is compared ethe ~ SNR iS given by Equation 18. We can easily show that, in the log
formances of some phase-based methods of the same computaicales, the CRB in function of the SNRis a line of slope -1.
tional order. As will be detailed later, the performance of the tested esti
The reassignment method [5] uses the knowledge of the ana-mators may depend on the frequency of the analyzed expahenti

Iytic first derivativew of the analysis windowv in order to adjust ~ Whether this frequency is close to 0 or the Nyquist frequescy
the frequency inside the DFT bin. For a local maximum locaitted not

indexkp, the reassigned frequency is computed as follows: To first evaluate these estimators with at least a minimum in-
fluence of these frequency bounds, we compare the metholds in t

limited frequency range located around th@®normalized fre-
fr = kpES -0 (S""(kp)) K quency.
N Sw(kp) / 2m As asserted in [10], all the methods seem to perform singilarl
see Figure 4. A bias can be observed for the reassignment For
whereSy andS, are the spectra of using the analysis windows  single exponential, it may be removed [12]. In this case réaes-

w andw/, respectively. signment performs as the phase-vocoder estimator, sligbtter
The phase-vocoder approach [6] uses the phase difference bethan the derivative estimator and the proposed estimator.
tween two successive short-term spectra in order to esihat When the entire frequency range is considered, the derévati

frequency. Given two successive spe&ands,, computed with method performs badly, see Figure 5(a). This can be exuldiye
an overlap ofN — 1 samples, the estimated frequency of a local the lack of precision in the high-frequency region, see FEdi(b).
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Signal to Noise Ratio (SNR)

Figure 4: Performance comparison of several estimators for the
analysis of a complex exponential signal with frequencydyin

the limited (normalized) frequency rang@24,0.26[: the reas-
signment method (dotted line with *), the phase-vocodémest
tor (dash-dotted line with 0), the derivative estimatorgded line
with x), and the proposed estimator (solid line wilh The CRB is
plotted with a double solid line.

5.2. Real Case

Musical applications usually considers real sinusoideerathan
complex exponentials. We then consider the sigralk+y made
of a sinusoidk (of amplitude 1) in a Gaussian noige

x(n) = sin(wn+ ®)
yin) = % 10-SNR/20,(1)

wherew is the frequency (in radians per sample) arisl a Gaus-
sian noise of variance 1. We use th&/2 normalizing factor to
ensure the validity of Equation 18, because in the real ¢eesestri-
ance of the sinusoid is/2, while we still consider, by definition,
var(y) = 2.

For the case of the estimation of the frequenayf a real
sinusoid in noise, the lower Cramér-Rao bound is shown ta 8k [

12
N(N2—1)

wherea is the amplitude of the sinusoid (heae= 1), and the SNR
is given by Equation 18.

The spectrum of a real sinusoid is made of two Dirac’s im-
pulses, one located at frequenwyand the other at-w, and the
spectrum of the sampled signalRgperiodic. As a consequence,
the more the frequency of the analyzed sinusoid is close to 0 o

2402
aN(N2—-1)

10-SNR/10

var(®) > (25)

Fs/2, the more the interference between the two complex expo-

nentials is pronounced. This can greatly disturb the estima
thus changing their relative performances in the real case.

Conference on Digital Audio Effects (DAFx'05),

Madrfpain, September 20-22, 2005
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Figure 5:0n top, performance comparison of the tested estimators
for the analysis of a complex exponential signal with fretpyey-

ing in the whole (normalized) frequency ranf§e0.5[: the reas-
signment method (dotted line with *), the phase-vocodeémest
tor (dash-dotted line with o), the derivative estimatorgded line
with x), and the proposed estimator (solid line wih The CRB is
plotted with a double solid line. The prominent “bump” obged

for the phase-vocoder at low SNR is due to the poor performanc
of this estimator at very low frequencies. At bottom, penf@nce

of the tested estimators at SNER30dB versus the frequency of the
analyzed exponential (symbols are not plotted here for éke sf
clarity).

original derivative method. Thus, the proposed estimgipears
to be the best estimator for the analysis of real signals avede

Therefore, when the limited frequency range is considered range of frequencies.

(see above), the results are equivalent to the complex sase,
Figure 6. If the whole frequency range is considered, théoper
mances are limited by the interference phenomenon, solikat t
squared error is held asymptotically constant at SNRhigjtean
10 dB, see Figure 7(a). The phase-vocoder and reassignreémt m

These results can be explained by properties of the tested es
timators depending on the frequency of the analyzed sidusee
Figure 7(b). The phase-vocoder method is imprecise in tive lo
frequency region, as the derivative method is in the higlatiency

ods perform equally at high SNR. The proposed estimator per- one, and the bias of the reassignment method prevents tti®ce

forms slightly better than both of them, and much better tifeen
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to achieve good performance in the mid-frequency region.
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10° T T T T ! 6 CONCLUSION

We have shown in this article that the estimation of the fezay

of a sinusoidal signal can be achieved by considering thdiamp
tude of this signal at different moments. This study allogsa
give a trigonometric interpretation of the derivative esttor and
explain the loss of precision of this estimator for signaithvre-
guencies close to the Nyquist frequency. A new estimatohef t
same complexity is then proposed and compared to other known
phase-based estimators. According to the presented ttesis;o-
posed estimator appears to be the best phase-based esfionato
the analysis of real sinusoids with a wide range of frequesci

Frequency Error
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