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ABSTRACT

Estimating the frequency of sinusoidal components is the first
part of the sinusoidal analysis chain. Among numerous frequency
estimators presented in the literature, we propose to studyan esti-
mator proposed in [1] known as the derivative algorithm. Thanks
to a trigonometric interpretation of this frequency estimator, we are
able to propose a new estimator which improves estimation perfor-
mance for the frequencies close to the Nyquist frequency without
any computational overload.

1. INTRODUCTION

Among numerous other applications, the estimation of the fre-
quency of a sinusoidal signal is the first step of the sinusoidal
analysis chain. Therefore, many methods have been proposedto
achieve this goal. Some use the Short-Time Fourier Transform
(STFT) as a starting point, often implemented by the Fast Fourier
Transform (FFT). As a consequence, these estimators are often
called “FFT-based” estimators.

A first class of these estimators considers some values of the
power spectrum around a frequency component to fit a polynomial.
The location of the maximum of this polynomial gives the precise
frequency of the sinusoidal component [2, 3, 4]. In this paper, we
will focus on a second class of estimators which explicitly use the
phase of the FFT to estimate the frequency. Some estimators that
belong to this class will be used to compare the estimator proposed
in this article: the reassignment method [5], a phase-vocoder ap-
proach [6], and the derivative estimator [1].

It is proposed in [7, 8] to consider the signal derivative to ob-
tain a precise estimation of the frequency of a sinusoidal compo-
nent. Next, an improvement of this estimator is given in [1].This
new estimator – also called the derivative estimator – has been
compared to existing frequency estimators in [9, 10]. In thelast
publication, the authors underline a potential defect: theperfor-
mance of the derivative estimator decreases when the frequency to
be estimated gets close to the Nyquist frequency.

In Section 2, we study the relationship between the amplitudes
of a single sinusoidal component at two different moments. We are
then able to propose two estimators of the frequency of a single si-
nusoid. These estimators are extended in Section 3 to the case of
the estimation of the frequencies of multiple sinusoidal compo-
nents. We will show that the first is identical to the derivative esti-
mator that performs nicely in the low-frequency region and badly
in the high-frequency one. The second estimator shows symmet-
rical properties as it performs nicely in the high-frequency region
and badly in the low-frequency one. A new estimator, which isa
combination of these two estimators, is then proposed. As detailed
in Section 4, this new estimator still requires only the computation
of two FFT.

Next, this new estimator is compared in Section 5 to existing
phase-based methods and to the Cramér-Rao Bound (CRB). Both
complex and real tones are used to compare these estimators.

2. ESTIMATING THE FREQUENCY OF A SINUSOID

In this section, we propose to study the relationship between the
amplitudes of a sinusoidal signal at two different moments.Let
s be a cosine signal with amplitudea and frequencyω = 2π f in
radians per seconds (f in Hz) at two different timest andt −∆:

s(t) = a cos(ωt +φ) (1)

s(t −∆) = a cos(ω(t −∆)+φ) (2)

The difference and the summation of this signal att andt −∆ can
be written as:

s(t)−s(t −∆) = a′ cos(ωt +φ′) (3)

s(t)+s(t −∆) = a′′ cos(ωt +φ′′) (4)

with a′ anda′′, two amplitudes:

a′ = 2asin(ω∆/2) (5)

a′′ = 2acos(ω∆/2) (6)

andφ′ andφ′′, two phases:

φ′ = φ+ω∆/2 (7)

φ′′ = φ−ω∆/2+π (8)

It follows that:

a′

a
= 2sin(ω∆/2) (9)

a′′

a
= 2cos(ω∆/2) (10)

Two frequency estimators can be derived from Equations 9
and 10. These two estimatorsf− and f + consider respectively the
subtraction and the addition of the signals at timest andt −∆:

f− =
1

π∆
arcsin

(

a′

2a

)

(11)

f + =
1

π∆
arccos

(

a′′

2a

)

(12)

These equations show that the frequency of a sinusoidal signal can
be estimated using the amplitude of the signal and those of so-
called “difference” and “sum” signals computed using the signal
and its delayed version.
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2.1. Discrete-Time Signals

In the case of discrete-time signals, the two frequency estimators
f− and f + can be easily implemented using a one-sample delay,
i.e. by setting∆ = 1/Fs, whereFs is the sampling frequency. In
that case, Equations 1, 3, and 4 become:

s(n) = a cos

(

2π
Fs

f n

)

(13)

s−(n) = s(n)−s(n−1) = a′ cos
(

2π
Fs

f n+φ′
)

s+(n) = s(n)+s(n−1) = a′′ cos
(

2π
Fs

f n+φ′′
) (14)

Equations 11 and 12 show thatf− and f + are based on the
calculation of amplitude ratios,a′/a and a′′/a. The problem is
now to evaluate these amplitudes. If we consider that the signal
under test (i.e. for which the frequency is being estimated)is lo-
cally stationary, e.g. for a duration corresponding toN samples,
then a good estimator of the amplitudes is based on the variance
calculation ofs, s−, ands+ (which are all zero-mean signals):

var(s) = s2 = 1
N ∑N−1

n=0 s(n)2 ≃ a2/2

var(s−) = s−2 = 1
N ∑N−1

n=0 s−(n)
2 ≃ a′2/2

var(s+) = s+2 = 1
N ∑N−1

n=0 s+(n)
2 ≃ a′′2/2

so that:

a≃
√

2var(s), a′ ≃
√

2var(s−), anda′′ ≃
√

2var(s+).

Replacinga, a′, anda′′ in Equations 11 and 12, and considering
∆ = 1/Fs, the two estimators become:

f− =
Fs

π
arcsin

(

√

var(s−)

2
√

var(s)

)

(15)

f + =
Fs

π
arccos

(

√

var(s+)

2
√

var(s)

)

(16)

2.2. Behaviors of the Estimators

The behaviors of the two estimatorsf− and f + above have been
analyzed for single-tone signals of constant frequencies.The sam-
pling frequency has been set toFs = 44100 Hz and the tone fre-
quencies ranged from 0 to the Nyquist frequency (Fs/2) by step of
10 Hz. We set hereN = 2048 for the practical experiments. The
results of the simulation are represented on Figure 1. We canob-
serve that the estimation error off− increases as the frequency of
the analyzed signal grows. On contrary, the estimation error of f +

increases as the frequency gets close to 0.
The behaviors of these two estimators are closely linked to the

properties of the mathematical functions arcsin and arccosused
in Equations 11 and 12. These functions are not linear transfer
functions. If the argument gets close to 1, a small error willlead
to a non-negligible error on the estimated frequency.

Moreover, the argument of the arcsin function used in Equa-
tion 11 leads to 1 for the Nyquist frequency and the argument of
the arccos function used in Equation 12 leads to 1 for the frequency
0.

It is then useful to consider thef− estimator if the frequency of
the analyzed signal is belowFs/4 and to consider thef + estimator
otherwise. By doing so, the influence of errors is minimized.

Since we do not have any information concerning the approx-
imative frequency ofs, we arbitrarily favorf−:

f± =

{

f + if f− > Fs/4 and f + > Fs/4
f− otherwise

(17)
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Figure 1: On top, estimation error of f− versus the frequency of
the analyzed sinusoidal signal. At bottom, estimation error of f +.
It appears that the errors of these two estimators are symmetrically
distributed around frequency Fs/4.

2.3. Influence of Noise

To study the influence of noise on these estimators, we add a Gaus-
sian noisey to a constant-frequency cosine signalx (see Equation
13), the resulting signal being:

s(n) = x(n)+y(n)

The Signal-to-Noise Ratio (SNR) is defined as the ratio be-
tween the energy of the sinusoid and the energy of the noise, in dB
scale. For zero-mean signals likex or y (ands), the variance can
be substituted to the energy, thus we have:

SNR= 10log10

(

var(x)
var(y)

)

(18)

As can be seen on Figure 2, thef± estimator gives good re-
sults for SNR above 40 dB. Below 40 dB, a bias can be observed,
i.e. the estimated frequency gets “attracted” to a given frequency,
in our caseFs/4. Indeed, at very low SNR we get:

var(s) ≃ var(y) and var(s+) ≃ var(s−) ≃ 2var(y)

and it follows, from Equations 15 and 16, that the estimated fre-
quencies are then:

f + = Fs
π arccos

(

1√
2

)

= Fs/4

f− = Fs
π arcsin

(

1√
2

)

= Fs/4
(19)

3. ESTIMATING THE FREQUENCY OF MULTIPLE
SINUSOIDS

The estimators studied in the previous section are limited to the
analysis of only one sinusoid. Yet, most musical signals contain
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Figure 2: Frequency estimated using f± defined in Equation 17
for a cosine and Gaussian noise mixture of given SNR, versus the
frequency of the cosine.

multiple frequency components. To estimate the frequencies of
these components using the same principles, we must estimate the
amplitude, the amplitude of the “difference” signal, and the ampli-
tude of the “sum” signal of each component.

Let s be a signal made up withP sinusoidal components:

s(n) =
P

∑
p=1

sp(n)

sp(n) = ap cos

(

2π
Fs

fp n+φp

)

To estimate the frequenciesfp, we define:

s−(n) = s(n)−s(n−1) = ∑P
p=1 s−p (n)

s+(n) = s(n)+s(n−1) = ∑P
p=1 s+p (n)

wheres−p ands+p are sinusoidal components of frequencyfp. It
can be shown that each frequencyfp can be estimated using the
following equations:

f−p =
Fs

π
arcsin

(

a′p
2ap

)

and f +
p =

Fs

π
arccos

(

a′′p
2ap

)

whereap, a′p, anda′′p are respectively the amplitudes ofsp, s−p ,
and s+p . To estimate these amplitudes, the analyzed signals is
windowed and a Discrete Fourier Transform (DFT) of sizeN is
applied. The (periodic) Hann window will be used implicitlyin
the remainder of the paper, prior to every DFT, see for example [1]
for a discussion. The size of the DFT is chosen so that the absolute
difference of the frequencies of two components is at leastFs/N.
In this case, each componentsp, s−p , ands+p will give rise to a local
maximum located at the DFT indexkp so that:

(kp−0.5)Fs

N
< fp <

(kp +0.5)Fs

N

It can be shown that:

|S[kp]| = Kap, |S−[kp]| = Ka′p, and|S+[kp]| = Ka′′p

with

K =
1
2

∣

∣

∣

∣

W

(

fp−
kp Fs

N

)
∣

∣

∣

∣

whereW is the spectrum of the analysis windoww used in combi-
nation with the Fourier transform (see [9]). The frequency estima-
tors of fp are then:

f−p =
Fs

π
arcsin

( |S−[kp]|
2|S[kp]|

)

(20)

f +
p =

Fs

π
arccos

( |S+[kp]|
2|S[kp]|

)

(21)

By setting

S−[k] = DFT[s(n)−s(n−1)] = S1[k]/Fs
S[k] = DFT[s(n)] = S0[k]

whereSm is the spectrum ofm-th derivative of the signals (S0

being the spectrum of the signal itself), we find:

f−p =
Fs

π
arcsin

(

1
2Fs

|S1[kp]|
|S0[kp]|

)

that is the estimator known as the derivative estimator proposed
in [1]. The estimatorf +

p is then an enhancement of the derivative
estimator for the frequencies aboveFs/4, see Equation 19.

Thanks to the spectral estimation available using the DFT of
the signal, we can take advantage of the index of the local maxi-
mum to choose between the two estimatorsf−p and f +

p :

f̂p =

{

f−p if kp < N/4
f +
p otherwise

(22)

4. IMPLEMENTATION

The use of the estimator defined in Equation 22 requires the com-
putation of three DFT, see Equations 20 and 21. Yet, it can be
noted that:

S−[k] = DFT[s−(n)] = DFT[s(n)]−DFT[s(n−1)]
S+[k] = DFT[s+(n)] = DFT[s(n)]+DFT[s(n−1)]
S0[k] = DFT[s(n)]

so that only two DFT are needed:

S0[k] = DFT[s(n), · · · ,s(n+N−1)]

and
S−1[k] = DFT[s(n−1), · · · ,s(n+N−2)]

This way, for each local maximum with indexkp of the power
spectrum|S0| (S0 = S0), the estimated frequency is:

f̂p =







Fs
π arcsin

( |S0[kp]−S−1[kp]|
2|S0[kp]|

)

if kp < N/4
Fs
π arccos

( |S0[kp]+S−1[kp]|
2|S0[kp]|

)

otherwise
(23)

To generate the contour plot of Figure 3, we used the protocol
detailed in Section 5.1. We can observe that using the proposed
estimator, the precision of the estimator is roughly independent of
the frequency of the analyzed complex exponential. The perfor-
mance of this new estimator will be deeply studied and compared
in the next section.
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Figure 3:Level curves of the frequency error versus the SNR and
the frequency of the analyzed complex exponential for threeesti-
mators: f−p defined in Equation 20 (equivalent to the derivative
estimator) on top, f+p defined in Equation 21 in the middle, and fp
defined in Equation 23 at bottom. The level curves grow from the
right to the left.

5. PERFORMANCE

The performance of the proposed estimator is compared to theper-
formances of some phase-based methods of the same computa-
tional order.

The reassignment method [5] uses the knowledge of the ana-
lytic first derivativew′ of the analysis windoww in order to adjust
the frequency inside the DFT bin. For a local maximum locatedat
indexkp, the reassigned frequency is computed as follows:

f̂r = kp
Fs

N
−ℑ

(

Sw′(kp)

Sw(kp)

)

Fs

2π

whereSw andSw′ are the spectra ofs using the analysis windows
w andw′, respectively.

The phase-vocoder approach [6] uses the phase difference be-
tween two successive short-term spectra in order to estimate the
frequency. Given two successive spectraSh andS′h, computed with
an overlap ofN− 1 samples, the estimated frequency of a local

maximum at indexkp is:

f̂v =
Fs

2π
(∠u(S′h(kp))−∠(Sh(kp)))

where∠u(S′h) is the unwrapped version of∠(S′h) (the phase ofS′h),
with respect to∠(Sh), the phase of the preceding spectrum.

For the sake of simplicity, we consider normalized frequen-
cies in our experiments. We now use a 4-kHz sampling frequency
and frames ofN = 128 samples. The SNR ranges from−20 dB
to 100 dB. We evaluate 400 different frequencies in the considered
range. For the limited frequency range, the lower bound is set to
0.24 and the upper bound to 0.26 (normalized frequencies). For
the whole frequency range, the lower bound is set to 0 and the
upper bound to 0.5. These bounds are exclusive, so that the first
evaluated frequency in the entire range is 0.0025. For each fre-
quency, 30 different phases are evaluated from 0 to 2π. At each
evaluation, the noise is randomized. For all the tested methods, the
detection is operated by picking the greatest local maximumin the
power spectrum.

An interesting element to compare with is the Cramér-Rao
Bound (CRB), defined as the limit to the best possible performance
achievable by an estimator given a dataset.

5.1. Complex Case

We consider a complex exponentialx (of amplitude 1) in a Gaus-
sian complex noisey:

x(n) = exp( jωn+Φ)

y(n) = 10−SNR/20z(n)

whereω is the frequency (in radians per sample) andz is a Gaus-
sian noise of variance 1. The variance of signal partx is 1, and
the variance of the noise party is var(y) = σ2 = 10−SNR/10. The
analyzed signal iss= x+y.

For the case of the estimation of the frequencyω of a complex
exponential in noise, the lower Cramér-Rao bound is [11]:

var(ω̂) ≥ 6σ2

a2N(N2−1)
=

6
N(N2−1)

10−SNR/10 (24)

wherea is the amplitude of the exponential (herea = 1), and the
SNR is given by Equation 18. We can easily show that, in the log
scales, the CRB in function of the SNR is a line of slope -1.

As will be detailed later, the performance of the tested esti-
mators may depend on the frequency of the analyzed exponential,
whether this frequency is close to 0 or the Nyquist frequencyor
not.

To first evaluate these estimators with at least a minimum in-
fluence of these frequency bounds, we compare the methods in the
limited frequency range located around the 0.25 normalized fre-
quency.

As asserted in [10], all the methods seem to perform similarly,
see Figure 4. A bias can be observed for the reassignment. Fora
single exponential, it may be removed [12]. In this case, thereas-
signment performs as the phase-vocoder estimator, slightly better
than the derivative estimator and the proposed estimator.

When the entire frequency range is considered, the derivative
method performs badly, see Figure 5(a). This can be explained by
the lack of precision in the high-frequency region, see Figure 5(b).
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Figure 4: Performance comparison of several estimators for the
analysis of a complex exponential signal with frequency lying in
the limited (normalized) frequency range]0.24,0.26[: the reas-
signment method (dotted line with *), the phase-vocoder estima-
tor (dash-dotted line with o), the derivative estimator (dashed line
with x), and the proposed estimator (solid line with⋄). The CRB is
plotted with a double solid line.

5.2. Real Case

Musical applications usually considers real sinusoids rather than
complex exponentials. We then consider the signals= x+y made
of a sinusoidx (of amplitude 1) in a Gaussian noisey:

x(n) = sin(ωn+Φ)

y(n) =
1√
2

10−SNR/20z(n)

whereω is the frequency (in radians per sample) andz is a Gaus-
sian noise of variance 1. We use the 1/

√
2 normalizing factor to

ensure the validity of Equation 18, because in the real case the vari-
ance of the sinusoid is 1/2, while we still consider, by definition,
var(y) = σ2.

For the case of the estimation of the frequencyω of a real
sinusoid in noise, the lower Cramér-Rao bound is shown to be [13]:

var(ω̂) ≥ 24σ2

a2N(N2−1)
=

12
N(N2−1)

10−SNR/10 (25)

wherea is the amplitude of the sinusoid (herea= 1), and the SNR
is given by Equation 18.

The spectrum of a real sinusoid is made of two Dirac’s im-
pulses, one located at frequencyω and the other at−ω, and the
spectrum of the sampled signal isFs-periodic. As a consequence,
the more the frequency of the analyzed sinusoid is close to 0 or
Fs/2, the more the interference between the two complex expo-
nentials is pronounced. This can greatly disturb the estimators,
thus changing their relative performances in the real case.

Therefore, when the limited frequency range is considered
(see above), the results are equivalent to the complex case,see
Figure 6. If the whole frequency range is considered, the perfor-
mances are limited by the interference phenomenon, so that the
squared error is held asymptotically constant at SNR higherthan
10 dB, see Figure 7(a). The phase-vocoder and reassignment meth-
ods perform equally at high SNR. The proposed estimator per-
forms slightly better than both of them, and much better thanthe
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Figure 5:On top, performance comparison of the tested estimators
for the analysis of a complex exponential signal with frequency ly-
ing in the whole (normalized) frequency range]0,0.5[: the reas-
signment method (dotted line with *), the phase-vocoder estima-
tor (dash-dotted line with o), the derivative estimator (dashed line
with x), and the proposed estimator (solid line with⋄). The CRB is
plotted with a double solid line. The prominent “bump” observed
for the phase-vocoder at low SNR is due to the poor performance
of this estimator at very low frequencies. At bottom, performance
of the tested estimators at SNR=100dB versus the frequency of the
analyzed exponential (symbols are not plotted here for the sake of
clarity).

original derivative method. Thus, the proposed estimator appears
to be the best estimator for the analysis of real signals overa wide
range of frequencies.

These results can be explained by properties of the tested es-
timators depending on the frequency of the analyzed sinusoid, see
Figure 7(b). The phase-vocoder method is imprecise in the low-
frequency region, as the derivative method is in the high-frequency
one, and the bias of the reassignment method prevents this method
to achieve good performance in the mid-frequency region.
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Figure 6:Performance comparison of the tested estimators for the
analysis of a real sinusoidal signal with a frequency lying in the
limited (normalized) frequency range]0.24,0.26[.
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Figure 7:On top, performance comparison of the tested estimators
for the analysis of a real sinusoidal signal with frequency lying in
the whole (normalized) frequency range]0,0.5[. Again, the promi-
nent “bump” observed for the phase-vocoder at low SNR is due to
the poor performance of this estimator at very low frequencies. At
bottom, performance of the tested estimators at SNR=100dB ver-
sus the frequency of the analyzed sinusoid (symbols are not plotted
here for the sake of clarity).

6. CONCLUSION

We have shown in this article that the estimation of the frequency
of a sinusoidal signal can be achieved by considering the ampli-
tude of this signal at different moments. This study allows us to
give a trigonometric interpretation of the derivative estimator and
explain the loss of precision of this estimator for signals with fre-
quencies close to the Nyquist frequency. A new estimator of the
same complexity is then proposed and compared to other known
phase-based estimators. According to the presented tests,the pro-
posed estimator appears to be the best phase-based estimator for
the analysis of real sinusoids with a wide range of frequencies.
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