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ABSTRACT

A study is presented for the use of multiresolution analysis-based
onset detection in the complex domain. It shows that using vari-
able time-resolution across frequency bands generates sharper de-
tection functions for higher bands and more accurate detection
functions for lower bands. The resulting method improves the lo-
calisation of onsets on fixed-resolution schemes, by favouring the
increased time precision of higher subbands during the combina-
tion of results.

1. INTRODUCTION

In [1] we showed that onset detection in the complex domain can
offer significant improvements on basic energy-based onset detec-
tion methods. In this paper, we consider the effects of using a fixed
resolution spectral analysis when compared with a multiresolution
subband approach.

Subband schemes, such as those discussed in [2, 3], were pro-
posed because different onsets may be stronger in different sub-
bands, as well as the argument that spectral analysis in subbands
more closely represents the non-linearities of human hearing.
These previous subband based onset detection schemes were es-
sentially energy based. As such, they were effective at selecting
strong percussive transients, but were not as effective in detecting
softer onsets, particularly at low frequencies. In [4], we presented
a hybrid scheme which went some way to solving this issue by
using energy in the upper subbands, and the spectral distance mea-
sure in lower subbands. This idea was extended in [5], where a
Kullback-Lieber function was used in the lower subbands, which is
similar in principle to the spectral distance measure. However, this
work preceded the development of the complex detection function,
which effectively combines the energy, and frequency (now mea-
sured using phase information) approaches. In previous results, we
have shown how robust the complex domain detection function is
to onset type. We shall now discuss the effects of extending the
complex detection approach to a subband structure.

2. MULTIRESOLUTION MUSIC SIGNAL ANALYSIS

Window length selection is a key consideration when using an FFT
based analysis. Good time resolution, implying a short window
length, is needed for detecting fast changes within the signal. On
the other hand, good frequency resolution, and therefore a long
window length, is required for accurate location of sinusoidal com-
ponents, particularly at low frequencies where small changes in
frequency are heard by the listener.

There are two main approaches to solving this fixed-resolution
problem. The first we refer to as multiresolution-in-time based on
window switching, and the second multiresolution-in-frequency
based on subband analysis. Naturally, resolutions in time and
frequency are inversely proportional. Hence, in reality, both ap-
proaches are multiresolution in both time and frequency.

In time-varying multiresolution signal analysis, as described
in [6], window switching techniques are used such that short anal-
ysis windows and hop sizes are used at transient frames whilst
longer windows are used at more steady state regions. This is used
in many audio coding schemes, as well as for transient preserva-
tion in sinusoidal modelling. The key problem with this approach
is that the sharp change in frequency resolution at window bound-
aries makes the matching of sinusoidal components across frames
problematical, suggesting it is impractical for many applications.

In the frequency-varying multi-resolution scheme, the frequen-
cy spectrum is split into subbands, and processing is performed
independently on each. This allows shorter analysis windows to
be used at higher frequencies whilst lower frequencies can still
have the required frequency resolution to separate closely spaced
sinusoids. The advantages of the basic principles are described in
[7]. In the following we will briefly discuss a number of proposed
methods for achieving multiresolution in frequency.

2.1. Multiresolution in frequency

In [8], an approach is proposed that uses multiple different length
FFT analyses on the signal. The longer window analysis bins are
used for low frequency component values, whilst the short win-
dow FFT bins are used for high frequencies. Complexity in an
algorithm such as this increases linearly with the number of differ-
ent length FFT analyses performed. In essence, this is a redundant
analysis, although certain bins are ignored at the processing stage.

Another approach, proposed in [9], proposes the use of a twice-
oversampled Laplacian pyramid structure, which is traditionally
used for image compression. This has the advantage that the sub-
bands are approximately alias-free. However, the oversampling
required still leads to an increase in computation.

The simplest approach (as discussed in [8]) to multiresolution
in frequency, is the use of a critically sampled constant-Q filter-
bank of quadrature mirror filters (QMF). QMF filters are pairs of
filters,G0 andG1, given by:

G1(z) = G0(−z) (1)

G1(ω) = G0(ω − π) (2)

Hence,G0 is G1 modulated byπ. If we rearrange this we get:

G1(0.5π + ω) = G0(0.5π − ω) (3)
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From this we can see that the filters are a mirror image about
0.5π. A constant Q filterbank is obtained by cascading several
QMF pairs, and downsampling the outputs of each pair prior to
analysis (see Figure 1). If re-synthesis is required, a reconstruc-
tion filterbank must be used (due to aliasing between subbands).
A variant of this scheme is proposed in [10], where a bandpass
constant Q filterbank is used. However, the lack of downsampling
in this scheme leads to a highly redundant representation of the
signal.
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g0 g1
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Figure 1:Constant Q multiresolution filterbank of cascaded QMF
filters.

In this work we favour the use of a simple constant Q filter-
bank of perfect reconstruction QMF filters. This choice keeps the
algorithm simple and efficient. However, any of the above algo-
rithms could be applied equally well (depending on the particular
application).

2.2. Subband onset detection

There are several examples in the literature of subband analysis for
onset detection.

In [2] an scheme is proposed based on individual energy anal-
ysis of subbands. This aims to mimic onset detection by human
hearing. After re-scaling, the signal is filtered in a filterbank with
21 overlapping “nearly-critical” bands. The lowest 3 filters are oc-
tave spaced, whilst the remaining 18 are third-octave spaced. For
each subband, onsets are characterised using the log-amplitude dif-
ference detection function. After peak-picking on each subband,
the detected onsets are recombined using a psychoacoustic model,
based on the loudness model of [11].

In [3], a similar scheme is proposed using the linearly spaced
subbands of the FFT. During a short window around the time of
an attack, a triangular shape is fitted to the energy profile of each
frequency channel using a least-squares method. A detection func-
tion is derived from the maximum peak of the triangle, and its
mean amplitude before and after the attack. The individual results
are then aggregated across frequencies and along anuncertainty
interval in time.

Both of the above onset schemes are still essentially energy
based schemes, and as such, suffer from poor detection of softer
note transitions, such as those of bowed strings. Further to this,
they tend to under-detect softer low frequency notes, due to the
slower increase in energies found at these frequencies. In the fol-
lowing Sections we discuss an alternative method for onset detec-
tion in the complex domain and its implementation as a subband
scheme.

3. ONSET DETECTION IN THE COMPLEX DOMAIN

There are a number of reasons that justify combining phase and
energy information for onset detection: while energy-based ap-
proaches favour strong percussive onsets and are more reliable
when using high-frequency information (where energy changes
are not masked by the overall energy of a sound), phase-based ap-
proaches emphasize soft, “tonal” onsets and are more robust in the
lower end of the spectrum, where those tonal changes occur. In
[1] a fully combined approach in the complex domain is presented
and successfully tested. We will briefly explain its theory in the
following.

For locally steady state regions in audio signals, we can as-
sume that frequency and amplitude values remain approximately
constant. Therefore it is clear that by inspecting changes in either
frequency and amplitude, onset transients can be located. Further-
more, by predicting values in the complex domain, the effect of
both variables can be considered.

Let us assume that, in its polar form, the target value for the
kth bin of the STFT of a signals(n) is given by:

Ŝk(m) = R̂k(m)e
jφ̂k(m) (4)

where the target amplitudêRk(m) corresponds to the magnitude
of the previous frame|Sk(m − 1)|, and the target phasêφk(m)

can be calculated as the sum of the previous phase and the phase
difference between preceding frames:

φ̂k(m) = princarg[2ϕ̃k(m − 1) − ϕ̃k(m − 2)] (5)

We may then consider the measured value in the complex domain
from the STFTSk(m) = Rk(m)eφk(m), whereRk andφk are
the magnitude and phase of the current STFT frame. By rotating
target and current phasors, such thatŜk(m) is mapped onto the
real axis, and by measuring the Euclidean distance between them,
we can quantify the stationarity for thekth bin as:

Γk(m) =
{

R̂k(m)
2

+ Rk(m)
2
−

2R̂k(m)Rk(m)cos
(

dϕk(m)
)} 1

2 (6)

where

dϕk(m) = princarg[ϕ̃k(m) − 2ϕ̃k(m − 1) + ϕ̃k(m − 2)] (7)

is the phase deviation between target and observed phase values in
a given frame. Summing these stationarity measures across allk,
we can construct a frame-by-frame detection function as:

η(m) =

K
∑

k=1

Γk(m) (8)

In [1] it was shown thatη(m) is an adequate detection function
showing sharp peaks at points of low stationarity while returning
a smoother profile than those obtained with energy or phase-based
methods (consistently outperformed on the experimental results).
Also, results showed robustness for a wide range of musical sig-
nals.
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Subband Number Frequency Band (kHz)
1 11.05 to 22.1
2 5.525 to 11.05
3 2.7625 to 5.525
4 0 to 2.7625

Table 1:Complex Detection Frequency Bands

4. COMPLEX-DOMAIN DETECTION IN SUBBANDS

A simple 3-level constant-Q filterbank of QMF filters is used, split-
ting the signal into four frequency subbands for individual onset
detection analysis (as shown in Table 1).

Figure 2 shows the complex detection function calculated sep-
arately for each subband (lower subbands area at the bottom of the
figure). In this case, the hop size and window size are set such that
they have the same resolution across all subbands. It can be seen
that a greater number of onsets are detected in the lowest subband.
This is because some of the softer notes have weak energy in the
higher subbands. In this case, thresholding of the lowest subband
would achieve high accuracy in onsets detected.

However, the localisation of detected onsets is often as impor-
tant as the number of detections. We know that at higher frequen-
cies, energy changes are sharper, particularly at hard (percussive)
onsets. Therefore, the higher subbands are useful for onset local-
isation, suggesting the use of a shorter analysis window. This is
shown in Figure 3, where the multiresolution scheme is such that
the hop and window sizes are fixed in terms of samples, but the
downsampling in the filterbank leads to a multiresolution analysis
in time.

From these examples we can conclude that the lower subbands
have a tendency to be robust to noise, and therefore produce accu-
rate results in terms of numbers of detected onsets. Unfortunately,
the long windows needed for analysis at these frequencies lead to
poor resolution, and therefore poor onset localisation. Conversely,
higher subbands tend to be more prone to noise and miss-detection
of very low notes, but produce better localised results. In the fol-
lowing we will try use this observations to appropriately combine
information from all subbands.

5. COMBINING SUBBAND INFORMATION

The proposed scheme for combining onset information across sub-
bands, is a re-implementation of our previous work in the area [4].

One possible solution to the combination problem, is to gen-
erate an overall detection function as the sum of all subband func-
tions, such that:

ηall(m) = η1(m) + η2(t) + η3(t) + η4(t) (9)

where the sub-index corresponds to subband numbers as shown in
Table 1. Applying peak-picking to this function does not solve the
problem of weaker onsets remaining undetected, even though they
may be strong within a certain frequency band (due to masking by
stronger onsets in the overall function). An alternative is to peak-
pick onsets on each subband, and then combine the results.
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Figure 2:Fixed-resolution window-length subband complex detec-
tion functions. The overlap is 50% and the hop size corresponds
to 11.6 ms (256 samples at 44100 kHz sampling frequency) for all
subbands

5.1. Peak-picking

For the detection of onsets, first our algorithm normalises and DC-
removes the obtained subband detection functions. This is to fa-
cilitate the thresholding of the detection functions by emphasising
the characteristics of similar peaks and making them more uni-
form, not only within a signal, but between a number of different
signals.

Then, the median filter is used to obtain an adaptive threshold
curveδt(m). This is calculated as the weighted median of anH-
length section of the detection function around the corresponding
frame, such that:

δt(m) = δ + median η(km), km ∈ [m −

H

2
, m +

H

2
] (10)

δ is a constant value with a large influence on the number of good
and false onset detections. [12] demonstrated the effectiveness of
the median filter for the thresholding of peaks in detection func-
tions generated from music.

Finally, local maxima above the calculated threshold are sim-
ply selected as the onsets of a particular subband.

5.2. Combining detected onsets

After peak-picking, each output of the subband scheme produces
a list of onset positions and magnitudes. In many cases, onsets
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Figure 3:Multiresolution window-length subband complex detec-
tion functions. The hop size corresponds, in (e) and (d), to 11.6
ms (256 samples at 44100 kHz sampling frequency) for the lower
subbands - (e) and (d) -, 5.8 ms (128 samples at 44100) for the sec-
ond subband (c), and 2.9 ms (64 samples at 44100) for the highest
subband (b). Window lengths are such that in all subbands a 50%
overlap is used.

are present in multiple subbands. Let us defineP (m) as a signal-
length vector containing one at onsets and zeros elsewhere, such
that:

Pall(m) = Pη1(m) + Pη2(m) + Pη3(m) + Pη4(m) (11)

where the sub-index refers to the subband detection functions or to
the combination of them “all”. When onsets appear in more than
one subband, they will tend to be slightly misaligned (due to the
multiresolution nature of the scheme). Thus, a short windowkm

of 50ms is taken, such that only one onset is allowed per window.
Selection of onsets within this window is done by weighting the
output of each subband:

Pall(km) = αPη1(km) + βPη2(km) + γPη3(km) + Pη4(km)

(12)

such thatkm ∈ [m−25ms, m+25ms]. α, β, andγ are weighting
terms such that:

α > β > γ > 1 (13)

This approach is adopted rather than position averaging to favour
the use of onsets from higher-frequency subbands (thus improving
time resolution), while increasing the number of correct detections

with information from the lower subbands (used when detections
are not obtained in the higher bands). A second reason for using
a weighting scheme of this nature is that it may be tuned so that
only ‘hard’ (percussive) or ‘soft’ (tonal) onsets are selected.

6. COMPLEX SUBBAND DETECTION RESULTS

In order to test the effectiveness of the subband based complex do-
main detection compared to the fixed resolution scheme, detection
results were tested on recordings of a MIDI-controlled acoustic
piano. This test data was preferred over hand-labelled music files
(as used in [1]), as localisation of onsets is at the core of our dis-
cussion, and the hand marked data proved to lack the accuracy for
this. Let us define a measure of onset detection accuracy as given
by:

Accuracy(%) =
Total

Total − Missed − Bad
∗ 100 (14)

whereTotal represents the total number of correct onsets,Missed
is the number of missed detections, andBad is the number of
bad detections. We measured the accuracy of onsets detected as
the correct detection analysis (CDA) window varies in size. This
window is the acceptable distance between the measured onset,
and the true onset. Hence, as the window is short, only well lo-
calised onsets will be labelled as good detections. As the window
increases, less accurate onsets will be accepted as good detections.

From the results in Figures 4 and 5, it can be seen that the
multiresolution scheme outperforms the fixed window complex
domain onset detection for short CDA window lengths. This is in
line with the hypothesis that a multiresolution scheme will improve
onset localisation. However, for longer CDA window lengths, the
multiresolution scheme under-performs. This is due to a higher
number of bad detections, as illustrated by the right side of Figure
6. This increase in bad detections is brought about by the noise in-
troduced by the upper subband detection functions, as can be seen
in the upper subbands of Figure 3.
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Figure 4: Percentage accuracy comparison of localisation of de-
tected onsets complex detection and multiresolution complex de-
tection.

7. CONCLUSIONS

Fixed-scale complex-domain onset detection is a robust and effi-
cient method that successfully incorporates energy and phase in-

DAFX-4

  

  

Proc. of the 7 th Int. Conference on Digital Audio Effects (DAFx'04), Naples, Italy, October 5-8, 2004

— DAFx'04 Proceedings —210 210



Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

30

40

50

60

70

80

90

Correct Detection Window (ms)

%
 G

oo
d 

D
et

ec
tio

ns

Subband Complex Detection
Fixed Window Complex Detection

Figure 5: Percentage good detection comparison of localisation
of detected onsets complex detection and multiresolution complex
detection.
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Figure 6:Percentage bad detection comparison of localisation of
detected onsets complex detection and multiresolution complex de-
tection.

formation, therefore allowing the detection of “hard” and “soft”
onsets for a wide range of music signals. On the other hand, previ-
ous methods have shown the advantages of using multiresolution
analysis for onset detection, given the heterogeneous behaviour of
onsets in different subbands.

In this paper we present a simple subband scheme for complex-
domain onset detection. The approach uses a constant-Q filterbank
of QMF filters followed by complex-domain onset detection on
each of the resulting bands. Experiments show that by using vari-
able time resolution across frequency bands we can improve on the
localisation of onsets at higher subbands while relying on the high
detection rates returned by lower subbands.

The algorithm for the combination of subband onset detec-
tions, favours the use of the onset times from higher subbands.
Results show that for short comparison windows (CDAs), the pro-
posed scheme improves detections on the fixed resolution complex-
domain onset detection. Conversely, for longer comparison win-
dows, the fixed-resolution approach shows more robustness, mostly
due to the over-detections introduced by high-frequency noise into
the subband scheme. Therefore, the multiresolution method proves
an alternative for a range of music applications where the precision

of the detection is of great importance.
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