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ABSTRACT

In this short paper, we address the numerical simulation of the
single reed excitation mechanism. In particular, we discuss a for-
malism for approaching the lumped nonlinearity inherent in such
a model using a circuit model and the application ofwave digi-
tal filters (WDFs), which are of interest in that they allow simple
stability verification, a property which is not generally guaranteed
if one employs straightforward numerical methods. We present
first a standard reed model, then its circuit representation, then fi-
nally the associated wave digital network. We then enter into some
implementation issues, such as the solution of nonlinear algebraic
equations, and the removal of delay-free loops, and present simu-
lation results.

1. INTRODUCTION

We address here the numerical simulation of the single reed exci-
tation mechanism. Most classical models [1, 2, 4, 5] incorporate
a lumped nonlinearity, yet retain an underlying structure which is
analogous to that of an electrical circuit. A logical next step is
the application ofwave digital filters(WDFs) [6, 7] as a numer-
ical simulation method, as per [8, 9]. There are several benefits
to such an approach: First, the circuit model makes the energetic
properties of the system (in particular, the separation into active
and passive elements, connected via Kirchhoff’s equations) read-
ily apparent. Second, it then becomes straightforward to transfer
these energetic properties to discrete time, thus allowing simple
stability verification. In other words, the total stored energy of the
system may be bounded in terms of the energy supplied by the
source (i.e., the mouth pressure). This numerical stability has not
been addressed in the context of straightforward finite-difference
type approaches such as the K-method [5]. Third, such a wave-
based model can then be easily connected to other such models
for the instrument body, such asdigital waveguides[10], as was
done in the present case of the reed instrument in [11], though in
a simplified form. In Section 2 we present a classical model of
the nonlinear reed; then, after a brief summary of wave digital fil-
tering methods in Section 3, we present its circuit representation,
and then finally the associated wave digital network in Section 4.
In Section 5 we enter into a discussion of some implementation
issues, such as the solution of nonlinear algebraic equations and
the removal of delay-free loops. Simulation results are presented
in Section 6. The approach is similar to that applied to the nonlin-
earity in a piano hammer excitation [12, 13].
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Figure 1:Schematic depiction of the single reed excitation model.

2. A SINGLE REED MODEL

Models of the nonlinear reed have appeared frequently in the liter-
ature. One of the simpler forms [2, 5], in which the reed is mod-
elled as a lumped harmonic oscillator, driven by a pressure drop
across the mouthpiece opening (the slit), is quite standard; we thus
state it directly, with reference to Figure 1, which shows the rele-
vant physical quantities.

The reed motion is described by

d2y

dt2
+ g

dy

dt
+ ω2y = −∆p/µ (1)

Herey is the deflection of the reed from equilibrium (taken pos-
itive when the reed is bending outwards, and constrained to be
greater than−H, whereH is the slit width at equilibrium, and

∆p = pm − p (2)

is the pressure difference between the pressurepm at the mouth-
piece entrance (the blowing pressure) and the pressurep at the
interface with the instrument body.µ is the mass per unit area of
the reed,g is a loss coefficient, andω is the resonant frequency of
the lumped reed model.

The pressure drop∆p across the mouthpiece is related to the
acoustic volume flowu at the input by

∆p =
ρ

2
(

u

w(y + H)
)2sgn(u) (3)

Finally, the acoustic flowuin at the entrance to the instrument
body can be written as a difference of the two contributionsu (at
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the entrance to the mouthpiece) and the flow induced by the motion
of the reedur, or

uin = u− ur (4)

ur is defined by

ur = Sr
dy

dt
(5)

whereSr is an equivalent surface area for the reed.
The equations (1)—(5) form a system of five equations in the

six variables∆p, p, u, ur, uin andy; they are closed by a connec-
tion to the instrument body (assumed here to be a cylindrical tube
of admittanceY0). In this simple model, we follow Borin [5] in ne-
glecting the effect of reed-beating (i.e., full closure of the mouth-
piece opening); we hope to include this effect in a more complete
model, and will make some comments on such an extension in
Section 7.

3. BACKGROUND: CIRCUIT ELEMENTS AND WAVE
DIGITAL FILTERS

In this section, we summarize the basics of the theory of wave
digital filters.

3.1. Circuit Elements and Connections

The circuit elements of which we will make use in this paper,
namely theinductor, capacitor and resistive voltage sourceare
as shown in Figure 2. All are defined by some form of relation
between a voltagev and a currenti, more specifically

Inductor: v = L
di

dt
(6a)

Capacitor: i = C
dv

dt
(6b)

Resistive source: v = e + Ri (6c)

whereL is an inductance, C a capacitance, R a resistanceand
e = e(t) is an independent voltage source. For constantL ≥ 0

v v v

i i i

L C
R

e +

Figure 2:Left to right: An inductor, of inductanceL, a capacitor
of capacitanceC, and a resistive source, of resistanceR.

andC ≥ 0, the inductor and capacitor are passive circuit elements
[14], and indeed lossless. By this, we mean that the power sup-
plied to either of these elements through its terminals is wholly
converted into a stored energy, to be eventually returned to the rest
of the network to which it is connected (i.e., it isreactive) [14, 15].
For the inductor, for instance, the supplied power is

vi = Li
di

dt
=

d

dt
(
1

2
Li2)

so that if the stored energy is defined by1
2
Li2, the equation above

can be simply read off as ”the power supplied is equal to the rate of

change of stored energy.” The non-negativity ofL (and alsoC) is
crucial here, in that the energy measure is otherwise not a positive
function of the state variables (and cannot be used to bound the
size of the state itself, as it evolves). We note that it is possible to
extend the definition of either the inductor and capacitor to a non-
linear, but nonetheless lossless form (as discussed, in the context
of multidimensional wave digital filters in [16], and as applied to
the piano hammer nonlinearity in [12, 13]), but we will not make
use of such elements in modeling reed vibration.

The resistive voltage source is a series connection of a depen-
dent source (a resistor) and an independent source, and is, in gen-
eral, non-passive, oractive. The power supplied to the element
is

vi = ei + Ri2

In order that at least the dependent part be passive, we require that
R ≥ 0, but notice that in this case, the resistanceR may have,
in general, any functional dependence whatsoever on timet, or
perhaps other state variables without compromising passivity, as
long as it remains non-negative.

The circuit elements mentioned above are known asone-port
elements; they may be connected together (always pairwise) through
the application ofKirchhoff ’s Laws[14]. For aseriesconnection
of N one-ports, of voltagesvk and currentsik, k = 1, . . . , N ,
Kirchhoff’s Series Law requires that

i1 = i2 = . . . = iN

v1 + v2 + . . . + vN = 0

For aparallel connection, Kirchhoff’s Voltage Law requires

v1 = v2 = . . . = vN

i1 + i2 + . . . + iN = 0

Both laws also enforce passivity (indeed, losslessness) as may be
easily verified; in other words, instantaneous power is preserved
in such a connection. As a result, any closed network made up
of Kirchhoff connections of passive elements must be, as a whole,
passive, by Tellegen’s Theorem [14].

3.2. Discretization

A wave digital network corresponding to an analog network is al-
ways arrived at through discretization of derivatives via the trape-
zoid rule, which can be written, in operator form, as

d

dt
=⇒ 2

T
(1 + δt)

−1(1− δt)

Here,T is the time-step (1/T is the sampling rate) andδt is a unit
shift operator, which, when applied to a discrete-time sequenceyn,
indexed by integern, gives

δty
n = yn−1

(Note that we use a superscripted index to distinguish a discrete-
time signal from a continuous-time signal.) Such time series will
typically be, in a circuit setting, the discrete-time equivalents of
voltages and currents. We note that for linear and time-invariant
networks, the trapezoid rule can equally well be interpreted, in
the frequency domain as abilinear transformation[6], mapping
an analog frequency variables to a discrete frequency variablez.
In the present case of the single reed, the circuit model will be,
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necessarily, nonlinear, and use of the bilinear transformation inter-
pretation is not permissible.

The equations defining the inductor and capacitor become, un-
der this discretization rule,

Inductor: vn + vn−1 =
2L

T
(in − in−1) (7a)

Capacitor: in + in−1 =
2C

T
(vn − vn−1) (7b)

The equation defining the resistive voltage source, as it does not
involve a differential operator, becomes simply

Resistive source: vn = en + Rnin (8)

Kirchhoff’s Laws, like the equation defining a resistive source,
hold instantaneously, and thus remain unchanged under discretiza-
tion.

3.3. Wave Variables and Wave Digital Elements

The next step towards a wave digital realization of an analog cir-
cuit network involves the introduction ofwave variables[6, 7].
For a one-port of voltagev and currenti, power-normalized wave
variables are defined by

Input wave: a =
v + iR0

2
√

R0

(9a)

Output wave: b =
v − iR0

2
√

R0

(9b)

(We note that in any expression for which the time indexn is
omitted, it is assumed to hold instantaneously.) This new set of
variables is parameterized byR0, called the port-resistance, which
is constrained, in order to ensure passivity, to be non-negative.
We note that power-normalized wave variables (as opposed to the
more standard voltage wave variables [6]) are essential in any wave
digital discretization of a system which is not linear and time-
invariant.

ThoughR0 is in general a free parameter, when properly set, it
can yield discrete-time circuit elements which are of very simple
form. In the cases of the inductor and capacitor, the discretized
equations (7) become

WD inductor: bn = −an−1 R0 =
2L

T
(10a)

WD capacitor: bn = an−1 R0 =
T

2C
(10b)

for the choices of port-resistance given above. In other words,
they can be implemented as shifts, with or without sign-inversion,
respectively.

For the resistive source, defined by (8), the wave digital coun-
terpart becomes

WD resistive source: bn =
en

2
√

Rn
Rn

0 = Rn (11)

Here, note that for a nonlinear or time-varying resistance, the port-
resistance will also exhibit the same dependence. Also note that
the output of such a source is dependent only on the discrete-time
source voltageen, and not the input wavean. The wave digital
inductor, capacitor and resistive source are shown in Figure 3.

b b b

a a a

R0 R0 R0T T

−1

e
2
√

R0

Figure 3: Left to right: A wave digital inductor, capacitor and
resistive source. Values ofR0 are set according to(10) and (11).

3.4. Adaptors

As we mentioned earlier, Kirchhoff’s Laws remain unchanged un-
der discretization. ForN one-ports, of voltagesvk, and currents
ik, k = 1, . . . , N , we may define wave variablesak andbk, with
respect to port resistanceRk, as per (9)1, and Kirchhoff’s Laws
become the followingscattering equations:

Series: bk = ak − 2
√

RkPN
j=1 Rj

NX
j=1

p
Rjaj (12a)

Parallel: bk = −ak +
2
√

GkPN
j=1 Gj

NX
j=1

p
Gjaj (12b)

where in the case of a parallel connection, we have defined theport
conductanceby

Gk =
1

Rk

These equations may be simplified by defining thejunction current
i (in the series case) andjunction voltagev (in the parallel case)
by

Junction current: i =
2PN

j=1 Rj

NX
j=1

p
Rjaj (13a)

Junction voltage: v =
2PN

j=1 Gj

NX
j=1

p
Gjaj (13b)

in which case the scattering equations become

Series: bk = ak −
√

Rki (14a)

Parallel: bk = −ak +
√

Gkv (14b)

The scattering equations above describe what is known, in the
WDF literature, as anadaptor[18]; graphical representations of
general adaptors are shown in Figure 4.

Reflection-free Ports

An important special case occurs when one of the port resistances
or conductances of an adaptor remains free (i.e., it is not deter-
mined by the properties of a circuit element). Supposing theqth
port to be such a port, then if the port resistanceRq or conductance

1Note that in keeping with the WDF literature, we will treat a Kirchhoff
connection as anN -port in its own right, so that wavesa andb refer to the
inputs and outputs of the connection, which is opposite to the orientation
with respect to the one-ports themselves.
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Figure 4: Left to right: A three-port series adaptor, a three-port
parallel adaptor, and a three-port series adaptor for which port 1
is reflection-free.

Gq is chosen as

Series case: Rq =

NX

j=1,j 6=q

Rj (15a)

Parallel case: Gq =

NX

j=1,j 6=q

Gj (15b)

the scattering equations have the interesting property that at theqth
port, the outputbq is independent of the inputaq:

Series connection: bq = − 1p
Rq

NX

j=1,j 6=q

p
Rjaj (16a)

Parallel connection: bq =
1p
Gq

NX

j=1,j 6=q

p
Gjaj (16b)

A graphical representation of a series adaptor with a reflection-free
port is shown at right in Figure 4.

Scattering Matrices

It is useful to view the above scattering equations (12) in matrix
form. Defining vectors of input and output wave variables by

a = [a1, . . . , aN ]T b = [b1, . . . , bN ]T

respectively, whereT designates a transposition operation, and the
vectors

αs =

s
2PN

j=1 Rj

[
√

R1, . . . ,
√

RN ]T

αp =

s
2PN

j=1 Gj

[
√

G1, . . . ,
√

GN ]T

the scattering equations (12) can be written as

Series scattering: b = (I− αsα
T
s )a = Ssa (17a)

Parallel scattering: b = (−I + αpαT
p )a = Spa (17b)

It is easy to verify that the scattering matricesSs andSp defined
above are orthogonal [19], so that in either the series or parallel
case, we must have

bT b = aT a (18)

The invariance of thel2 norm of the set of of wave variables through
the scattering operation is a direct result of the losslessness of the
Kirchoff connection itself.

An important observation to make at this point is that the port
resistances above (which follow from the properties of the ele-
ments which make up the Kirchoff connection) may have any func-
tional dependence at all; as long as they remain positive, the scat-
tering operation is orthogonal. A typical problem which arises in
nonlinear systems is the case in which one or more port resistances
depend on state variables in the system, which are not knowna pri-
ori; this leads to a nonlinear algebraic equation to be solved, as is
usual in numerical methods for nonlinear problems. We discuss
the implications of this in the present case of the reed model in
Section 5.

4. A CIRCUIT MODEL OF THE SINGLE REED AND A
WAVE DIGITAL COUNTERPART

Before proceeding directly from the defining equations for the sin-
gle reed model (i.e., (1) —(5)) to a circuit representation, it is use-
ful to rewrite the system in terms of voltage and current variables.
Defining

∆v = −∆p v = p e = pm

ir = ur i = −u iin = −uin

and the coefficients

L =
µ

Sr
C =

Sr

µω2
R1 =

µg

Sr

G2 =

s
2

ρ|∆v|w(y + H) G0 = Y0

the system defining the reed becomes

v − L
dir
dt

−R1ir − 1

C

Z t

0

ir(t
′)dt′ − e = 0

iin − i− ir = 0

e + G2i = v

This has an immediate circuit interpretation as shown at left in
Figure 5. Notice that there remains an open port, to be connected
to the network representing the instrument body (of admittance
G0, corresponding to an acoustic tube). We also note that we have
split the source into two separate contributions, each of which is
paired with a resistor; thus each source/resistor pair can be treated
as a single resistive source. It is possible to arrive at a circuit with
only a single source, but the topology becomes marginally more
complex.

The wave digital counterpart follows directly, and is shown at
right in Figure 5. The port resistances corresponding to the induc-
tor and capacitor, as indicated in the figure, are given by

Rm =
2L

T
Rs =

T

2C

as per (10). The port resistance and conductance of the resistive
sources in the series and parallel adaptor remain asR1 andG2, as
given in (11).

We thus have a connection between a parallel and a series
adaptor; as they are in direct (instantaneous) communication, a
delay-free loop results unless we choose one of the two intercon-
nected ports to be reflection-free. This can be done, for the series
adaptor, by setting the port resistance, according to (15), as

Rt = Rm + Rs + R1
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Figure 5: At left, circuit model for the single reed system, and at
right its wave digital counterpart.

The port conductance at the adjoining port at the parallel adaptor
is thenGt = 1/Rt.

The open port at the parallel adaptor is to be connected to a
digital waveguide, of admittanceY0 (with port conductanceG0 =
Y0) [11].

5. IMPLEMENTATION DETAILS

It is worth running through the implementation details for this sig-
nal flow graph. All scattering methods (including WDFs and dig-
ital waveguides) when programmed, take the form of a recursion,
each cycle of which consists of ascatteringstep, and then ashift-
ing step. In the first step, all wave variables incident on adaptors
are scattered, according to (12). Then, the output values leading to
reactive elements such as inductors, capacitors or digital waveg-
uides, are shifted, and new wave variables appear at the inputs to
the adaptors.

Examining the WDF diagram of Figure 5, we begin from the
series adaptor, and calculate the outputãt at the reflection-free
port, which is, from (16),

ãt = − 1√
Rt

(am + as + a1)

wheream andas are the wave variables approaching from the WD
inductor and capacitor, respectively, anda1 = − e

2
√

R1
is the wave

approaching from the resistive source.
The expression for the junction voltagev at the parallel adap-

tor can then be written, from (13) in terms of the input wave vari-
ablesãt from the reflection-free port,a0 from the output of the
digital waveguide, anda2 = e

√
G2
2

as

v =
2

Gt + G0 + G2
(
√

Gtãt +
√

G0a0 +
√

G2a2)

Using the fact thatv = ∆v + e, and the definition ofa2 above,

this can be rearranged as

∆v(G2 + Gt + G0) + e(Gt + G0)− 2(
√

G0a0 +
√

Gtãt) = 0
(20)

Due to the dependence ofG2 on bothy and∆v, this equation is the
algebraic nonlinearity to be solved. Before doing this, however, we
need to find a relationship betweeny and∆v. This can be obtained
as follows:

The voltage across the capacitive port of the series inductor is
equal, from (1), to−µω2y/Sr, and the junction current is simply
ir. Thus we may write, from the definition of wave variables at the
capacitive port and the reflection-free port,

as =
−µω2y/Sr + Rsir

2
√

Rs

ãt =
v − irRt

2
√

Rt

=
∆v + e− irRt

2
√

Rt

which may be combined to yield the relationship

y = α∆v + β (21)

with

α =
Rs

µω2Rt

β =
−Rs(2

√
Rtãt − e)/Rt − 2

√
Rsas

µω2

When the expression (21) is inserted into (20), a pair of cubic equa-
tions results, in the variableq =

p
|∆v|sgn(∆v), namely,

c3q
3 + c2q

2 + c1sgn(q)q + c0sgn(q) (22)

with

c0 = −2(
√

Gtãt +
√

G0a0) + (G0 + Gt)e

c1 = w(H + β)
p

2/ρ

c2 = G0 + Gt

c3 = wα
p

2/ρ

Onceq (and thus∆v) is determined (via an explicit formula or
some root-finding method), then so isv, and scattering may be
performed at the parallel adaptor. The outputsb0 (to the digital
waveguide) andat (to the series adaptor) are then available. Then
scattering is performed at the series adaptor, and the outputsbm

and bs are sent to the WD capacitor and inductor, respectively.
The final step is to shift the wave variables stored in the reactive
elements (the inductor, capacitor and waveguide).

One fine point regarding the solution of the nonlinear equation
(22): though in simulation, there is only one viable solution to the
equation which generates a valuey ≥ −H, we were not able
to prove that this solution is unique for all choices of the model
parameters.

Energy Balance

A perfect power or energy balance can easily be derived, from in-
spection of the wave digital network in Figure 5. From (18), it
is easy to show that, for the wave digital reed coupled to a dig-
ital waveguide with perfectly reflecting termination, we have the
following power balance:

En+1
s − En

s − wn
i + wn

l = 0 (23)
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Figure 6:Top, output pressurep as a function of time for the wave
digital reed model. Bottom, the power balance(23).

whereEn
s is equal to(an

m)2+(an
s )2 plus the sum of the squares of

the values stored in the digital waveguide,wn
i = (an

1 )2 + (an
2 )2,

and wn
l = (bn

1 )2 + (bn
2 )2. En

s has the interpretation of a to-
tal stored energy in the reed/bore system,wn

i that of externally-
supplied power, andwn

l that of power loss. In other words, the
change in stored energy per sample plus the power lost must equal
the power supplied externally. This balance is respected, to ma-
chine accuracy, as will be shown in the next section.

6. SIMULATION

For simulation purposes, we choose the model parameters given in
[5]. The reed is characterized byµ = 0.0231 kg/m2, Sr = 1.46 ·
10−4m2, ω = 23250 rad/s,g = 3000 s−1 andH = 4 · 10−4m.
The mouth pressurepm is a step function of amplitude2000 N/m2,
and the bore is an open tube of length 0.7 m, and of acoustic ad-
mittance 4.336·10−7 m4s/kg. The sample rate is chosen as 44 100
Hz. Output pressure, as well as the power balance (23) (which is
purely round-off error) are shown in Figure 6.

7. CONCLUSIONS

We have discussed, in this paper, the means by which circuit the-
ory and wave digital filtering principles may be applied to the nu-
merical simulation of single reed model which incorporates a high
degree of nonlinearity; as evidenced by simulation results, there
is a perfect preservation of a discrete-time energy balance which
mirrors that of the continuous-time model.

We have only, however, examined a simplified case of a more
complete model. The inertial effects of air mass in the mouthpiece
[1] contribute another inductor to the circuit of Figure 5. Exten-
sions to this method could equally well be made for the case of
reed beating against the mouthpiece at full closure [2] (i.e., for
y = −H), for which a wave digital ideal diode [7] (connected
across the capacitor) is an appropriate passive nonlinear device.
The possibility of variation inH (as another control parameter) is
also possible, but will necessarily invoke the use of another source,
as such variation necessarily introduces energy (albeit very little)
into the system.
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