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ABSTRACT

Motivated by the human hearing sense we devise a computational
model suitable for the localization of many sources in stereo sig-
nals, and apply this to the separation of sound sources. The method
employs spatial cues in order to resolve high-frequency phase am-
biguities. More specifically we use relationships between the short
time Fourier transforms (STFT) of the two signals in order to esti-
mate the two most important spatial cues, namely time differences
(TD) and level differences (LD) between the sensors. By using
models of both free field wave propagation and head related trans-
fer functions (HRTF), these cues are combined to form estimates
of spatial parameters such as the directions of arrival (DOA). The
theory is validated with the help of the experimental results pre-
sented in the paper.

1. INTRODUCTION

In life we are more or less constantly exposed to a multitude of
different sound sources. In any given situation only a few of these
sources are normally important, and the rest of the sources are
not considered to contain relevant information. These irrelevant
sources can be regarded as noise. Still, in the presence of many
such noise sources, we are able to communicate and convey infor-
mation by means of transmission of sound waves.

One may speculate that these capabilities of the human hear-
ing sense are the results of the evolution of basic survival tech-
niques that have taken place since the dawn of creation. In any
case, it is clear that we are very well capable of localizing sources
in the auditory space, range these according to importance, and
focus on the most important sources while disregarding the rest.
Actually this is a threefold problem, consisting of the localization,
recognition, and separation of sound sources. Surely, these differ-
ent aspects are not necessarily independent, and may be strongly
interrelated. Motivated by the performance of the human hearing
sense researchers have studied these fields for decades.

There is a vast litterature on the many psychophysical and psy-
choacoustical experiments that have been performed, aiming at de-
scribing various aspects of the human binaural hearing and source
localization in particular. A nice overview of this field is given in
[1]. Based on some of these results, several computational mod-
els of the human auditory processing for source localization have
been proposed [2, 3, 4, 5]. In general these models aim at mimic-
ing and explaining the processing that takes place in the auditory
system, and are not necessarily easy to exploit in more general
applications.

The areas of source recognition and source separation have
also been subject to studies. However, in these fields the focus has

been on purely computational models, as opposed to psychophys-
ical and psychoacoustical models. This is most likely due to the
increased complexity such models would introduce, by the need to
include high-level psychological principles such as cognition and
anticipation, among others.

Such computational models are better suited for general appli-
cations. They include purely statistical/theoretical models such as
blind source separation techniques [6], mathematical techniques
based on simple directionality cues such as beamforming tech-
niques [7] and the DUET method [8], as well as techniques based
on more heuristic psychoacoustics and sinusoidal models [9, 10,
11, 12].

From the field of binaural hearing it is well known that the
principal cues for localization of sources are the interaural time
differences (ITD) and interaural level differences (ILD). Tradition-
ally, the ITDs have been emphasized at low frequencies, and the
ILDs at higher frequencies, which is also known as the duplex the-
ory. This is a quite rude simplification, and in reality there are
more complex interactions [13].

In this paper we present a basic model for localization of sound
sources and its application to source separation. Motivated by the
human binaural hearing we use level differences (LD) and time
differences (TD) between the two sensor signals in order to lo-
calize the sources. These LDs and TDs are simple mathematical
estimates based on the short time Fourier transforms (STFT) of the
sensor signals. By using physical models of sound wave propaga-
tion we find simple relations between the LDs and TDs. In other
words these two cues tell the same story. We devise a method for
combined evaluation of the TDs and LDs. More specifically, we
use the LDs in order to resolve phase ambiguities in the TDs at
higher frequencies.

Even though we use some principles of binaural hearing and
draw knowledge from this field, we emphasize the fact that our
model is purely computational, and in no way tries to compete
with any existing psychophysical models such as those referenced
above. Still, we interestingly observe that for certain aspects our
computational model gives qualitatively the same results as those
found in psychoacoustical experiments. However, we will not
speculate in this.

The organization of this paper is as follows. In section 2 we
describe the simple physical models of sound wave propagation,
both in free field and around the head. Then section 3 discusses
the estimation of LD and TD cues and how they can be jointly
evaluated, as well as experimental data. This is followed by section
4 on the application of our binaural localization model to sound
source separation, as well as some experimental data. Finally, in
section 5 we draw the conclusions.
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2. PHYSICAL MODELS

In most real situations the TDs and LDs between two sensors are
strongly interrelated. This is a natural consequence of the physics
of wave propagation. In other words, a signal that arrives first at
one sensor is also likely to be strongest at that sensor. We develop
some simple models for these relations, first in the free field case,
and then in the binaural case (the human head). In both cases we
use “intersensor” polar coordinates, i.e. polar coordinates relative
to the axis passing through the two sensors. Postitions are given
by
���������	��


, where the elevation
�

is the rotation around this axis,
the azimuth

�
is the angle from the median plane towards this axis,

and
�

is the distance.

2.1. Free field

We consider a two-sensor setup, where the sensors are placed at
a distance � to the left

�	
�� ������� � 
 and to the right
��� ������� � 
 of

the origin. We assume that the distance
�

to any source is much
larger than the distance between the two sensors,

��� � . In this
case, the azimuths from the sensors to a source at

���������	��

are

approximately the same
�����������! 

, and both sensors will be
approximately the distance " �$# �&%('*) � closer to or farther from
the source origin ,

����#+��, " � ,
�� -#+�.
 " � . The time

difference between the two sensors is

"0/ # � � 
1�  2 �43 " �2 #43 �5%('*) �2 (1)

where 2 is the wave propagation speed.
The sound intensity is inversely proportional to the square of

the distance, so the sound intensity level difference (in dB) be-
tween the sources equals

"76 �98*:<; � ��� �98*:<; �=, " ��>
 " � �@?ABDCFE G3!H , GJI " ��LK
� BDM�N

(2)

Clearly, when " �7O+�
, the first order truncation of this series is a

good approximation. It follows that the LDs (in dB) and the TDs
are linearly related.

2.2. Head related transfer function

For applications such as in hearing aids, the sensors will typically
be placed on each side of the head. In this case, the waves will
propagate around the head, and a better model of the interaural
time difference (ITD) is given by Woodworths formula:

"P/ ���D
Q� � � %('R) �S,T�D
2 (3)

The interaural level difference (ILD) is much more complex,
and varies from person to person. Notably, due to head and ear
shadowing effects, it depends on frequency and azimuth, and to
some extent on the elevation. However, a closer inspection of dif-
ferent HRTFs in the CIPIC database [14] shows that the ILD (in
dB) as function of azimuth can be crudely described by the follow-
ing model: "76 ������U�
V�9WYX %('R) � (4)

where
WYX

is a frequency dependent scaling factor. This sinusoidal
model corresponds with the results of experiments on qualitative
assessment of lateral localization based on ILD, as described in
[1].
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Figure 1: Interaural level differences as function of azimuth, for
different elevations (left), different frequencies (middle), and our
model (right).

Figure 1 shows the estimated ILDs for one particular HRTF in
the CIPIC database. The leftmost diagram shows the total ILDs
(over all frequencies) as function of azimuth, and for elevations
between


SZD[!\
and

Z][!\
. The diagram in the middle shows the

ILDs as function of azimuth (in the horizontal plane) for different
frequencies. To better show the conformance to (4), these curves
have been normalized (

W X � 3 ). Finally, in the rightmost diagram
is shown the model in (4). Clearly, this simple model is a good fit
to the overall ILDs (left). For the frequency dependent ILDs (mid-
dle) the general model is still a reasonable match to the data, espe-
cially for azimuths in the range between


^[�� \
and

[�� \
. For larger

azimuths the variance of the model error is much larger. Conse-
quently, the azimuth resolution in our method becomes coarser as
the azimuth approaches the extremes ( _a` � \ ). Qualitatively, this is
comparable to the azimuth resolution obtained from pure ILDs in
psychoacoustical experiments [15].

As previously mentioned, the ILDs depend on frequency. In
other words the maximum ILD (at about _a` �<\ azimuth) is ap-
proximately

WYX
dB. Without any knowledge about the frequency

dependent scaling factor
WYX

in (4), we can not relate ILDs and
ITDs to each other. The estimated

W X
as a function of frequency is

plotted in grey in figure 2 for each of the 45 subjects in the CIPIC
database. The mean is plotted in black. We notice that for low fre-
quencies, the scaling factor is very small (starting at about

�
dB),

and in the range b - c kHz it is almost linear with small variance be-
tween the subjects. In the other ranges (

G
- b kHz and above c kHz)

the variance between the subjects is much bigger, and the curves
are in general more complex.

3. SOURCE LOCALIZATION

Normally, the auditory space of most interest is the horizontal
plane. For simplicity we therefore assume that all sources are lo-
cated in the horizontal plane and in front. Consequently, we disre-
gard any dependence on elevation and avoid all front-back confu-
sions. Naturally, these aspects could be taken into account, e.g. by
using additional cues such as head movements, envelope delays,
spectral cues, etc. However, in that case our model would lose
its simplicity. Under these assumptions, the problem of localizing
sources is equivalent to estimating their azimuths.

For the stationary part of narrow band signals the ITDs can
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Figure 2: Proportionality factor in our ILD model as function of
frequency.

only be estimated from the phase differences between the signals
at the two sensors. Clearly, the phase is only correct up to a integer
multiple of 3�� . An average head is about

G [
cm thick. Using (3),

the extreme ITDs are then approximately _ � � [�[ ms. For frequen-
cies below ` ��� Hz, the distance a wave propagates during this time
is less than half the wavelength. This means that below this fre-
quency there is no phase ambiguity in the actual range of ITDs. For
higher frequencies the phase is ambiguous. If the auditory horizon
is restricted to ` ��\ , i.e. if all sources lie between


SZD[�\
and

Z][�\
azimuth, then the corresponding frequency is approximately

G [!�<�
Hz.

Quite recently, the short-time Fourier transform (STFT) has
been proposed for localization [16] and separation [8] of many
sources in a two-channel mixture. From the STFTs

� � ��� ��U�

and�  &��� ��U�


of the left and right input signals, one can compute the
level differences

"76 ��� ��U�
Y#�����

� ����� ��U�

�  ��� ��U�
 ���� (5)

and phase delays

"0/ ��� ��U�
 # GU "	� ��� �(U�
 (6)

as functions of time and frequency. Here "	� ��� ��U�
 #�

��������� X����������� X�� is
the phase difference between the two sensor signals, also as func-
tion of time and frequency. We use (5) as estimates for the ILDs,
and (6) as estimates for the ITDs.

Using (5) and (4) we estimate the directions of arrival from the
level differences exclusively�!�Y��� ��U�
 # %('*)�� N I "76 ��� ��U�
WYX K (7)

Inserting these estimates in (3) we get the time delays between the
sensors estimated from level differences only

� � ��� ��U�
 # "P/ ��� � 
 (8)

Similarly, the possible time delays estimated from the phase dif-
ferences (6) only are given by

� � ��� ��U�
V# "P/ ��� �(U�
 , GU 3��"! (9)

where the latter term is the phase ambiguity. For each time and
frequency we choose the ! in (9) that gives ��� ��� ��U�
 as close as
possible to � ����� ��U�
 , and use the �#� ��� ��U�
 with this k as our final
estimate � ��� �(U�
 of the true delay between the sensors.

Effectively, we have applied the level differences "76 in or-
der to resolve the ambiguities in phase delays "P/ . We notice
that at low frequencies there is no phase ambiguity, so the "P/ s
are used exclusively for the localization. At high frequencies, the
wavelengths are so short that the phase delay contains virtually no
information at all, and consequently the "76 s are dominant. This
is in correspondence with the duplex theory. In addition we also
handle the transition between these two extreme cases gracefully.
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Figure 3: Estimates of intersensor delay (abscissa) over time (or-
dinate) for frequency band at 2.5 kHz. Top: using LD only, middle:
using TD only, bottom: combined evaluation of TD and LD (cor-
rect delays indicated with vertical lines).

Figure 3 illustrates the procedure for a frequency band at about3 � [ kHz. Along the abscissa is plotted the delay between the sen-
sors (in samples), and along the ordinate is shown the evolution
over time. The example contains two sound sources placed at
 b �!\ (


 G�G
samples) and in the middle (at

�<\
), respectively. In the

beginning the source in the middle is dominant, but about halfways
in time it is silenced and the much weaker source on the left side
becomes dominant. In the top graph are shown the delays � � es-
timated from the level differences "76 . For the very strong source
in the middle, the estimates are slightly erroneous, but with little
variance. For the weaker source in the second half the estimate
are centered in the right place, but are quite noisy. In the mid-
dle graph are shown the delays � � estimated from the phase. The
estimates closest to the center are shown in black (no phase cor-
rection, ! # �

), whereas all the other possible phase-corrected
estimates are shown in grey. Obviously, without phase correction
a wrong estimate is selected for the weaker source in the second
half. At the bottom graph we see the final combined solution � .
The vertical lines indicates the delays corresponding to the true
source positions.

In order to select the correct phase-corrected solutions in ���
we have exploited the more noisy � � . The latter was first smoothed
over time with a median filter of

[��
ms. This is similar to the

“sluggishness” of the binaural system [17].
In our experiments we have used the mean of the

W X
s from the

CIPIC database (black line in fig. 2) in order to be able to relate the"P/ s in (3) and "76 s in (4). Naturally, there are two main sources
of error between our model and any individual HRTF. First there
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is the error between the individual
W X

and the mean that we use.
Second there is the deviation from the perfect sinusoidal shape of
our model (4) for each frequency, as shown in the middle of fig. 1.

Due to these imperfections, the results do not always look as
nice as in fig. 3. Still, the method gives overall valuable results.
Figure 4 shows energy weighted histograms (in dB) for a mixture
containing 4 sources, as functions of the delay between the sen-
sors. The sources are located at


SZ][ \
,

 3 � \ , � \ , and b � \ azimuth,

respectively. (The corresponding delays are approximately

 G c ,
��

,
�
, and

G�G
samples.) At the top is shown the histogram over

the entire signal (all time and frequency bins). The grey line shows
the result of the original method without phase correction, and the
black line shows the result after phase correction. We see how
some of the false peaks (delays about

Z
and about

G �
) have been

attenuated, and how some of the true peaks (delays about

 G c )

have been enforced with our phase-correction method. In the bot-
tom graph is shown the same case, but only for frequencies above3 kHz. Without phase correction, the maximum delays are in the
range between


 G �
and

G �
samples (about half the longest wave-

length). Strangely, when the phase has been corrected, the
Z

peaks
corresponding to the

Z
source locations are even sharper than in the

top graph. A part of the reason for this is that for low frequencies
(below

G [����
Hz), the actual ITDs of measured HRTFs are slightly

larger than the model [13]. Since we did not account for this, and
the signals contain significant energy at the lower frequencies, we
see how the peaks are stretched out towards the extremes.

In binaural hearing the ITDs are estimated in critical bands
independently. This means that for broadband signals the phase
ambiguity is less problematic than in our model, which is based on
narrow frequency bands in the STFT. In [13] it is argued that the
ILDs are likely to be useful localization cues in individual narrow
frequency bands. On the other hand there are experiments that in-
dicates that some kind of across frequency processing takes place
in the auditory processing [18]. We reemphasize that our model is
purely computational, and does not try to mimic or explain aspects
of binaural hearing.
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Figure 4: Histograms of estimated delays between the two sensors,
original method in grey and new method in black with markers (x).
Top: all frequencies. Bottom: frequencies above 2 kHz.

4. SOURCE SEPARATION

The energy weighted histograms in section 3 provide convenient
means for detecting the number of sources and their locations.

This information can be applied in many of the existing source sep-
aration methods, such as e.g. methods based on sinusoidal model-
ing in order to improve the analysis and separation quality.

Methods based on localization cues have shown promising re-
sults for separation of sound sources, [8]. Briefly explained, the
original DUET method separates the signals by assigning each of
the time-frequency bins in the STFT to one of the sources exclu-
sively, based on the spatial cues. However, the original method as-
sumes that there are no phase ambiguities, i.e. that the sensors are
spaced closely enough to avoid phase ambiguities. For CD-quality
audio (

Z<Z G �<�
Hz sampling rate) this corresponds to a maximum

sensor spacing of less than
G

cm. Clearly, in this case the level
differences between the sensors are virtually useless. In addition,
the experiments shown are also flawed since several of the corre-
sponding level and time differences used in the mixing model are
highly contradictory.

We have applied our phase-correction technique in order to
allow larger sensor spacing, and compared the separation result
with that of the original method.
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Figure 5: Spectrograms of 4 separated sources at

SZD[ \

,

 3 � \ , � \

and b ��\ azimuths respectively. Left column: Using LDs and TDs
blindly. Right column: Using LDs in order to correct the pahse in
the estimate of the TDs.

Figure 5 shows the spectrograms for the 4 separated sources
in our example (after applying the binary masks). The left column
shows the results obtained with the original DUET method. The
right column shows the results with our method.

Naturally, the original method does not perform well, since the
assumptions on which it is based do not hold. This method is not
at all applicable to binaural signals (about

G [
cm sensor spacing).

This is therefore not a fair comparison of two methods. Rather the
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original method is included to visualize how our method performs,
and how it can be used to extend the original method.

In the left column we see how the DUET method breaks down
due to the phase ambiguities. As the frequency increases, the max-
imum detectable phase delay decreases, centered around

�D\
. Even-

tually, for high enoough frequencies, all the time-frequency bins
are assigned to the third source (since this is in the center at

� \
).

With our method we see how the phase ambiguities have been
resolved. All the sources contain partials in the entire frequency
range. However, when several sources have overlapping energies,
the spatial cues are corrupted. This is most important when strong
partials overlap, and less important for overlapping in the weaker
sidebands. The spatial cues estimated for time-frequency bins are
in these cases inconsistent. These bins tend to be located towards
the center (

� \
). We see that the third source still has a richer spec-

trum than the other sources due to this, but the strong partials of
the other sources have been assigned more correctly.

Listening tests reveal that the sources are well separated with
little crosstalk. Still there are some distorting effects. These are
mainly due to the overlapping partials, and the “on/off”-effect of
the binary masks used in the DUET method. These problems have
been studied earlier in [19].

5. CONCLUSIONS

We have presented simple models of wave propagation that pro-
vide us with relationships between the TDs and LDs. By jointly
evaluating these cues, one can resolve phase ambiguities, effec-
tively improving the localization and separation of sound sources.
From psychoacoustic studies on source localization [1], it is well
known that for low frequencies the ITD is dominant, whereas for
high frequencies the ILD is most significant. Our model can be
used to study the relative importance of these cues in computa-
tional models, in the transition from low to high frequencies (about
1-3 kHz).
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