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ABSTRACT

We employ a hybrid state-space sinusoidal model for general use
in analysis-synthesis based audio transformations. This model,
which has appeared previously in altered forms (e.g. [5], [8],
perhaps others) combines the advantages of a source-filter model
with the flexible, time-frequency based transformations of the si-
nusoidal model. For this paper, we specialize the parameter iden-
tification task to a class of “quasi-harmonic” sounds. The latter
represent a variety of acoustic sources in which multiple, closely
spaced modes cluster about principal harmonics loosely following
a harmonic structure (some inharmonicity is allowed.) To estimate
the sinusoidal parameters, an iterative filterbank splits the signal
into subbands, one per principal harmonic. Each filter is optimally
designed by a linear programming approach to be concave in the
passband, monotonic in transition regions, and to specifically null
out sinusoids in other subband regions. Within each subband, the
constant frequencies and exponential decay rates of each mode are
estimated by a Steiglitz-McBride approach, then time-varying am-
plitudes and phases are tracked by a Kalman filter. The instanta-
neous phase estimate is used to derive an average instantaneous
frequency estimate; the latter averaged over all modes in the sub-
band region updates the filter’s center frequency for the next itera-
tion. In this way, the filterbank structure progressively adapts to the
specific inharmonicity structure of the source recording. Analysis-
synthesis applications are demonstrated with standard (time/pitch-
scaling) transformation protocols, as well as some possibly novel
effects facilitated by the “source-filter” aspect.

1. INTRODUCTION: ANALYSIS-SYNTHESIS GOALS

A worthwhile model-based transformation goal is to modify salient
characteristics (e.g. pitch, time-scale evolution, formant structure,
etc.) while preserving at least the essence of more subtly defined,
textural characteristics. Organic sources, for instance, betray a rich
variety of textures: the exact quality of “breathiness” of a vocal,
the gestural squeak as the bow first meets the string, etc. all con-
tribute greatly to the listener’s perception of those sounds.

Since textural characteristics are difficult to model, it is desir-
able that any model for the salient characteristics account explicitly
for the part of the signal which cannot be modeled. A fundamental
condition is that of perfect reconstruction: if the model undergoes
an identity transformation, the resynthesis is an exact copy of the
original signal.

The signal decomposition for a perfect reconstruction system
may be expressed:

yt = mt(θ, y1:t−1) + rt, ∀t ∈ 1 : N (1)

Here yt is the signal (either input or resynthesis) evaluated at
time t, y1:t−1 represents past signal values1, θ is the model param-
eter, mt is the model resynthesis, and rt is the residual. In general,
at least for a causal implementation, the model resynthesis can de-
pend on past values of the signal.

2. OUTPUT RESIDUAL VS. SOURCE-FILTER MODELS

Two historically important classes of perfect reconstruction mod-
els are the output residual and source-filter models. Output resid-
ual models satisfy (1) directly, with resynthesis independent of
past outputs.

For instance, SMS (Spectral Modeling Synthesis) [6] is an out-
put residual model that enjoys widespread use. Here mt becomes
a time-varying sinusoidal model:

mt(θ) =

p�
k=1

�
αk,tcos � t�

s=1

ωk,s + φk,t ��� (2)

where θ = {αk,t, φk,t}k=1:p,t=1:N ∪ {ωk}k=1:p. In practice,
the amplitudes, frequencies and phases are estimated as piecewise
constant on a framewise basis, then interpolated across frames [6].
The different interpolation choices for the frequency terms versus
phase terms in (2) effectively resolve the inherent ambiguity be-
tween these terms.

Source-filter models, on the other hand, exploit the recursive
dependence of mt on y1:t−1 in such a way that rt appears at the
input, i.e., as a “driving term” for the main recursion involving
yt. For instance, LPC (Linear Predictive Coding) [1] is one of the
simplest source-filter models with audio processing applications
(especially in the area of speech processing). In fact, LPC admits
a linear transfer relation from residual to output. Here,

mt(θ, y1:t−1) =

p�
k=1

akyt−k (3)

where θ = a1:p are the prediction coefficients.
Substituting(3) into(1) yields a linear recursion for yt:

yt =

p�
k=1

akyt−k + rt (4)

As (4) is recognized as a linear difference equation, one may derive

Y (z)

R(z)
=

1

1 − A(z)
(5)

1A : B represents the sequence of integers {A, A+1, . . . , B−1, B}.
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where A(z) = � p

k=1 akz−k. Hence, rt represents a broadband
“source” (usually interpreted as white noise and/or a periodic im-
pulse train at the pitch period.)

Source-filter models possess several advantages over the out-
put residual models. First, the input residual’s role as an excitation
for a dynamical system indicates that its energy will likely be con-
centrated in time. The time concentration property aids in transient
detection. When a framewise parameter estimation is used, resyn-
thesis artifacts can be minimized by aligning frame boundaries
with the transient boundaries. Moreover, the excitation interpreta-
tion makes it more likely that the transient boundary corresponds
to a musically meaningful event, such as a note onset.

Second, the input residual as “excitation” is likely to exhibit
little cross-dependence on the model resynthesis. The latter makes
viable cross-synthesis, where sounds may be hybridized by the in-
terchange of models and residuals. Nevertheless the underlying
model structures of the classical source-filter models (LPC, acous-
tic models, etc.) seem less amenable than the output-residual sinu-
soidal models to arbitrary time-frequency modifications.

3. HYBRID STATE-SPACE SINUSOIDAL MODEL

In this paper, we employ a general state-space resynthesis approach
for extended sinusoidal models which has appeared previously in
different forms; e.g., [8], [5], etc. Our method presents a hybrid
approach, comprising both input and output residuals.

In the absence of any residual apart from the initial excitation,
our model yields the following output:

yt =

p�
k=1

�
αk,te � t

u=1 γk,ucos � t�
u=1

ωk,u + φk,t � � (6)

The allowance for exponential decays is particularly useful in mod-
eling the onset regions of many acoustic sounds.

Equation (6) admits a state-space resynthesis, as follows. Let
st ∈ � 2p denote the state at time t. st encodes the information
necessary to reconstruct the amplitudes and phases of all compo-
nent sinusoids. Precisely, st(2k − 1) encodes the in-phase and
st(2k) the quadrature component of the kth sinusoid. The ampli-
tude and phase terms are retrieved accordingly:

αk,t =

�
s2

t (2k − 1) + s2
t (2k)

φk,t = tan−1 [st(2k)/st(2k − 1)] (7)

The state undergoes the recursion:

st(2k−1 :2k) = Ft(2k−1 :2k)st−1(2k−1 :2k)+ri,t(2k−1 :2k)
(8)

where ri,t ∈ � 2p is the input residual, and

Ft(2k − 1 : 2k) = e−γk,t � cos(ωk,t) − sin(ωk,t)
sin(ωk,t) cos(ωk,t)� (9)

The output yt sums over the in-phase components plus an out-
put residual, ro,t ∈ � :

yt = Hxt + ro,t (10)

where H ∈ � 1×2p ; H(2k − 1) = 1; H(2k) = 0 ∀k.
The residuals are modeled stochastically, as white Gaussian

processes:

ri,t ∼ N (0, rI)

ro,t ∼ N (0, q) (11)

Given the frequency/decay trajectories {ωk,t, γk,t}k=1:p,t=1:N ,
and a noninformative initial state distribution, p(s0) ∼ N (0,∞I),
we have a complete Markov model for the observations {yt}t=1:N ,
i.e.:

st ∼ N (Ftst−1, qI)

yt ∼ N (Hxt, r) (12)

Here Ft = blockdiagk=1:pFk,t.
The Kalman filter may be used to derive the posterior state

distributions based on present/past outputs, i.e.

p(st|y1:t) ∼ N � ŝt|1:t, Pt|1:t � (13)

Input and output residuals are extracted using ŝt|1:t in place of st

in (8) and (10); i.e.:

r̂i,t = ŝt|1:t − Ftŝt−1|1:t−1

r̂o,t = yt − Hŝt|1:t (14)

To summarize, the entire analysis-synthesis algorithm works as
shown in Fig. 1:
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Figure 1: Generic analysis-synthesis block diagram for the hybrid
state-space sinusoidal model

1. Estimate frequency and decay trajectories:
{ωk,t, γk,t}k=1:p,t=1:N over time, by whatever means.

2. Derive Kalman filtered state estimates: � ŝt|1:t 	 t=1:N

3. Extract input/output residuals via (14).

4. Transform the model, input residuals, and/or output resid-
ual by user-specified means.

5. Reconstruct yt via the state-space resynthesis (8,10).

The specification of q, r (only the ratio, ρ = r/q, matters) is
vitally important towards obtaining a successful resynthesis. Please
see Appx. A.

4. SPECIALIZATION TO QUASI-HARMONIC SOUNDS

A quasi-harmonic sound model may represent a variety of single,
monophonic recordings of acoustic sounds, especially plucked or
struck tones: piano, marimba, bells etc.

The defining criteria are as follows:

1. QH1: Frequencies and decay factors are modeled as time
invariant for a single analysis frame. However, nonstation-
arities in the amplitudes and phases may proxy for small,
local variations in frequencies and decay rates.

2. QH2: All frequencies cluster about principal harmonics.
Frequency spacing may be arbitrarily close within a cluster.
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3. QH3: Principal harmonics exist roughly about a harmonic
series, though some inharmonicity is allowed. At mini-
mum, a somewhat uniform separation between each har-
monic must be guaranteed.

One may reorganize the generic sinusoidal model to reflect the
hierarchy of principal harmonics k = 1:p and clusters l = 1:pk:

yt =

p�
k=1

pk�
l=1

αk,l,te
−γk,lt cos(ωk,lt + φk,l,t) (15)

Criterion QH3 may be formalized w.r.t. (15), as follows: There
exists ω0 ∈ [0, 2π] and small ε > 0 such that

sup
l1=1:pk+1,l2=1:pk

|ωk+1,l1 − ωk,l2 − ω0| < ε (16)

Often, rich timbral dynamics arise from the coupling interaction
of several physical vibrational modes. In piano tones, for instance,
coupling between the transversal modes of several strings pro-
duces a characteristic “double decay” behavior in which an initial
fast decay is followed by a lower amplitude sustained resonance
[12], as well as beating and other effects characteristic of the tim-
bral evolution. Though the coupling interaction does not result in
the superposition of each vibrational mode in isolation, linearity of
the overall system guarantees equivalent modes which do super-
pose [4]. The latter superposition, reflected in (15), can represent
the double decay behavior with a stationary parameterization of
each decay parameter. Though multiple sinusoids are required, the
latter representation is nevertheless more parsimonious and less
prone to overfitting risk than that of a single nonstationary sinu-
soid per harmonic, especially in the presence of beating caused by
phase cancellations.

5. ITERATIVE FILTERBANK

The main idea behind our iterative filterbank approach is to per-
form a “STFT-like” preprocessing especially tailored to the quasi-
harmonic model(15). The STFT dissects the input signal into uni-
formly spaced subbands, the spacing being a function of window
length. Even if the window length is chosen to guarantee a spac-
ing of ω0 via the classic “pitch-synchronous” approach, there is
no guarantee each group of modes surrounding a given harmonic
will fall within a given subband, thanks to the flexibility in QH3.
One may instead perform a long DFT of the entire analysis frame,
in hopes to isolate each individual frequency within a cluster in
their own subbands However, QH2 precludes the guarantee of a
minimum frequency separation.

A more flexible approach is to employ a custom, variable bank
of bandpass filters to isolate all modes surrounding a given har-
monic in exactly one subband. In this way, we exploit the quasi-
harmonicity assumption, without explicitly forcing a rigid pitch-
synchronous criterion.

The subband centers, defined as � ω̄
(m)
k �

k=1:p
for the mth

iteration, are initialized as harmonic: ω̄
(0)
k = kω0. Here ω0 is de-

rived from an ad hoc DFT-based preprocessing. Through succes-
sive iterations, subband centers adapt to the inharmonicity present
in the signal. For each subband, we extract the analytic signal,
heterodyne such that the center frequency maps to DC, and maxi-
mally downsample. The foregoing preprocessing steps are shown
in Fig.2.
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ω
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ω
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   πωN = floor(   /    )c

1. Isolated subband signal

2. Heterodyned analytic signal

3. Result of maximal downsampling

Figure 2: Preprocessing steps.

From the heterodyned and downsampled analytic signal ȳk,t

a modified Steiglitz-McBride approach [7] estimates the frequen-
cies and decay rates of multiple (complex) sinusoidal components;
see [9] for further details. Still in the heterodyned/downsampled
domain, a Kalman/Rauch-Tung-Striebel smoother tracks instanta-
neous phases according to the model:

ˆ̄sk,t+1(2l−1 :2l) ∼ N � F̄k(2l−1 :2l)ˆ̄sk,t(2l−1 :2l), q̄I �
ȳk,t ∼ N � H̄ ˆ̄sk,t(2l−1 :2l), r̄ � (17)

Here F̄k is analogous to Ft in (9), except concerning the sinusoids
only in the kth cluster, and H(2l−1) = 1, H(2l) =

√
−1.

Define the (unwrapped) instantaneous phase and frequency es-
timates:

ˆ̄φk,l,t = unwrap � tan−1 � ˆ̄sk,t(2l)/ˆ̄sk,t(2l−1) � �
ˆ̄ωk,l = � ˆ̄φk,l,Nk

− ˆ̄φk,l,1 � / (Nk−1) (18)

where Nk , the number of samples in the downsampled subband,
equals N/Nds,k; Nds,k being the downsampling factor.

To the degree ρ̄ = r̄/q̄ is small, the instantaneous frequency
may correct possible errors in the Steiglitz-McBride estimate. To
the degree yt is noisy, however, the former will become inaccurate
unless ρ̄ is increased. We find here that a “balanced” parameteri-
zation: q̄ = 1, r̄ = 1 where the state covariance is initialized as
P0 = 106I yields acceptable tracking performance

The next iteration’s center frequency is updated by averaging
instantaneous frequency estimates, then adjusting for the down-
sampling and heterodyning:

ω
(m+1)
k = ω

(m)
k +

1

Nds,k · pk

pk�
l=1

ˆ̄ωk,l (19)

5.1. Optimal filter design

In order to isolate the cluster of modes about a given partial, each
passband filter is designed to null out the passband regions about
all other partials. Each bandpass filter of odd length 2M + 1, de-
noted h = {hn}n=−M:M , is designed as zero phase: hn = h−n.
Various frequency response constraints are satisfied at a uniformly
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sampled collection of frequency grid points: {ωg,j}j=1:Ng
, to pro-

duce the typical response shown in Fig. 3. Generally, we set Ng

to 1.7 to 2 times the filter length.
Constraints are either hard (satisfied exactly) or soft (satisfied

within tolerance c(j)τ ). Here 1/c(j) is the importance weight for
the jth constraint. The optimization proceeds as follows.

Min. τ

subj. to �����L
(j)
soft[h] − b

(j)
soft ��� ≤ c(j)τ

L(j)
hard[h] ≤ b

(j)
hard

(20)
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Figure 3: Optimal bandpass filter response.

If each L(j)
soft[h] and L(j)

hard[h] are linear in h, then clearly (20)
admits a linear programming optimization.

The general form of L[h] is as a qth derivative response con-
straint L[h] ∝ ∂qH(ωg,j)/∂ωq

g,j . It is shown [9] that L[h] is
linear in h:

∂qH(ω)

∂ωq
= 1{q=0}h0 + 2

M�
n=1

nqTq(ωn)hn (21)

where Tq(ω) = ∂q/∂ωq cos(ω).
To specify the constraints, we partition the desired frequency

response into five regions: passband, low transition width, high
transition width, nulling region (the union of all the nulled regions
about the other partials), and general stopband. Hard constraints
are summarized in Table 1, and soft constraints are summarized in
Table 2.

Hard Constraints
Type Constraint Region

Concave passband ∂2H(ωg,j)/∂ω2
g,j ≤ 0 Passband

Monotonic transition ∂H(ωg,j)/∂ωg,j ≤ 0 Low TW
−∂H(ωg,j)/∂ωg,j ≤ 0 High TW

Table 1: Hard optimization constraints, which must be met exactly.

Values cs = 2.5, cnull,0 = 0.05, cnull,1 = 0.25 produce the
example stopband responses shown in Fig. 4. Here the fundamen-
tal frequency is 2375 Hz with a filter length of 499 samples. The
combination of zeroth and first order derivative constraints enables
attenuation in the nulling region on the order of 10−4 times the
stopband attenuation, without causing the response artifacts due to
setting cnull,0 = 10−4cstop directly.

Signals with low fundamental frequencies, such as an A0 pi-
ano tone, may contain hundreds of audible harmonics up to the

Soft Constraints
Type Constraint Region

Passband |H(ωg,j) − 1| ≤ τ Passband
General Stopband |H(ωg,j)| ≤ csτ General Stopband
Nulling |H(ωg,j)| ≤ cnull,0τ Nulling Region

|H(ωg,j)| ≤ cnull,1τ

Table 2: Soft constraints, satisfied within tolerance c(j)τ .

Nyquist frequency. As such, a filter with hundreds of closely-
spaced nulling regions must be designed. Though the optimization
ensures as short as possible filter meeting the objectives, the filter
length required for sounds such as the A0 piano tone (fundamental
= 27.5 Hz) is on the order of thousands, of samples. With current
processing capabilities (1.5 GHz Athlon), any filter over length
2000 seems prohibitive in repeated trials, taking several hours to
design.

The reason for preferring a short filter at whatever the design
cost is because a shorter filter will bias the sinusoids’ decay pro-
files by a lesser amount, leading to an improved decay estimation.
Computational cost is technically a secondary issue; nevertheless
a compromise has been necessary in order to cut the design time
to under a minute using length 400 − 500 prototype filters.

Our compromise consists of a multistage approach in which
a short secondary bandpass filter with constant 3 dB/octave decay
is cascaded with a nulling filter which only nulls out the set of
center frequencies within the passband region of the secondary fil-
ter. The nulling filter is first designed as a prototype in a stretched
frequency space, then this prototype is upsampled via bandlimited
interpolation and single sideband modulated. Fig. 4 illustrates the
individual responses of the filters to be cascaded.
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Figure 4: Nulling filter and secondary bandpass filter.

6. CONVERGENCE RESULTS

A typical convergence result is shown in Fig. 5 for the first eight
partials of a piano tone over five filterbank iterations. The filter-
bank input consists of a recording of the piano note C2 (65 Hz)
of duration 8.53 seconds at 44100 Hz. Each filterbank center fre-
quency is initialized at 95% of the ideal harmonic profile estimated
via [2], to simulate a gross frequency initialization error. True vs.
initialized frequency profiles are shown in Table 3, as well as the
filterbank center frequencies after four and five iterations.

Filter bandwidths are each initialized to 40% of the distance
between neighboring center frequencies, and 33% of this region is
devoted to transition width.
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Partial “Ideal” Freq. Freq. Freq.
No. Frequency Init. Iteration # 4 Iteration # 5

1 65.41 Hz 62.14 Hz 65.47 Hz 65.48 Hz
2 130.83 Hz 124.29 Hz 131.07 Hz 131.08 Hz
3 196.29 Hz 186.48 Hz 196.81 Hz 196.81 Hz
4 261.82 Hz 248.71 Hz 262.57 Hz 262.57 Hz
5 327.38 Hz 311.00 Hz 328.39 Hz 328.40 Hz
6 393.03 Hz 373.38 Hz 394.29 Hz 394.29 Hz
7 458.80 Hz 435.85 Hz 460.26 Hz 460.26 Hz
8 524.66 Hz 498.43 Hz 526.40 Hz 526.40 Hz

Table 3: Filterbank initialization and convergence.
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Figure 5: Filterbank convergence.

7. ANALYSIS-SYNTHESIS RESULTS

The ability to transform input residual, output residual, and model
dynamics by independent means facilitates an immense variety of
modifications. Aside of the standard pitch- and time-scaling ef-
fects, the separate modification of each input residual may gener-
ate some novel effects, such as applying a different regenerative
delay to each input residual. Nevertheless, the standard pitch- and
time-scaling protocols provide a sort of ”benchmark” for compar-
ison with other analysis-synthesis schemes, so we first detail how
these are implemented within the present framework.

7.1. Pitch scale modifications

Each of the model’s frequency trajectories are multiplied by the
amount of the pitch scale. All residuals and decay trajectories are
preserved. Clearly, one may generalize the pitch scaling model to
allow separate modifications, and/or time-varying, audio rate pitch
modulations.

7.2. Time scale modifications

Time scaling is rather more involved. First, one resamples the fre-
quency and decay trajectories by a bandlimited interpolation (lin-
ear interpolation can be used if computations are scarce), and mul-
tiplies the decays by the inverse of the stretching factor. Next, each
input/output residual must be individually timestretched. Since the
residuals are by definition the parts which cannot be modeled, a
nonparametric approach such as WSOLA [11] must be used. To
the extent the output/input residuals are small, the WSOLA ar-
tifacts will be suppressed in the overall resynthesis. However, a
further improvement occurs when the ”excitation region” (defined

as the sample window of length 2p maximizing the sum of the
residual energies) is held out from the WSOLA algorithm then re-
spliced with the WSOLA resynthesis. The resynthesized residuals
are presented to the transformed model for the overall resynthesis
(recall Fig. 1).

7.3. Cross synthesis

Many possibilities exist for the cross-synthesis or hybridization of
multiple sounds. A traditional approach, adhering strictly to the
”source-filter” interpretation, is that the input residuals for one
model are resented as input to another model, while the output
residual of the latter is preserved.

7.4. Results

The setting of ρ = r/q is vital, for reasons detailed in Appx. A
which will merely be summarized here. Our examples use ρ =
20p with minimal artifacts. If ρ is too small, however, the in-
put residuals and hence the individual state resyntheses become
large, posisbly larger than yt. However, since the output resid-
ual vanishes under small ρ, a precarious situation is established
where large input resyntheses must undergo phase cancellation
while summing to a model resynthesis closely approximating yt.
This cancellation may not survive model transformation. If so,
the resynthesis amplitude envelope may become distorted; for in-
stance, the ”soft attack” phenomenon may occur under pitch-scaling
when cancellation is maintained at the beginning of the signal yet
dissipates over time as the component sinusoids drift out of their
original phase relationships.

Such artifacts are easily recovered, however, by a simple en-
velope adjustment in postprocessing. By contrast, if one considers
the loss of phase coherence or the stuttering behavior of canonical
pitch-scaling algorithms, the latter prove far more difficult to cor-
rect in postproduction than the artifacts generated by our model.

A. TUNING OF THE RESIDUAL VARIANCES

Residual variance parameters q, r balance the distribution of en-
ergy among input residual and output residuals as well as govern
the ability to track amplitude and phase nonstationarities. In fact,
only the ratio ρ = r/q matters. A high ρ means the filtered state
estimate only loosely tracks the output, instead depending heav-
ily on the prediction from the previous iteration’s state estimate,
yielding a large output residual but small state residuals. However,
the lack of a swift response to yt limits the state’s ability to track
amplitude/phase nonstationarities.

If ρ is small, however, large state residuals but a small output
residual results. In the latter case, the magnitudes of the individual
state resyntheses � ŝt|1:t(2k − 1) 	 k=1:p

may be large even with
respect to yt, but the individual resyntheses added together magi-
cally “cancel” to form a close approximation to yt.

Indeed, underspecification of ρ can be problematic under mod-
ifications to Ft; e.g. pitch shift. For t large enough, the state
resyntheses no longer maintain their original phase relationships,
thus cancellation no longer occurs. Here the resynthesis’ ampli-
tude increases after the attack and the impression of a proportion-
ately soft attack results. A closer view reveals the soft attack to
be a classic symptom of the overfitting phenomenon: The Kalman
filter tries too hard to fit the specific input yt, failing to generalize
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to the class of signals represented by yt and/or signals undergoing
transformation.

The foregoing observations concerning q, r are easily derived
from the Kalman filter equations. The latter come by way of
Bayes’ Rule and the Markov independences p(st+1|st, y1:t) =
p(st+1|st); p(yt+1|st+1, y1:t) = p(yt+1|st+1), i.e.:

p(st+1|y1:t) = ���
2p

p(st+1|st)p(st|y1:t)dst

p(st+1|y1:t+1) =
p(yt+1|st+1)p(st+1|y1:t)

p(yt+1|y1:t)
(22)

Straightforward application of the Gaussian potential rules in
[3] transforms (22) as follows:

ŝt+1|1:t = Ft+1ŝt|1:t

Pt+1|1:t = Ft+1Pt|1:tF
T
t+1 + qI

Kf,t+1 = Pt+1|1:tH
T (HPt+1|1:tH

T + r)−1

ŝt+1|1:t+1 = ŝt+1|1:t + Kf,t+1 � yt+1 − Hŝt+1|1:t �
Pt+1|1:t+1 = (I − Kf,t+1H) Pt+1|1:t (23)

We now state and prove several facts concerning the setting of
q, r:

• S1 Only ρ = r/q matters. That is, if for c > 0, r′ ∆
= cr,

q′
∆
= cq, and (23) are initialized by cP0 in place of P0,

identical expressions for ŝt|1:t and Pt|1:t result.

• S2 The relative contribution of Ftŝt|1:t vs yt towards
ŝt+1|1:t+1 increases with ρ. In the extreme case ρ ↑ ∞,
ŝt+1|1:t+1 = F ŝt|1:t: the state residual vanishes.

• S3 As ρ ↓ 0, yt+1 − Hŝt+1|1:t+1 → 0, i.e. the output
residual vanishes.

Proof S1 From (23) the identities follow:

Pt+1|1:t+1 = � � Ft+1Pt|1:tF
T
t+1+ qI � −1

+ r−1HT H � −1

(24)

Kf,t+1 = � Ft+1Pt|1:tF
T
t+1 + qI � HT

× � H � Ft+1Pt|1:tF
T
t+1 + qI � HT+ r � −1

(25)

ŝt+1|1:t+1 = (I − Kf,t+1H)F ŝt|1:t + Kf,t+1yt+1 (26)

Define P
(c)
t+1|1:t+1 = � � Ft+1Pt|1:tF

T
t+1+cqI � −1

+ (cr)−1HTH � −1

The latter simplifies as follows:

c−1P
(c)
t+1|1:t+1 = � � Ft+1(c

−1Pt|1:t)F
T
t+1 + qI � −1

+ r−1HTH � −1

Hence, if q is replaced by cq and r by cr,
P

(c)
t+1|1:t+1 = cPt+1|1:t+1∀t. The Kalman recursion for Pt|1:t is

unchanged except for the initialization: P
(c)
0 = cP0.

Similarly, define K
(c)
f,t+1 via (25) replacing Pt|1:t by P

(c)
t|1:t and

q by cq. It follows that K
(c)
f,t+1 = Kf,t+1∀t. Since K

(c)
f,t+1 is un-

altered and no other term in (26) depends on c, ŝt|1:t is unchanged
for all t.

Proof S2 Fix q = 1, so ρ = r; by S1 no loss of general-
ity occurs. As r grows, � H � Ft+1Pt|1:tF

T
t+1 + qI � HT + r � −1

decreases; thus Kf,t+1 decreases elementwise and the eigenval-
ues of (I − Kf,t+1H) increase. Thus the relative contribution of

Ftŝt|1:t towards ŝt+1|1:t+1 increases. When r ↑ ∞, Kf,t+1 = 0,
so ŝt+1|1:t+1 = F ŝt|1:t: all state residuals vanish.

Proof S3 Again fix q = 1. Multiplying both sides of (26) on
the left by H obtains

Hŝt+1|1:t+1 = � H − HKf,t+1H
t � Ft+1ŝt|1:t + HKf,t+1yt+1

(27)
Since HKf,t+1 = HPt|1:tH

T � HPt|1:tH
T + r � −1

converges to
1 as r ↓ 0, (27) becomes simply Hŝt|1:t+1 = yt+1. The model
resynthesis perfectly tracks the output, hence the output residual
vanishes.

B. REFERENCES

[1] Atal, B.S., Hanauer, S.L., “Speech analysis and synthesis by linear
prediction of the speech wave”, J. Acoust. Soc. Am. 50: 637-655,
1971

[2] Bensa, J., Bilbao, S., et al. “From the physics of piano strings to digital
waveguides”, Proc. 2002 International Computer Music Conference,
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