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ABSTRACT

In this work, we present an evolution of the DDS (Damped & De-
layed Sinusoidal) model introduced within the framework of the
general signal modeling. This model is named Partial Damped &
Delayed Sinusoidal (PDDS) model and takes into account a sin-
gle time delay parameter for a set of (un)damped sinusoids. This
modification is more consistent with the transient audio modeling
problem. Then, we develop model parameter high-resolution esti-
mation algorithms. Simulations on a typical transient audio signals
show the validity of this approach.

1. INTRODUCTION

The audio transient compact representation by parametric mod-
els is an up-to-date and difficult problem [1, 2]. Parametric EDS
(Exponentially Damped Sinusoidal) model has been widely stud-
ied in the signal processing community [3]. However, its applica-
tion to signal compression is quite recent [1, 4, 5]. This approach
comes as a natural evolution of the sinusoidal model introduced
by McAulay & Quateri [6]. In fact, sinusoidal models assume that
model parameters have slow variation regarding the analysis time
range. Yet, this is not always consistent with the fast-varying char-
acter of a transient signal. EDS model and its extensions [5] per-
mits more appropriate fast time variations signal modeling since
each sinusoidal component amplitude is allowed to vary exponen-
tially over time. Based on this property, the EDS model presents a
growing interest in the audio community since it allows to model
compactly almost the totality of the audio signals. However, it is
well known that this model becomes ineffective on sharp transient
signals like some percussive sounds (castanets, gong, triangle, ...)
[4, 7, 8]. Modeling characteristic artifacts are then created with
two effects. First, the apparition of a pre-echo signal [2] i.e a dis-
tortion before the sound onset. Second, the signal dynamic is badly
reproduced. These phenomena appear to be very prejudicial to the
auditory perception of this sound category.
Recently, the parametric model, called DDS (Damped & Delayed
Sinusoids) was presented in [7] as a generalization of the sinu-
soidal and EDS models. In this work, we make two realistic as-
sumptions (A.1) A percussive audio signal can be seen as a set
(sum) of damped sinusoids, all having a same time-delay. (A.2)
Two successive audio transients are at ”sufficient” relative dis-
tance one from an other to perform an efficient time-delay estima-
tion/detection based on the signal envelop variation. In this con-
text, we modify the general DDS model and introduce the Partial
Damped & Delayed Sinusoidal (PDDS) model. This model can be
seen as a generalization of the EDS model and a particular case of
the DDS model.
After that, we propose model parameter High-Resolution (HR) es-

timation algorithms, named PDDS-D1 and PDDS-MC2 and we ex-
plain why it is necessary to use HR methods in the audio transient
modeling problem context. Finally, we show the efficiency of this
approach on typical percussive sounds.

2. PARTIAL MODEL : PDDS DEFINITION

In [7], we present the M -order parametric DDS (Damped & De-
layed Sinusoidal) model. In this approach, every waveform 1-
DDS possesses a delay parameter : {tm}1≤m≤M . Yet, in an
audio modeling application, it is sufficient to consider a small
number K of transient signals on a N -sample analysis such as
K � M . We note k the index of the k-th transient signal and we
fix
∑K

k=0Mk = M where Mk is the modeling partial order to
represent the k-th transient signal with a support of Nk = N − tk
samples. We denote {t0, t1, . . . , tK+1} the delay parameter set
with t0 = 0, tK+1 = N − 1, tk < tk+1, 0 ≤ tk ≤ N − 1 and
Bk = tk+1 − tk. In relation with assumption (A.1), we define the
real Mk-PDDS model for n = 0, . . . , N − 1, by

x̂k(n)
4
=

Mk
∑

m=1

am,ke
dm,k(n−tk) (1)

. cos(ωm,k(n− tk) + φm,k)ψ(n− tk)

In the previous expression, dm,k is the (negative) damping fac-
tor, ωm,k is the angular-frequency and am,k and φm,k are re-
spectively the m-th real amplitude and the m-th initial phase
of the k-th Mk-PDDS model. The poles zm,k are defined by
zm,k = edm,k+iωm,k . Moreover, the Heaviside function ψ(n)
is defined by ”1” for 0 ≤ n ≤ N − 1 and ”0” otherwise. Note that
there is a unique delay tk for a set (sum) of Mk EDS waveforms
(see figure 1).
Now, we can write the M -PDDS model expression as the sum of
(K + 1) partial models, according to

x̂(n)
4
=

K
∑

k=0

x̂k(n) (2)

2.1. Models Equivalence

If we assume that the signal x̂k(n) is time shifted of the quantity
” + tk”, we have, for n = 0, . . . , Nk − 1

1D stands for Deflation.
2MC stands for Multi-Channel.
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Figure 1: Mk-PDDS model : one single time-delay for a set (sum)
of Mk EDS waveforms.

x̂k(n+ tk) =

Mk
∑

m=1

am,ke
dm,kn cos(ωm,kn+ φm,k) (3)

We recognize the expression of the realMk-EDS model defined on
a Nk-sample support. Moreover, we consider a second signal on
theBk-sample support {tk, . . . , tk+1 −1}, defined by x̂k(n+ tk)
where 0 ≤ n ≤ Bk − 1. The latter can be seen as a truncated
version of the signal of expression (3) by discarding the Nk −Bk

last samples. This operation is made in a view to eliminate the
perturbation of the (k + 1)-th transient signal. We conclude that
if we have the knowledge of the delay tk, then the time transla-
tion of the quantity ” + tk” of the Mk-PDDS model and the time
support reduction (Nk to Bk) lead to consider an analysis by a
Mk-EDS model on aBk (≤ Nk) sample support. Once the model
parameter estimation procedure is accomplished, we reconstruct
the Mk-PDDS model by making the ”inverse” operation, i.e. a
time support extension (Bk to Nk) and a translation of the quan-
tity ” − tk”. We define, in a similar way, the tk-sample shifted
audio signal by xk(n) = x(n+ tk) for 0 ≤ n ≤ Bk − 1.

2.2. Model parameters estimation

2.2.1. Efficient spectral analysis : High-Resolution (HR) method

Recalling that Bk is the analysis segment size of the k-th transient
signal. This quantity can be quite small if tk is large enough so it
leads to a frequency resolution problem. Indeed, the Fourier reso-
lution is of order 1/Bk for a Bk-sample segment. We can realize
that the frequency resolution can be too large to make an efficient
spectral analysis based on a Fourier-type method. Consequently,
we use a HR method to jointly estimate the angular-frequencies
and the damping-factors. These methods allow to overcome the
Fourier resolution and perform well on very short time segment.
More precisely, we use the Kung’s algorithm [9]. This method is
based on the fundamental shift-invariance property of the signal
basis.

2.2.2. Delays estimation and detection

A transient signal can be seen as a very fast variation of the power
of its time envelop. So, in relation with assumption (A.2), it seems
natural to compute the time envelop of the audio signal and to de-
sign an power transient detector based on the its variation. Con-
sequently, we consider, here, a modified version of the detector,
introduced in [10]. This modification consists of applying the de-
tector on the signal smooth time envelop, instead of the audio sig-
nal. This improves slightly the detection/estimation performance.

The smooth time envelop of the signal is computed by considering
the median filtering of the modulus of the analytical signal νP (n).
More precisely, we have

νP (n) = |ν(n)| ∗ fP (n) (4)

where the analytical signal is defined by ν(n) = x(n) + iΨx(n),
Ψx(n) being the Hilbert transform of the audio signal and fP (n)
is a non-linear median filter of length 2P . Note that using a non-
linear median filter allows to obtain a smooth time envelop of the
signal, i.e. without some awkward oscillatory phenomena. On the
other hand, this filter with short duration, typically P = 5 or less,
keeps unchanged the global variation of the signal time envelop.
The used detection strategy is the one introduced in [10].

2.3. PDDS-D algorithm

2.3.1. Partial orders allocation

Basically, in an audio signal, we have two important features : the
spectral content and the time waveform. For some kind of quasi-
stationary signals, it is most important to well represent their spec-
tral variations without considering too much the variation of the
time waveform [6]. In the context of transient audio compact mod-
eling, the signal time waveform is the main audio feature and has
to be represented as best we can (e.g. without pre-echo). From
this point of view, we choose to estimate the partial orders by the
following empirical approach : a small partial order will be associ-
ated to low power signals since they do not need an accurate mod-
eling. Conversely, higher power signals are associated to larger
partial orders. Consequently, we introduce γ ∈ R according to
Mk = dγ . εke where εk is the power of the Bk-sample audio
signal xk, according to εk = ||xk||

2
2/Bk. Afterwards, we fix

γ =
M

ε0 + ε1 + . . . εK

(5)

2.3.2. Poles and complex amplitudes estimation

We begin by estimating the delays {tk} and the partial orders
{Mk} according to the previous methodologies. The PDDS-D
algorithm principle is as follows : for each xk, we estimate the
signal poles {zm,k}1≤m≤Mk

, according to a HR method and the
complex amplitude parameters {αm,k = am,ke

iφm,k}1≤m≤Mk

by resolution of the following linear least squares criterion

arg min
αk

||xk − x̂k||2 = arg min
αk

||xk − Z
(Bk)
k αk||2 (6)

where Z
(Bk)
k is the Bk × Dk Vandermonde matrix com-

puted from the poles and their conjugates and αk =
(α1,k, α

∗
1,k, . . . , αMk,k, α

∗
Mk,k)T . The solution of criterion (6)

is αk = Z
(Bk)†
k xk where † denotes the pseudo-inverse. We, then,

can synthesize the Mk-EDS model x̂k(n + tk). After that, we
build theMk-PDDSN -sample signal x̂k(n) by a time support ex-
tension (Bk to Nk) and a ” − tk” shifting of the model Mk-EDS.

2.3.3. Deflation procedure

In a deflation procedure context, the algorithm begins by initial-
izing the first residual signal r0(n) = x(n). At the k-th itera-
tion and for the k-th residual signal rk(n), we estimate the Mk-
EDS model : r̂k(n+ tk) and we reconstruct theMk-PDDS signal,
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r̂k(n). Then, we add it to the synthesis signal x̂k−1(n). This op-
eration is named the synthesis stage. And finally, we remove its
contribution to the last residual signal rk(n) to compute the next
residual signal rk+1(n).

2.4. PDDS-MC algorithm : ”Multi-Channel” approach

2.4.1. First Hankel matrix factorization : PDDS-MC1 algorithm

It is possible to consider the analyzed segment as a set of
”multi-channel” signals. In this approach, we estimate jointly
the damping-factor and the angular-frequency parameters for the
(K + 1) signals {x̂k(n + tk), n = 0, . . . Bk − 1}0≤k≤K . We
define the non-square Lν × Lk Hankel matrix H(x̂k) such as
Lν + Lk = Bk and 2M ≤ Lν . We introduce the block-Hankel
matrix according to

H(x̂)
4
=
[

H(x̂0) H(x̂1) . . . H(x̂K)
]

(7)

Its rank is 2M under condition that all the poles are different
and without modeling noise. Every matrix H(x̂k), represents
the Hankel data matrix of the k-th channel of Bk samples size
and verifies a factorization in a Vandermonde basis [9], such as
H(x̂k) = Z

(Lν)
k ΓkZ

(Lk)T
k with Γk = diag(αk). Consequently,

H(x̂) admits the following factorization :

H(x̂) = Θ . Λ1 (8)

where Θ = [Z
(Lν)
0 . . .Z

(Lν)
K ] and Λ1 =

Bdiag([Γ0Z
(L0)T
0 . . .ΓKZ

(LK)T
K ]) with Bdiag(.) denotes a

block diagonal matrix. We notice that factorization (8) highlights
the row-shift invariance property of matrix Θ which is a block-
Vandermonde matrix. It is thus possible to use a HR method on
H(x̂) and to jointly determine the signal poles.

2.4.2. Second Hankel matrix factorization : PDDS-MC2 algo-
rithm

Another approach is to consider the (Bν − Bk) sample zero-
padded signals x̂

(zp)
k with Bν = maxk Bk, according to x̂

(zp)
k =

[x̂T
k 0

T
Bν−Bk

]T . Based on the properties of the Hankel operator,
we have

H

(

K
∑

k=0

x̂
(zp)
k

)

=
K
∑

k=0

H(x̂
(zp)
k ) ≈ Θ . Λ2 (9)

where Λ2 = [Z
(Lν)
0 Γ0 . . .Z

(Lν)
K ΓK ]T with Bν = 2Lν (square

Hankel matrix). Due to the zero-padding, factorization (9) is only
an approximation. However this approximation does not affect
much the performance of the method. Note, we have to satisfy the
constraint 4M ≤ Bν .

2.4.3. Poles processing

The 2M poles are estimated in the following manner

{zm,k} = λ2M

{

U
†
↓U↑

}

, ∀m, ∀k (10)

where U is the matrix containing the 2M left singular vectors
of H(x̂) or H(x̂), λ2M{.} is the set of 2M eigenvalues and ↓
(respectively ↑) stands for deleting the bottom (respectively top)

row. In presence of audio data (noisy data), we, simply, substitute
xk(n) for x̂k(n) without too much decreased the performance of
the HR algorithm.

2.4.4. Pairing operation

For the two PDDS-MC methods, there is a pairing prob-
lem between the time-delays {tk}0≤k≤K and the couples
{ω`, d`}1≤`≤M . In other words, we have to associate the right
time-delays to the right angular-frequencies and damping-factors.
A simple way, to resolve this problem is to compute a ”collection”
of waveforms g`(n) = ed`n cos (ω`n) from the set of estimated
couples {ω`, d`} and to maximize over k the normalized correla-
tion coefficient ρ`,k between each possible Bk-sample waveforms
g` and the audio signal xk. Then, for a given index `, we have

arg max
k

ρ`,k where ρ`,k
4
=

∣

∣gT
` . xk

∣

∣

||g`||2 . ||xk||2
(11)

Note that from expression (11), we can, easily, deduce the model-
ing partial orders {Mk}.

2.4.5. Complex amplitudes estimation

The complex amplitudes are determined by solving the criterion
arg minα̃ ||x − x̂||22 where x is the N -sample audio signal and x̂

is the N -sample modeled signal.

3. MODELING WITH THE PDDS MODEL

3.1. Time modeling

We test and compare the PDDS-D and PDDS-MC algorithms with
the EDS approach on a typical audio transient signal : castanet on-
sets. Note that we have 4M parameters for the EDS model and
4M +K for the PDDS model. Moreover, according to our initial
assumption, we have K �M . Consequently, the total number of
model parameters is almost the same for the two models. We fix
the modeling orders to 20. On the top of figure 2, we have repre-
sented the original signal. On the middle of figure 2, we note the
pre-echo phenomenon and the weak dynamic onset for the EDS
modeling. On the bottom of figure 2 and for the three methods, we
can point out the total absence of pre-echo and the great reproduc-
tion of the onset dynamic. Clearly, the PDDS model outperforms
the EDS approach.

3.2. Perturbation of the estimated time-delay

Hereafter, we study the robustness of the PDDS-D and PDDS-MC
algorithms to a perturbation ∆t of the time-delay according to t1+
∆t with ∆t = {−10, . . . , 10} on the castanet onset signal. The
estimated time-delay t1 for the castanet signal equals 223 samples.
On figure 3-a, we can see that the PDDS-D algorithm is the most
robust algorithm, especially for time-delay under-estimation. The
PDDS-MC1 is the least robust to the time-delay variation in the
context of this simulation. The PDDS-MC2 shows intermediate
robustness.

4. ALGORITHMIC COMPLEXITY AND CHOICE OF
THE ALGORITHM

The complexity of the EDS algorithm can be evaluated to
O(NM2) if we use an iterative processing of the SVD [11]. The
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Figure 2: (top) castanets onset (normalized amplitude), (middle)
20-EDS modeling, (bottom) 20-PDDS modeling.
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Figure 3: (a) SNR with respect to the time-delay variation, (b) par-
tial orders (top) PDDS-D, (middle) PDDS-MC1, (bottom) PDDS-
MC2.

complexity of the PDDS-MC1 is similar to the EDS one. The
computational cost of the PDDS-D algorithm can be evaluated to
O(
∑

k
BkM

2
k ) and O(BνM

2) for the PDDS-MC2.
From the simulation section, we conclude that the PDDS-D and
PDDS-MC algorithms are well adapted to the transient audio mod-
eling problem. Note that the allocation procedure for the PDDS-D
algorithm is based on some empirical considerations on the ”na-
ture” of transient audio signal. Conversely, in the context of the
PDDS-MC algorithms, the partial orders estimation is automatic
since it is essentially a simple ”re-allocation”.
To conclude, we can say : for the true time-delay estimated, the
PDDS-MC2 is the most efficient method since it has the lowest
computational cost for slightly higher performance (see figure 3-a
for ∆t = 0). In case of errors in the time delay estimation, we
choose the PDDS-D method since this method presents the best
trade-off between complexity and robustness.

5. CONCLUSION

In this paper, we have introduced an efficient non-stationary model
for the transient compact representation problem. This model is
an evolution of the DDS model introduced in the general context
of signal modeling. This approach uses a piori information on
percussive audio signal, i.e., an audio transient signal can be seen
as a set of damped sinusoids with a single time-delay. This natural
consideration leads to propose the PDDS model and three high-
resolution estimation methods. Finally, we show that the PDDS
approach outperforms the EDS approach with an identical total
number of modeling parameter on a typical transient audio signal.
This conclusion is confirmed by intensive and informal listening
tests.
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