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ABSTRACT 

A current model of pitch perception is based on cochlear filtering 
followed by a periodicity detection. Such a computational model 
is implemented and then extended to characterise the sensory 
consonance of pitch intervals. A simple scalar measure of 
sensory consonance is developed, and to evaluate this 
perceptually related feature extraction the consonance is 
computed for musical intervals. The relation of consonance and 
dissonance to the psychoacoustic notions of roughness and 
critical bandwidth is discussed. 

1. INTRODUCTION 

When listening to tonal music, some pitches are perceived 
individually whereas others fuse together to form structures such 
as chords. A single pitch can be characterised by a frequency, or 
in a musical context by a scale degree; but when two tones are 
heard together the sensation depends primarily on the interval 
between the pitches. Such pitch intervals are commonly 
characterised by their consonance – a musical concept which 
also has roots in psychoacoustics.  

From an auditory modelling point of view, it would therefore 
be interesting if a model could be constructed that was able to 
deal with pitch as well as consonance. This idea is explored in 
the work documented here, based on an earlier project [1]. An 
established auditory model of pitch is implemented. It is then 
modified into a simple model of consonance perception. The 
output of this computational model is then studied for input 
consisting of pitch intervals with varying expected consonance, 
particularly the intervals found in conventional musical scales. 
Based on this study, the model is evaluated against results of 
previous psychoacoustic investigations into consonance. 

The sensory consonance is related to certain audio 
descriptors in MPEG-7 [2][3]. As the present consonance 
measure is based on a psychoacoustic model, instead of simple 
time- or frequency domain analysis, it can be considered as a 
high-level feature. Some of the attributes described in MPEG-7 
concern only monophonic sounds whereas consonance takes into 
account polyphonic effects. 

One of the possible applications of the described model of 
sensory consonance could be within adaptive sound processing. 
Along with other attributes such as loudness and pitch, the 
consonance could control one or several parameters in a sound 
(or video) processing algorithm. Some examples of adaptive 
sound processing have recently been described in the DAFX 
community [4][5][6].  

2. A MODEL OF PITCH PERCEPTION 

As a starting point for the model of consonance, a recent model 
of pitch perception was used. This particular type of model has 
the feature of being able to predict the pitch frequency for a 
range of different types of pitched signals [8]. Basically, the pitch 
is extracted from a periodicity measurement on the responses of 
each auditory channel (the correlogram). The construction and 
evaluation of this type of perceptual pitch model has been the 
topic of several projects [9][10][11]. 

The list below outlines the computational pitch model used 
in this work. Steps 1-6 were implemented using modules from 
the HUTear MATLAB toolbox [12], and the later steps were 
developed from scratch, in the context of the project [1]. A 
sampling frequency of 44.1 kHz is used throughout the model.  
 

1) Pre-processing of audio stimulus: Scale the level of the 
input to the desired SPL; 60 dB is used here. 

2) Simulate the frequency response of the outer ear: Free 
sound field response (MAF). 

3) Simulate the frequency response of the middle ear: By 
considering the outer and middle ear as a linear time-
invariant system, the combined frequency response is 
modelled using a fixed FIR filter. 

4) Simulate the frequency analysis of the cochlea: A bank of 
64 gammatone filters; centre-frequencies are equidistant on 
the Bark scale, corresponding to a resolution of 1/2 Bark. 

5) Simple inner hair cell model: Half-wave rectification, 
simulating the 'phase-locking' of the mechanical to neural 
transduction. 

6) Low-pass filtering, 1kHz, simulating 'neural bandwidth 
saturation'. 

7) Within-channel periodicity detection; correlogram: 
Calculate the autocorrelation, using FFT, for each channel. 

8) Summation of all autocorrelations across channels, to 
produce the SummaryAutoCorrelation curve (SAC).  

9) Find dominant period: Locate the first maximum after the 
0th lag, and improve estimate of peak by interpolation. 

10) Estimate 'best' pitch frequency: Convert the location of 
the SAC maximum into a frequency of periodicity, and use 
it as pitch estimate. 

 
Each of the steps 1-6 of the pitch model are simple 
approximations of the corresponding auditory functionality (see 
e.g. [13]) – for instance, steps 5-6 model only the average 
behaviour of numerous inner hair cells and auditory nerve fibres. 
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The model is entirely data-driven in the sense that there is no 
feedback to any lower layers, and also no adaptation to the 
specific stimuli takes place. Moreover, the model is monaural 
and most temporal auditory aspects are ignored. As all the 
signals analysed in this work are stationary and in most cases 
periodic, issues of time/frequency-resolution, windowing, etc. are 
also ignored. 

2.1. Evaluation of the Pitch Model 

The implemented pitch model has been tested using 4 different 
kinds of monophonic static pitch stimuli; the frequency of each 
pitch was in the range 220-440 Hz. 
• pure tones: synthesized sinusoidal waveforms 
• harmonic tones: consist of a full harmonic overtone series,  

i.e. all integer-multiples of the fundamental, below the 
Nyquist frequency; the amplitude of each harmonic partial is 
scaled corresponding to an attenuation of 6 dB/octave  

• virtual pitch: harmonic tones, with missing fundamental and 
lowest harmonics 

• comb-filtered noise: from track 51 of the CD [14]; an 
example of atonal pitch, i.e. a tone with a continuous 
spectrum 

 
In each of the above cases the computational model of pitch 
produced the perceptually correct estimate of the pitch frequency 
[1]. It therefore seems appropriate to employ as basis for the 
consonance model (section 4).  

3. CONSONANCE OF TONES 

When two tones are presented together the resulting sensation 
can be qualitatively different from that of a single tone. Two 
simultaneous tones may fuse together, in which case the interval 
(the frequency ratio) between the two tones is highly significant 
to the perceived sound – a feature that is heavily used in music.  

The concept of musical consonance can be accounted for by 
two separate classes of phenomena [15]: one is called sensory 
consonance and is based on the psychoacoustically well-defined 
concepts of roughness, sharpness (kind of a spectral-envelope 
weighted loudness), and tonalness (the opposite of noisiness). 
These three qualities apply to any type of sound. The other 
contributing factors to musical consonance, jointly denoted 
harmony, are specific to musical sound and concern certain 
notions from music theory [17]. 

The model of consonance developed here is based on an 
auditory model, and we do not wish to impose any presumptions 
about how various types of musical stimuli are perceived – 
instead we shall study the output of the model to see if any 
musical interpretations are possible. Therefore, the aspect of 
musical consonance that we endeavour to model is the sensory 
consonance.  

3.1. Musical Scales 

Music which contains pitched tones is generally based on scales. 
A scale is a set of pitches with a fixed frequency relationship. In 
western music, the octave is divided into 12 semitones (the 
chromatic scale) on which all other scales are built [18]. 

The tempered (or equal tempered or well-tempered) scale 
was invented to be a practical alternative to the just intonation. 
Each octave is divided equally into 12 semitones, so that the 
frequency ratio between any two neighbouring tones is 12 2 . This 
implies that the tempered scale is symmetrical and the same 
tuning can hence be used for playing in all keys [19], as 
exploited by J.S. Bach in his composition 'Das wohl-temperierte 
Clavier' (1722). However, the tempered scale is a compromise 
because some of its intervals are relatively far from the 
corresponding 'pure' intervals of just scale, in which the 
fundamental frequencies are in the ratio of small integer 
numbers, e.g. the interval of a pure perfect fifth with the 
frequency ratio of 3/2.  

Today, 'western' music is generally played using the 
tempered scale and its intervals are therefore of special interest. 
Particularly fixed-scale instruments (such as the piano) employ a 
tuning similar to the equal tempered. 

3.2. Consonance and Roughness  

Von Helmholtz discovered that dissonance occurs when partials 
of two tones produce amplitude fluctuations (beating) in a certain 
frequency range. The more partials of one tone that coincide with 
the partials of the other, the less chance that beating in this range 
will contribute to dissonance [19][20]. Consonance would then 
be the absence of such beating partials within critical bands. 
Thus, we shall henceforth assume that dissonance is simply the 
opposite of consonance. 

Dissonance is related to the sensation roughness, identified 
in psychoacoustics. Roughness can be induced by an amplitude-
modulated sine tone, and is strongest when the tone is 100% 
modulated at a modulation frequency of 70 Hz; but roughness is 
perceived with modulation frequencies from 15-250 Hz when the 
carrier is at 1 kHz [15]. Both critical bandwidth and the limited 
temporal resolution of the auditory system contribute to defining 
this roughness range. The perceived roughness furthermore 
depends on the loudness of the stimulus. A pair of pure tones 
will cause an amplitude fluctuation with a frequency that is the 
difference between the frequencies of the tones. This situation 
could also induce roughness, if the tones were partials, isolated 
within a critical bandwidth.  

To summarise, consonant intervals of harmonic tones have 
fewer harmonics with frequency differences within the 
roughness range. But these (possibly unresolved) harmonics 
are also affected by the spectrum of the tones; i.e. the number 
of harmonics and their strength (contributing to the perceived 
timbre). The roughness is strongest when the interacting 
harmonics are both strong and equally strong. 

An auditory spectrogram (or cochleagram) can be 
constructed by plotting the output from step 6 in the 
implemented pitch model, displaying the average auditory nerve 
firing for each auditory channel over time. Two specific intervals 
were chosen because they are renowned for being especially 
consonant and dissonant, respectively [21], though consisting of 
pitches close in frequency: the interval of a perfect fifth and of a 
tritone (the interval equal to the sum of three whole tones). Each 
individual tone was synthesized like the harmonic tones 
described in section 2.1. Figure 1 and Figure 2 contain the 
auditory spectrograms for these two contrasting intervals, and the 
connection to roughness is clearly visible: The regularity of the 
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fifth, caused by its 3/2 ratio, did not produce the low-frequency 
amplitude-modulation–like behaviour evident in some of the 
channels for the tritone, noticeably around 1.5 and 3 kHz. 

 
 

 
Figure 1: Auditory spectrogram of the interval of a 
perfect fifth (just intonation), using harmonic tones. 
Pitch 1 is 440 Hz, pitch 2 is 660 Hz; the interval is 702 
cent. The range from weak to strong (white to black) is 
around 50 dB. 

 

 
Figure 2: Auditory spectrogram of the interval of a 
tritone (equal tempered), using harmonic tones. Pitch 1 
is 440 Hz, pitch 2 is 622 Hz.; the interval is 600 cent. 
The same intensity scale as in Figure 1 is used.  

 

4. A MODEL OF CONSONANCE 

In order to construct a model of the sensory consonance of pitch 
intervals, the pitch model presented in section 2 needs to be 
modified. The consonance model needs to capture the varying 
roughness induced by tone intervals. This is implemented by 
changing the last four steps of the pitch model to the following 
(steps 1-6 are identical to those in the pitch model): 
 

7) Within-channel spectral analysis: Calculate the power 
spectral density (PSD), using FFT, for each channel. 

8) Summation of PSDs across all channels with centre-
frequencies above ~3 Bark. 

9) Find the power related to roughness: Calculate the mean 
value of the SummaryPSD in the frequency range approx. 
15 - 300 Hz. 

10) Estimate consonance measure: Convert the mean into a 
scalar measure of sensory consonance: SC = 100 – mean.  

 
Note that the pitch and consonance models have resemblance, in 
addition to sharing the first 6 steps: The autocorrelation and the 
spectral density estimation (steps 7) are similar operations, and 
the subsequent summations (steps 8) are equivalent. 

The output of the consonance model is a scalar parameter, 
SC, which we shall denote the sensory consonance measure 
corresponding to the input (stimulus) fed to the model at step 1.  

 
The sensory consonance measure is thus defined as:  
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where – 
• PSD is the power spectral density, with values in dB;  

z is a channel in the gammatone filterbank, and f is a 
frequency band in the FFT used to calculate the PSD. 

• fRlo should be around 15 Hz, and fRhi around 250-300 Hz, to 
capture the 'roughness spectrum' (section 3.2) 

• #f is the number of frequency-bands in the PSD between fRlo 
and fRhi 

• zlo should be a filterbank channel below the lowest channel 
containing unresolved partials. (This constraint is dependent 
on the stimulus, but a simple solution is to use a channel 
below the fundamental frequency of the lowest pitch 
occurring in the stimulus.) 

• zmax is the highest auditory channel in the cochlea model 
• the lower cut-off frequency of the channel zlo should be 

above fRhi  
• #z is the number of channels between zlo and zmax  (1/2 Bark 

resolution is used here) 
 
In Equation 1, the summation finds the total power in the 
cochleagram within the roughness range, caused by beats of 
adjacent unresolved partials. The point of the )(100 ⋅−  is simply 
to make a scale with 0≈SC  for very dissonant intervals, and 

100≈SC  for very consonant intervals (SC is not in percent). 
The definition of SC is based on experiments with various tone 
intervals, and thus the range of SC is not theoretically bounded 
by 0 and 100.  
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Note that the SC measure does not (yet) take into account the 
dependency of roughness on frequency region, and using an un-
weighted average in the integration is also a simplification. 

Comparing the present model of sensory consonance to the 
model developed by Aures [22][23], there are some differences. 
Aures models the sensory consonance as a scalar formed as the 
product of four psychoacoustic quantities transformed and scaled 
appropriately: Roughness, sharpness, tonalness and loudness. 
The four psychoacoustic quantities were calculated separately 
using well-known and partly adapted models. As reference, 
listening experiments on signals exhibiting varying degrees of 
the four quantities, were made. The two dominating quantities in 
the Aures model are roughness and tonalness. It remains to be 
investigated whether the four quantities could be reduced to 
fewer using formal multidimensional scaling techniques. 

4.1. Evaluation of the Consonance Model 

To evaluate the consonance model, the measured sensory 
consonance of intervals was compared with established results 
from psychoacoustic experiments with subjective judgment of 
consonance/dissonance.  

Plomp and Levelt conducted a set of psychoacoustic 
experiments in which the subjects rated to what degree pairs of 
pure tones sounded consonant or dissonant [24]. The frequency 
difference of the two tones would vary around a fixed mean 
frequency. Figure 4 shows one of the resulting consonance-rating 
curves, for 14 intervals in the range 9-900 Hz, each with a 
geometric mean frequency of 500 Hz. The curve is relatively 
smooth and without any peaks at the intervals presumed 
consonant. Seemingly, the consonance ratings depended on the 
distance rather than the ratio between the tones' frequencies. 
However, it was realised that the shape of the curves, for various 
mean frequencies, could all be explained by the relationship 
between the frequency difference of the tones and the 
corresponding critical bandwidth. The maximum perceived 
dissonance was estimated to occur when the two pure tones were 
about 1/4 of the critical bandwidth apart, and the intervals were 
estimated to be consonant, when the frequency difference 
exceeded the critical bandwidth [24]. Kameoka and Kuriyagawa 
found that dissonance would increase with the SPL of the 
stimulus [26], which can be explained by the finding that critical 

bandwidth are wider with louder stimuli. 
 

 
Figure 4: "Consonance rating scores of simple-tone 
intervals with a mean frequency of 500 Hz as a function 
of frequency difference between the tones. The solid line 
corresponds with the median, the dashed curves with the 
lower and upper quartiles of the scores (11 subjects)." 
(from Plomp & Levelt [24]). Critical bandwidth 
annotations added. 

 
The curve in Figure 5 is the consonance measure SC computed 
by the model introduced in the preceding section. The stimuli 
consist of pure-tone intervals within one octave, with the lowest 
tone at 440 Hz and the highest at frequencies in the range 440-
880 Hz. Each static tone pair was presented in isolation to the 
model.  

The consonance model uses a gammatone filterbank with 64 
channels. When a pure tone is swept along the frequency axis, it 
may lead to fluctuations of the output because the tone is 
sometimes at the centre of a filterbank channel and sometimes in 
between two. This may be contributing to the oscillations of the 
consonance measure in Figure 5, which would hence be an 
artefact of the model. Therefore a smoothed version of the curve 
is also presented in the figure. A filterbank with more 
overlapping channels has not yet been tested.  

In Figure 5, the octave interval (1200 cent) has a higher 
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Figure 3: Diagram of the sensory consonance model 
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modelled consonance value than the unison (0 cent, i.e. in 
essence only one tone). This may seem counter-intuitive, yet it 
could be argued that two pure tones, separated by an octave, 
might easily fuse together and hence be heard as a single tone 
with two harmonics. This phenomenon appears to be confirmed 
by the psychoacoustic experiments [26] (though not by Figure 4, 
as we don't know how much the curve would rise when the 
frequency difference approaches 0 Hz). 
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Figure 5: Modelled consonance (SC) for intervals of two 
pure tones. The thin line is the plot of the raw values 
while the thicker graph represents the data smoothed by 
a filter. The lower pitch is 440 Hz, the upper is varied 
from 440 to 880 Hz. 

 
When comparing Figure 4 and Figure 5, please note that the 
former uses a frequency-difference scale while the latter uses 
cent (frequency ratio). Furthermore, the range 9-900 Hz in Figure 
4 corresponds to an interval range of 31-2800 cent, i.e. a little 
over two octaves, as opposed to only one octave (0-1200 cent) in 
the modelled consonance curve. Additionally, the 'consonance 
rating score' is based on a percentage of subjective judgements, 
whereas the 'consonance measure' is a continuous parameter 
calculated from a computational auditory model.  

With these reservations in mind, a cautious comparison of 
the two curves in Figure 4 and Figure 5 reveals a qualitative 
similarity. In particular, the consonance minimum, or dissonance 
maximum, for both curves is located at intervals around 1/4 of 
the critical bandwidth, as indicated on both figures. The critical 
bandwidth at 500 Hz (~5 Bark) is 115 Hz [15]. In Figure 4, the 
minimum value, located at ~30 Hz frequency difference between 
the two pure tones, corresponds to 26.0115/30 =  times the 
critical bandwidth. As the interval size increases towards a whole 
critical bandwidth, both consonance curves rise. Moreover, as 
the intervals shrink towards the unison (0 cent), both curves 
climb smoothly to a local maximum.  

In summary, the results of the modelled consonance SC of 
pure-tone intervals are found to be qualitatively similar to 
consonance/dissonance judgements reported in established 
psychoacoustic experiments.  

In contrast to the pure-tone intervals, the model output for 
intervals of tones with a musically pseudo-realistic spectrum 
shows numerous distinct consonance peaks. Furthermore, the 
range of the SC measure is doubled, compared to the pure tone 
intervals. In Figure 6, frequency intervals from unison up to one 
octave are sampled, including those of the equal tempered scale 
(corresponding to integer multiples of 100 cent). Furthermore, 
certain pure intervals are added. The intervals consist of the type 
of harmonic tones described in section 2.1.  

One striking feature of the consonance curve in Figure 6 is 
how dissonant most of the tempered intervals are, with typical 
values SC < 30, compared to the 'pure' intervals. For instance, the 
pure perfect fifth (702 cent) has a SC = 87, whereas the equal 
tempered perfect fifth (700 cent) is at SC = 61. The tempered 
perfect fifth is still quite consonant though, compared to other 
intervals.  

The only difference in the two groups of stimuli, underlying 
Figure 5 and Figure 6, is the presence of the harmonic partials in 
the tones of the latter. Yet the consonance curves are quite 
different in both shape and range. Therefore, according to the 
model the timbre of the tones has a significant effect on the 
sensory consonance of tone intervals.  

To further demonstrate the results of the consonance model 
developed in this work, a digital video was created. The video 
consists of the modelled consonance curve of Figure 6, 
annotated such that each sampled interval is in turn highlighted 
by a red marker. This animation was merged with a soundtrack 
composed of one second of synthesized audio for each sampled 
interval, consisting of harmonic tones – the same sound that was 
used as input for the model. The modelled consonance can thus 
be seen while simultaneously the stimulus is heard.  
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Figure 6: Modelled consonance for intervals of two 
harmonic tones. Each round marker on the graph 
indicates a specific interval whose SC value has been 
computed. The pitch range is as in Figure 5. Vertical 
dotted lines show the equal tempered scale intervals. The 
marked tempered intervals have names containing 
'temp', the other names correspond to pure intervals. 
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5. CONCLUSIONS  

A measure of sensory consonance was developed, employing a 
scheme similar to an established auditory model of pitch, and 
motivated by knowledge of critical bandwidth and the roughness 
sensation. The behaviour of the consonance measure for musical 
intervals was in agreement with conventional musical 
knowledge, even though the underlying model was based on 
psychoacoustics and devoid of music-specific presumptions 
Thereby the consonance measure could be employed as a 
perceptually related feature (extractor) for musical signals.  

The consonance measure for the equal tempered intervals, 
which are generally used in western music, was significantly 
lower – i.e. more dissonant – than for the corresponding pure 
intervals; certain tempered intervals were no more consonant 
than some of the out-of-scale intervals. This supports the 
supposition that the perceived musical consonance of tone 
intervals, especially in a musical context, depends on other 
significant factors than the sensory consonance modelled here.  

Only static, periodic and isolated stimuli have been 
considered here. For application in a musical context, the 
consonance model would need to handle dynamic signals. By 
implementing a sliding-window analysis as an extension to the 
model, also time-varying signals could be used as stimuli.  

The consonance measure computed by the model was shown 
to depend both on the frequency ratio between the tones, and on 
harmonic spectrum (corresponding to the timbre) of the tones. 
The former result is in agreement with the long-established 
theory of consonance, and the latter must have been realised 
centuries ago at least by musicians and musical orchestrators; yet 
in traditional music notation and analysis, is harmony not – even 
today – treated independently of the timbral aspects of music ?  
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