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ABSTRACT

Despite the success of parametric modeling in various fields of
digital signal processing, the Fourier analysis remains a prominent
tool for many audio applications. This paper aims at demonstrat-
ing the usefulness of the Exponentially Damped Sinusoidal (EDS)
model both for analysis/synthesis and tracking purposes.

1. INTRODUCTION

The advantages of this model are on the one hand to overcome the
Fourier resolution limit related to windowing and on the other hand
to enhance the classical sinusoidal model used in speech and au-
dio coding. The main drawbacks of the EDS-based methods con-
sist in the complexity of the algorithms and in the assumption of
non time-varying parameters. In this paper, applications of some
recent enhancements of the algorithms to audio signal processing
are presented, in order to both reduce the complexity and track the
parameter variations with time.

Modeling context. Recently, many efforts have been made
to achieve a powerful representation of an audio signal as speech
or music, for a compression purpose [1, 2]. More specifically, in
parametric audio coding, it is worthwhile to have compact (sparse)
representations of the signal: the model orderM (i.e. the number
of elementary components) must be far less thanN , the length
of the analysis window in samples. One way to obtain a more
compact representation is to increase the parameterN and keep
unchanged the model order. Unfortunately, for largeN , the audio
signal can no longer be considered as a quasi-stationary signal. In
this case, the basic sinusoidal model [3], which tends to represent
the audio signal as a sum of constant-amplitude components, be-
comes ineffective. Consequently, the EDS model was introduced
in the audio modeling context [4, 5]. In this work, we compare the
sinusoidal and EDS models with the same total number of model
parameters. Note that keeping a satisfactory algorithmic complex-
ity implies setting a maximal bound to the parameterN .

Tracking context. The EDS model relies on the assumption
of non varying signal parameters within the observation window.
A more realistic modeling of musical signals should include slow
variations of the parameters. Tracking these time variations would
have interesting applications, such as:

• evaluating the degree of stationarity of the audio signal,

• detecting model breaks, which characterize transient sounds,

• developing more realistic synthesis techniques.

A reference method in frequency tracking is the Sintrack algorithm
introduced by P. Duvaut [6]. This method relies on a fast linear
prediction technique, which makes it useful for real-time estima-
tion and tracking of damped sinusoids in noise. However, its lack

of robustness results in repeated re-initializations which increase
the computational cost.

Concurrently, subspace-based high resolution methods, despite
their higher computational complexity, prove to be much more re-
liable than linear prediction. Therefore, adaptive subspace estima-
tion may offer interesting outlooks for frequency tracking.

Contents.This paper is organized as follows.
Section 2 introduces the EDS model and presents subspace-

based high resolution methods for the estimation and tracking of
the model parameters. Some synthesis techniques are proposed
both in a static and an adaptive context, with an application to
pitch modification.

Section 3 shows the application of these methods to coding,
tracking and re-synthesis of audio signals.

Finally, section 4 summarizes the main conclusions of this pa-
per.

2. THEORETICAL BACKGROUND

The EDS model defines the discrete signal as

x(t) =

M∑
m=1

am exp(dmt) cos (2πfmt + φm), t ∈ {0, . . . N−1}

(1)
wherex(t) is the discrete signal observed in the windowt ∈
{0, . . . N − 1}, M is the order of the model,am ∈ R∗

+ are the
amplitudes,dm are the real valued damping factors,fm ∈ [− 1

2
, 1

2
[

are the frequencies andφm ∈ [−π, π[ denote initial phases. Equa-
tion (1) can equivalently be rewritten with the complex amplitudes
αm = 1

2
am exp(iφm) and the complex poleszm = exp(dm +

i2πfm) as in equation (2):

x(t) =

M∑
m=1

(
αmzt

m + α∗mz∗m
t
)

. (2)

In section 2.1, EDS-based analysis/synthesis methods are pre-
sented in a block processing context (with constant model param-
eters). In section 2.2, it will be shown how these methods can be
adapted to track slow variations of these parameters.

2.1. Block signal processing

The estimation of the model parameters is achieved in two steps:
first the frequencies and damping factors are computed using a
high resolution (HR) method, from which the amplitudes and ini-
tial phases are deduced by minimizing a least squares (LS) cri-
terium. The estimated parameters are then used to re-synthesize
the signal.
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Table 1:Orthogonal iteration EVD algorithm

Initialization: US =

[
I2M

0(L−2M)×2M

]
For n = 1, 2, . . . until convergence iterate:[
A(n) = H US(n− 1) fast matrix product
A(n) = US(n)R(n) skinny QR factorization

2.1.1. Subspace-based signal analysis

Define theL × L real Hankel data matrixH (with N = 2L − 1)
as

H =


x(0) x(1) . . . x(L− 1)
x(1) x(2) . . . x(L)

...
...

. . .
...

x(L− 1) x(L) . . . x(N − 1)

 . (3)

Suppose that2M ≤ L. Then this matrix can be decomposed
asH = E A ET , where

A = Diag(α1, . . . , αM , α∗1, . . . , α
∗
M )

andE is theL× 2M Vandermonde matrix

E =


1 . . . 1 1 . . . 1
z1 . . . zM z∗1 . . . z∗M
...

. . .
...

...
. . .

...
zL−1
1 . . . zL−1

M z∗1
L−1 . . . z∗M

L−1

 . (4)

H has a2M -dimensional range space, spanned by the full-
rank matrixE. This range space fully characterizes the signal
poles, even in presence of an additive white noise [7], and thus
is referred to as thesignal subspace. An orthonormal basisUS

of this space can be obtained from the eigenvalue decomposition
(EVD) of H. Indeed, sinceH is a rank-deficient symmetric real
matrix, there exist aL × 2M orthonormal real matrixUS and a
2M × 2M diagonal real matrixΛ such thatH = US ΛUST

.
The columns ofUS thus span the signal subspace. In the presence
of an additive white noise, the columns ofUS are defined as the
2M -dominant eigenvectors ofH (i.e. the eigenvectors associated
to the2M eigenvalues which have the highest magnitudes).

These dominant eigenvectors can be computed using the clas-
sical EVD algorithm calledorthogonal iteration[8]1 (cf. table 1),
which involves an auxiliary matrixA. The Hankel structure of the
matrixH can be taken into account to make the algorithm faster by
computing the first-step matrix product using Fast Fourier Trans-
forms, which requires onlyO(LM log(L)) operations [8]2. Then
the second step can be achieved inO(LM2) operations [8]3. Since
in practice this algorithm converges in a few iterations, the overall
process requiresO(LM(M + log(L))) operations.

1Chapter 8, section 2.4.
2Chapter 4, section 7.7.
3Chapter 5, section 2.

2.1.2. Estimation of the frequencies and damping factors

The poles{zm, z∗m}1≤m≤M can be calculated by exploiting the
rotational invariance property of the signal subspace. More pre-
cisely, defineE↓ (respectivelyE↑) the matrix extracted fromE
by deleting the last (respectively the first) row. These matrices sat-
isfy the equation

E↑ = E↓ D (5)

where

D = diag(z1, z2, . . . , zM , z∗1 , z∗2 , . . . , z∗M ).

Since the matricesUS andE span the same subspace, there
exist an invertible matrixC such that

US = E C−1. (6)

As for E, let US
↓ (respectivelyUS

↑ ) be the matrix extracted
form US by deleting the last (respectively the first) row. Then
equations (5) and (6) yield

US
↑ = US

↓Φ (7)

whereΦ = C D C−1. The Estimation of Signal Parameters via
Rotational Invariance Techniques (ESPRIT) method [9] consists
in:

• computing the matrixΦ =
(
US
↓
)†

US
↑ (where the symbol

† denotes the Moore-Penrose pseudo-inverse; this compu-
tation requiresO(LM2) operations),

• extracting the estimated poleŝzm as the eigenvalues ofΦ
(which can be achieved inO(M3) operations).

Finally, for m = 1, . . . , M , the mth estimated frequency and
damping factor can be deduced usingf̂m = angle(ẑm)

2π
andd̂m =

ln |ẑm|.

2.1.3. Estimation of the amplitudes and initial phases

The complex amplitudes{αm}1≤m≤M can be determined by min-
imizing the LS criterionminα ‖x−Eα‖2

2, where

• x = [x(0), . . . , x(L− 1)]T are the signal samples,

• α = [α1, . . . , αM , α∗1, . . . , α
∗
M ]T are complex amplitudes.

The solution to this criterion is

α̂ = E†x. (8)

Hence, form = 1, . . . , M , themth estimated real amplitude
and initial phase arêam = 2|α̂m| andφ̂m = angle(α̂m).

Note that the full computation ofE† can be avoided since

equation (6) shows thatE† = C−1 UST

whereC = UST

E.

Thus,α̂ = C−1
(
UST

x
)

can be computed inO(LM2) opera-

tions.

2.1.4. Re-synthesis

Once the model parameters have been estimated, the signal can
be reconstructed using equation (2). Thus, the estimated signal
sample at timet is

x̂(t) =

M∑
m=1

(x̂m(t) + x̂∗m(t)) (9)
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wherex̂m(t) = α̂m ẑt
m is themth complex damped sinusoid.

Note that equation (9) can be implemented inO(LM) opera-
tions.

In a block processing context, some interpolation techniques
are required in order to force the continuity of the parameters be-
tween consecutive blocks [10].

2.1.5. Pitch-scale modification

An immediate application of the EDS model is a frequency-scale
modification of the signal, which just consists in multiplying the
estimated frequencieŝfm by a same factorβ. Thus, the frequency
of themth complex damped sinusoid in the modified signal is

f̂s
m = βf̂m

so that the corresponding pole is

ẑs
m = exp(d̂m + i 2πf̂s

m)

= ẑm exp(i 2π(β − 1)f̂m)
(10)

Therefore, equation (9) becomes

x̂s(t) =

M∑
m=1

(x̂s
m(t) + x̂s

m
∗(t)) (11)

wherex̂s
m(t) = α̂m (ẑs

m)t.
Note that this pitch modification method is no more computa-

tionally demanding than the exact re-synthesis.

2.2. Adaptive signal processing

The section transposes the HR methods presented above in an
adaptive context. It will be shown that tracking the slow varia-
tions of the model parameters leads to a very simple re-synthesis
method.

2.2.1. Model parameters tracking

The Sintrack method for frequency estimation and tracking [6]
consists in a two-steps estimation: the Matrix Pencil HR method
[7] is first applied to obtain the initial parameters, and the tracking
is then achieved using an adaptive Least Mean Square (LMS) al-
gorithm, the frequencies and damping factors being extracted from
the roots of a backward prediction polynomial [11]. When the pre-
diction error exceeds a certain threshold, the algorithm switches
back to the initialization step.

Although this method has proved to be successful on musical
signals [12], the lack of robustness of the LMS algorithm results in
an intensive use of the Matrix Pencil method, which is very time-
consuming.

To avoid this increase of complexity, the prediction polyno-
mial tracking can be replaced by a signal subspace tracking, since
subspace-based HR methods are known to give more reliable es-
timates of the signal poles than linear prediction. Subspace track-
ing has been intensively studied in the fields of adaptive filtering,
source localization or parameter estimation. A first class of track-
ing algorithms is based on the projection approximation hypothe-
sis [13]; an other one relies on EVD or SVD tracking techniques,
derived from classical EVD or SVD algorithms.

Table 2:Sequential iteration EVD algorithm

Initialization: US =

[
I2M

0(L−2M)×2M

]
For each time step t iterate:[

A(t) = H(t) US(t− 1) fast matrix product
A(t) = US(t)R(t) skinny QR factorization

For example, theorthogonal iterationalgorithm of Table 1 can
be adapted to track the dominant eigenvectors of a sliding-window
matrix

H(t) =


x(t− (L− 1)) . . . x(t)
x(t− (L− 2)) . . . x(t + 1)

...
. . .

...
x(t) . . . x(t + L− 1)

 (12)

just by replacing the iteration indexn in table 1 by the discrete
time indext [14] (cf. table 2).

Thus, only one iteration is completed at each time step. Once
the signal subspace basisUS is computed, the standard ESPRIT
method can be applied. However, for the sake of computational
efficiency, adaptive implementations of ESPRIT have been devel-
oped [15], which requireO(LM2) or O(LM) operations at each
time step.

Finally, the estimation of the amplitudes and initial phases can
be achieved as in section 2.1.3. Equation (8) now becomes

α̂(t) = E(t)†x(t) (13)

whereE(t) is the Vandermonde matrix of the estimated poles at
time t, α̂m(t) and ẑm(t) denote the estimatedmth complex am-
plitude and pole at timet, andx(t) = [x(t), . . . , x(t + L− 1)]T .

Since this estimation involves the matrixE defined in equa-
tion (4) for a time window[0 . . . L − 1], it must be noted that
α̂m(t) now is the complex amplitude of themth damped sinusoid
at time t.

2.2.2. Re-synthesis

In an adaptive context, since the complex amplitudes of the damped
sinusoids are estimated at each time step, equation (9) stands with
x̂m(t) = α̂m(t). Therefore, the re-synthesis of the signal at each
time step just consists in summing the complex amplitudes, which
only requiresO(M) operations.

2.2.3. Pitch scale modification

Let ϕm(t) be the phase shift between themth estimated damped
sinusoid and themth synthesized damped sinusoid at timet, so
that equation (11) stands with

x̂s
m(t) = x̂m(t) exp(i ϕm(t)) = α̂m(t) exp(i ϕm(t)). (14)

Since these sinusoids satisfy the following recurrences

• x̂m(t) = x̂m(t− 1) ẑm(t),
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• x̂s
m(t) = x̂s

m(t− 1) ẑs
m(t),

equations (10) and (14) show thatϕm(t) can be recursively up-
dated using the following scheme:

ϕm(t) = ϕm(t− 1) + 2π(β − 1)f̂m(t). (15)

Then, x̂s
m(t) can be computed using equation (14), from which

the synthesized samplêxs(t) can be deduced using equation (11).
Note that this pitch modification method has the same complexity
as the exact re-synthesis.

3. EXPERIMENTAL RESULTS

This section illustrates first the enhancement of the coding qual-
ity using the EDS rather than a simple sinusoidal model, then the
tracking and re-synthesis of musical signals. The study deals with
two piano tones, C5 and G5, sampled at 11025 Hz.

It is to be noticed that in real audio signal applications, the
data matrixH is never rank-deficient, because of the presence of
noise. Moreover, the rank-truncation order2M is unknown, and
must be chosen carefully. Indeed, over-estimatingM is harmless,
but under-estimatingM often generates biases in the estimates of
the frequencies and damping factors. Then,L must be chosen
much greater thanM , in order to enforce the robustness of the
HR method. On the other hand, the higherL is, the more this
method is computationally demanding. Therefore, audio signals
with a high number of sinusoids (typically low-pitched sounds)
may first be decomposed into several sub-band signals (via fil-
tering/decimating, as proposed in [16]), before applying the HR
method. In the examples proposed below, this pre-processing is
useless, since the chosen piano tones have few sinusoidal compo-
nents.

3.1. EDS vs sinusoids

Figure 1: Time-shape waveforms : original signal, sinusoidal
modeling withMSIN = 16 and EDS modeling withMEDS = 12.

This section shows the efficiency of the EDS model in com-
parison with the classical sinusoidal model with an identical total
number of model parameters,i.e. MEDS = 3/4 MSIN . The
test signal is the C5 piano tone. Figures 1 and 2-a,b,c show the
time-shape waveforms and the Fourier spectra of the original and

Figure 2:Fourier spectra : (a) original signal, (b) sinusoidal mod-
eling withMSIN = 16, (c) EDS modeling withMEDS = 12.

modeled signals. Figure 1 shows a strong pre-echo (energy before
the onset) with the sinusoidal model. Moreover, the global varia-
tion of the attack is wrongly estimated.
Thanks to the exponentially time-varying amplitudes, the EDS model
provides a better modeling since it creates a short pre-echo and of-
fers a good reproduction of the attack.
After several structural considerations, a frequency aspect is in-
troduced in the analysis by using the polyphase 32-bands pseudo-
QMF filter-bank of MPEG1-audio [17], which provides a uniform
partition of the frequency axis. After that, a power and a SNR
measure are computed in each sub-band, noted SNRTF .

Figure 3 shows the better SNRTF values of the EDS model.
Note that several sub-bands are not reliable due to their weak power
(see figure 4).

Figure 3:SNRTF in dB.
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Figure 4:Power in sub-bands in dB.

3.2. Adaptive signal processing

This section illustrates first the frequency tracking of a musical
signal composed of two piano tones, then the synthesis method of
section 2.1.4.

3.2.1. Frequency tracking

Figure 5:Time waveform and spectrogram of the piano signal for
the frequency tracking test.

The parameters tracking method presented in section 2.2.1 has
been tested on a piano signal: the C5 tone of figure 1-a is played
at time t = 0s, then the G5 is played at timet = 0.36s, while
the C5 is maintained (the time waveform and the spectrogram of

Figure 6:Frequency tracking of the piano signal.

this signal are plotted in figure 5). Figure 6 shows the result of the
tracking. The model order and the window length whereM = 16

andL = 160, and the sinusoids energies (Em = α2
m

1−|zm|2L

1−|zm|2 )
are represented on a logarithmic scale using gray levels for the
plot. Since the number of sinusoids is over-estimated, it can be
seen that spurious poles are detected in the low frequency band
(below 1000Hz), which actually corresponds to the highest level
of noise in the original signal.

3.2.2. Re-synthesis and pitch scale modification

The synthesis method proposed in section 2.1.4 gave excellent re-
sults on the piano tones: the synthesized sounds were perceptually
very similar to the original ones.

The hearing sensation is particularly well reproduced at the
attack of both sounds. This may be related to the spurious poles
detection mentioned above. Their number and energy are greater
at the attack, which allows a good representation of the mechanical
noise. It is well known that this impact noise occurring during the
action of the hammer on the strings is of great importance for the
naturalness of the sound.

This method could be directly implemented without any fur-
ther modification. On the opposite, the pitch-scale modification
requires additional work. Indeed, the recursion on the phase shift
between the estimated and the pitch-shifted signal in equation (15)
relies on several implicit assumptions, such as:

• the number of frequencies is constant through time,

• each pole characterizes one single time-varying frequency,
which is present in the whole signal,

• ẑm(t) matcheŝzm(t− 1) (ie. themth frequency trajectory
is known).

In real audio signals, however, the frequencies may appear or
disappear, so that their number changes throw time. Moreover,
spurious frequencies are sometimes detected, and should be elim-
inated. Consequently, tracking the poles trajectories is a difficult
problem.

In the literature, several strategies were proposed to track si-
nusoids in the presence of noise in a block processing context
[3, 10, 18]. These methods were designed in association with
frequency estimators based on the Short Time Fourier Transform
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(STFT), but they can easily be adapted to the EDS model and the
HR methods.

Finally, the pitch-scale modification technique proposed in sec-
tion 2.2.3 in combination with these classical frequency matching
strategies proved to be successful on the piano tones.

Note that once the poles trajectories are estimated, the discrim-
ination should be made between

• the harmonics (related to the pitch of the sound),

• the remaining poles, which model the signal noise.

A realistic pitch scale modification should change the frequen-
cies of the first class and leave the second class unchanged. Of
course, the classification of the poles would require additional work.

4. CONCLUSIONS

The EDS model is a useful tool for audio signals modeling. It
leads to a better representation of signal frames than the undamped
sinusoidal model for a coding purpose. The use of a HR algorithm
achieves an accurate estimation which can be efficiently updated
by tracking the signal subspace through time. Moreover, tracking
the model parameters offers very interesting outlooks for signal
re-synthesis and modification.
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