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ABSTRACT

Digital Waveguides have been extensively used for musical instru-
ment and room acoustics modelling. They can be used to form
simplistic models for ideal wave propagation in one, two and three
dimensions. Models in 1D for string and wind instrument synthe-
sis and more recently a model for a drum, realised by interfacing
2D and 3D waveguide meshes, have been presented [1]. A frame-
work is thus in place for the virtual construction of new or abstract
musical instruments. However, straight-forward waveguides and
waveguide meshes behave in an extremely indeal nature and phe-
nomena such as stiffness and internal friction are often compro-
mised or ignored altogether. In this paper we discuss and evalu-
ate models which incorporate material parameters. We review a
1D bar model, and then present a 2D extension to model plates.
We also discuss the problem of modelling frequency dependent
damping, by describing a waveguide model of a visco-elastically
damped string.

1. INTRODUCTION

Current digital waveguide string models have incorporated non-
linear phase filters to simulate stiffness [2], while IIR lowpass loop
filters placed at the waveguide terminations can be used to simu-
late the frequency dependent losses observed in real strings [3].
In this paper we begin discussions on how such phenomena can
be explicitly modelled within the waveguide framework. We dis-
cuss waveguide models which are equivalent to Finite Difference
Schemes (FDS) derived from the underlying Partial Differential
Equations (PDE).

We begin by describing a modified waveguide formulation in-
volving interleaved waveguides. Using this method we are then
able to describe a model for a vibrating bar, and extend this to in-
clude 2D models of vibrating plates. We then proceed to discuss
how we may introduce frequency dependent damping models. We
show how we may include some rudimentary damping, and how
we may introduce additional dispersion to 1D waveguide models.

1.1. Interleaved Waveguides

The theory of interleaved waveguides was first introduced in [4]
as an alternative waveguide model for the standard 1D wave equa-
tion and we summarise its construction here. Using an interleaved
waveguide gives us access to two sets of wave variables; in the
original formulation the two variables were voltage U and current
I . The interleaved waveguide structure is shown in Figure 1. Each
unit of delay has been split into two half-unit delay lines with a
sign inversion, and a series junction had thus been inserted. The
wave variables are related as follows. If we denote a left-going
wave by superscripting with a (+) and a right going wave with a (-)
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Figure 1: Interleaved Waveguide.

then

U+ = ZI+

U� = �ZI�;
where Z is the waveguide impedance, with admittance Y = 1=Z.
This is analogous to the relationship between force and velocity
waves. Furthermore, in an interleaved delay line, the incoming
waves to a scattering junction j can be expressed as the outgoing
waves at neighbouring junctions for current-like waves,

I+0;j(n) = �I�1;j+ 1
2

(n� 1

2
);

I�1;j(n) = �I�
0;j� 1

2

(n� 1

2
);

and for voltage-like waves,

U+
0;j(n) = U�

1;j+ 1
2

(n� 1

2
);

U�1;j(n) = U�
0;j� 1

2

(n� 1

2
):

That is current-like waves travel with a sign inversion. Thus we
inter-change between current and voltage waves each half time
step (and each half spatial step). It has been shown in [4] that
this alternate waveguide structure, which gives us access to two
sorts of wave variable via the interconnection of series and parallel
junctions, is equivalent to a FDS for the decoupled wave equation,
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This technique of decoupling equations to give access to two sorts
of variable is vital to the development of coupled waveguide net-
works for the more difficult 4th order PDE representing motion in
an an ideal bar.

2. A MODEL FOR AN IDEAL VIBRATING BAR

In this section we briefly review the work presented in [5] which
described a model for an ideal bar using the interleaved waveg-
uides described above. The method was first introduced in [4]. We
are now also able to present a slightly more detailed analysis of the
performance of the model.
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2.1. The Euler-Bernoulli Equation for the Ideal Bar

The Euler-Bernoulli equation for transverse displacement u(x; t)
of a stiff bar is

@2u

@t2
= �EI

�A

@4u

@x4
; (1)

where � is the materials density, E its Young’s Modulus, A is the
bar’s cross-sectional area, and I , the moment of gyration about
the beams perpendicular axis [6]. We consider harmonic travel-
ling wave solutions of the form u = Cei(kx�wt), where w is the
frequency of the harmonic wave travelling at speed c = w=k. By
substituting this solution into equation (1) we are able to calculate
the frequency dependent wave speed

c(w) =

�
EI

�A

� 1
4 p

w:

Thus the presence of only bending stiffness as a restoring force
causes the wave speed to increase with frequency (from zero) as
shown in the left hand plot of Figure 2, much unlike the case of an
ideal string where all waves travel with the same speed. There are
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Figure 2: (a)-Frequency Dependent Wave Speed for an Ideal Bar.
(b)-Dispersion in Bar Model

three types of boundary condition for a finite bar resulting from
three different types of termination, free, supported (hinged) or
clamped. Application of the the simplest of these, simply sup-
ported, results in the following sequence of resonant modes (in
Hz)

fn =
�

2L2

s
EI

�A
n2; (2)

where L is the length of the bar.

2.2. Digital Waveguide Model For A Stiff Bar

The digital waveguide model for the stiff bar is realised by consid-
ering the de-coupled version of equation (1),
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:

Here, v = @w
@t

is the beam’s transverse velocity, while m may be
interpreted as a bending moment. By applying centred differences
to these equations we arrive at the following difference scheme,
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�EI [Vi+1(n) � 2Vi(n) + Vi�1(n)] ; (3)

where we define � = T
�2 for time step T = 1

fs
and spatial step

�, and where fs is the sample rate of the simulation. The disper-
sion of such a scheme may be easily computed [7] and is shown

Mode Theoretical Modelled Error
f1 11:56 11:5 0:06
f2 46:26 45:5 0:70
f3 104:09 103:0 1:09
f4 185:05 182:5 2:55
f5 289:14 284:5 4:64
f6 416:37 408:5 7:87
f7 566:72 554:0 12:72

Table 1: Comparing measured and real resonant modes (in Hz)
for bar model.

in the right hand plot of Figure 2 to compare favourably to the de-
sired dispersion. The digital waveguide model is constructed by
coupling two interleaved waveguides and is summarised in Fig-
ure 3. By placing each waveguide one spatial position out of sync
with eachother we enable access to each of the wave variables V
(a voltage-like variable) and M (a current-like variable) at each
spatial position. The coupling is performed using two waveguide
connections, each carrying a sign inversion. The details of the
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Figure 3: Digital Waveguide Bar.

derivation of the equivalence of this waveguide structure with the
FDS of equation (3) can be found in [4] [5] and we omit them
here due to space constraints. To summarise the equivalence we
state that we must set the total junction impedance at a series M
junction to

ZJ = 4Z =
2

EI�
;

and the total junction admittance at a parallel V junction to

YJ = 4Y =
2�A

�
:

This equations may be solved by setting Y =
p
�AEI, with Z =

1=Y and setting

� =
1

2

r
�A

EI
:

2.3. Simulation Example

We now present the results of a simulation of a bar of length 1m,
with a square cross section of height 0:005m. We chose to model
steel bar whose material parameters areE = 1:4�1012N=m2 and
� = 53800kg=m3 . With the sample rate set at fs = 44100Hz the
resultant model employs a spatial step size of approximately � =
1=55m. Shown in Table 1 are the results of the simulation showing
a reasonable level of accuracy when compared to the desired mode
positions as calculated using equation (2).
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3. A 2D STIFF PLATE MODEL

In this section we formulate a straightforward extension of the
waveguide bar model into 2D. We begin by describing in part the
theory behind the vibratory motion of a stiff plate. The complete
theory is quite complex; each edge of a rectangular plate, for ex-
ample, can have any of three boundary conditions (free, clamped,
and simply supported), resulting in 27 different combinations, with
each leading to a different set of vibrational modes [6]. In this pa-
per we only describe a simply supported rectangular plate, and
note that the difficulties expressed above in finding an analyti-
cal solution in 2D plate dynamics suggests an accurate modelling
technique would be extremly useful.

3.1. The Stiff Plate Equations

Denoting transverse displacement by u(x; y; t), the equation of
motion for a vibrating plate is

@2u

@t2
+

Eh2

12�(1 � �2)
r4u = 0; (4)

where h is the plate thickness, � is the density, E is Young’s Mod-
ulus, � is Poisson’s ratio and r4 represents

r4 =
@4

@x4
+ 2
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+

@4
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in cartesian coordinates. Writing u(x; y; t) = U(x; y)eiwt yields
the time reduced equation

(r2 � k2)(r2 + k2)U = 0;

where k2 =
q

12�(1��2)

Eh2
w. Note, that we are now dealing with

the 2D frequency vector w = (wx; wy)
t. The frequency depen-

dent speed of wave propagation can thus be calculted as

c(w)2 =

s
Eh2

12�(1 � �2)
jwj: (5)

A contour plot of the true dispersion characteristics of the ideal
plate are shown in Figure 4.
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Figure 4: Dispersion for 2D plate.

As was mentioned above, the variety of possible boundary
conditions, together with the complexity of the system, means that
complete analytical solutions are either time-consuming, or diffi-
cult to achieve. Thus for this study we consider only a simply sup-
ported rectangular plate of length a and width b, who’s resonant
modes may be calcluated from

fmn =
�

2

s
Eh2

12�(1 � �2)

��n
a

�2
+
�m
b

�2�
: (6)

It is important to note that we may also deduce the modes of an
simply supported ideal bar from this by setting � = 0 and n = 0,
thus neglecting twisting moments and the contribution from the
second dimension.

3.2. Finite Difference Schemes for the Stiff Plate Equation

A digital waveguide mesh model which is entirely equivalent to a
stable FDS for the 2D plate equation can be derived in an analo-
gous fashion to the 1D case for an ideal bar. A centred FDS for
equation (4) is achieved by applying finite differences over a reg-
ular square grid to the decoupled equation
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= Eh2r2v; (7)

for velocity waves v = @u
@t

. It should be clear that this decoupled
equation is also ideally suited when dealing with cases where the
material parameters may vary spatially (as in the case with wood).
The resultant FDS for the discrete variables V and M is as follows,
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where � = T
�2 and 1

l
= 1

12�(1��2)
, c = Eh2. By expressing the

FDS in this form it is clear that, as was the case with the waveguide
bar model, any plate model must be comprised of two coupled
waveguide meshes. We shall describe such a construction later,
but first, let us consider the dispersion properties of the above FDS.
The spectral amplification factor [7], G(w), may be calculated by
solving the following quadratic

G(w)2 + (B � 2)G(w) + 1 = 0;

where for a square mesh geometry

B =
Eh2

12�(1 � �2)
�2
�
2 cos(2wx) + 2 cos(2wy)

�16 cos(wx)� 16 cos(wy)

+4 cos(wx +wy) + 4 cos(wx � wy) + 20
�
: (9)

The resultant amplification factor is always complex and the dis-
persion is calculated by normalising it’s argument and shown as
a contour plot in Figure 5. Note the directional (as well as fre-
quency) dependence of the dispersion. Wave speeds in the diag-
onal direction seem consistent with the desired wave speed indi-
cated in Figure 4, but performance in the axial directions is poor.
This is analogous to the case of a regular 2D mesh modelling the
non-stiff 2D wave equation. Thus it seems reasonable to assume
that using a triangular mesh geometry will yield a FDS with di-
rection independent dispersion. Such a FDS can quite easily be
derived, and it’s dispersion can be calculated using

B =
Eh2

12�(1 � �2)
�2

4

9
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1

2
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p
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2
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p
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+2 cos(2wx) + 2 cos(wx +
p
3wy) + 2 cos(wx �

p
3wy)

�
: (10)
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in place of equation (9). The desired improvements to the dispe-
rion characteristics are quite clearly evident in Figure 6.
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Figure 5: Dispersion in 2D plate model using square mesh.
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Figure 6: Dispersion in 2D plate model using triangular mesh.

3.3. 2D Waveguide Plate Model

As was discussed in the previous section, we now describe the
construction of a waveguide model which is equivalent to the FDS
of equation (8) by coupling two waveguide meshes. One mesh
will carry the wave variable V , while the other carries the variable
M . The model is constructed using two interleaved waveguide
grids, coupled together at alternate wave variable junctions using
four waveguides, each carrying a sign inversion. It should be noted
that a waveguide mesh model for the more detailed Mindlin plate
theory has also be derived in [4]. This is a direct extension of the
1D technique. Again, we choose not to include the details of the
equivalence and summarise the results as follows.

It can be shown, by application of the relationships of Sec-
tion 1.1, that the coupled waveguide mesh plate model is equiva-
lent to the required FDS by setting the total junction impedance at
a series M junction to

ZJ = 8Z =
2

Eh2�
;

and the total junction admittance at a parallel V junction to

YJ = 8Y =
12�(1 � �2)

2�
:

This equations may be solved by setting Y =
p
12Eh2�(1� �2),

with Z = 1=Y and setting

� =
1

4

s
12�(1 � �2)

Eh2
:

3.4. Simulation Example

We carried out a simulation for a square steel plate of length a =
0:5m, with thickness h = 0:005m, E = 1:4 � 1012N=m2,
� = 53800kg=m3 and � = 0:3. The resulting spatial step size
was � = 0:01323m, giving a mesh of size 38 � 38 nodes. The
results of the simulation are summarised in Table 2 where the ex-
pected mode frequencies were calculated using equation (6). The
results appear to be reasonably good, particularly the tuning of the
fundamental, and the subsequent errors seem consistent with the
dispersion error observed in Figure 5.

Mode Theoretical Modelled Error
f11 96:9932 97 0:0068

f12 = f21 242:4831 241 1:4831
f22 387:9729 383 4:9729

f13 = f31 484:9662 479 5:9662
f23 = f32 630:4560 623 7:456
f14 = f41 824:4425 809 15:4425

f33 872:9391 861 11:9391

Table 2: Comparing measured and real resonant modes (in Hz)
for plate model.

4. INCLUDING FREQUENCY DEPENDENT DAMPING

We have shown how it is possible to design waveguide models
which include bending stiffness. We have thus been able to in-
troduce some material specific parameters. Another aspect which
dictates the quality of the sound of a particular material is damping,
which is typically frequency dependent. In this section we discuss
how it could be possible to introduce damping to waveguide mod-
els by placing the resonator on some visco-elastic foundation de-
signed to match the visco-elastic response of a given material [8].
This idea was initially suggested and demonstrated in [9], and we
wish to derive a waveguide formulation of those ideas.

4.1. Modelling a String on a Visco-elastic Foundation

Consider the simplest case of a string placed on a viscoelastic
foundation comprised of a spring and dash-pot in parallel. The
equation of motion of such as system is

F
@2u

@x2
�Gu� g

@u

@t
= �

@2u

@t2
; (11)

where F is string tension, � it’s density, G is spring stiffness and g
is the viscosity coefficient. This has been used as an approximate
damping term in [10]

We use centred differences to directly derive a FDS for equa-
tion (11) with the discrete variable Uj(n).

Uj(n+ 1)� 2Uj(n) + Uj(n� 1) =

F

�

T 2

�2

�
Uj+1(n)� 2Uj(n) + Uj�1(n)

�
�T 2G

�
Uj(n)� T

g

�

�
Uj(n) � Uj(n� 1)

�
: (12)

Shown in Figure 7 is a waveguide model for the viscoelastic string.
It is constructed from an ordinary waveguide string model by in-
cluding a self-loop with sign inversion (attached with impedance
Rs), and a hole (of impedance Rd), to each junction. The structure
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can be shown to be equivalent to the FDS above by choosing the
following junction impedances,

Rs =
2GT 2

4�� 2gT �GT 2
; Rd =

4gT

4�� 2gT �GT 2
:

with spatial step calculated from

� = T

s
4F

4�� 2gT �GT 2
:

Note how in the absence of the visco-elastic foundation we would
have Rs = Rd = 0, with � = T

p
F=�, and the model would

reduce to that of a standard waveguide string.

RdRdRd

RsRsRs

�1�1�1

Uj Uj+1Uj�1

Figure 7: Viscoelastic Waveguide.

4.2. Simulation Examples

For a simulation example we consider a model for a string on an
elastic foundation. The presence of an elastic foundation of stiff-
ness G introduces dispersion such that the frequency and wave
number are related by

w2 = c2
�
k2 +

G

F

�
; (13)

where c =
p
F=�. From this we may predict the fundamental

frequency for a string of length L as

f1 =
c

2�

���
L

�2
+
G

F

� 1
2

: (14)

Note that putting G = 0 in both equations (13) and (14) returns to
the case of an ideal string. Thus we conclude that foundation stiff-
ness causes an increase in the fundamental. Furthurmore equation
(13) shows us that initial resonances will be spaced quite close to-
gether, but that as frequency increases the spacing between partials
will approach a limiting value, giving a harmonic series. This is
demonstrated using our model in Figure 8. One curve shows the
spectral output of a regular waveguide string, the other a string
on an elastic foundation. We observe an increased fundamental
in the latter case and a spread of frequencies which approaches
that of the ideal string for higher frequencies. Furthermore Table 3
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Figure 8: Comparison of a string with a string on an elastic foun-
dation.

shows how the model accurately represents the increased funda-
mental frequency.

Stiffness G Model Frequency Theoretical Frequency
0 96 96:1769
102 96 96:2427
103 97 96:8331
104 103 102:5501
105 148 148:0377

Table 3: Comparing measured and real fundamental frequencies
for a String on an Elastic Foundation

5. CONCLUSIONS AND FUTURE WORK

This paper has discussed approaches to introducing increased re-
alism into digital waveguide models. We have introduced models
which include bending stiffness for simulations of bars and plates.
Furthermore we have intoduced a model for a string on a visco-
elastic foundation as a pre-curser to research into waveguide mod-
els including material specific frequency-dependent damping.

The opportunities for future work in this area are quite vast.
The models of Sections 2 and 3 should be extended to cover stiff
strings and membranes. Also the models could cope with mate-
rials exhibiting direction-dependent parameters such as wood. In
Section 4 it should be possible to extend the ideas to include more
compicated viscoelastic foundations, as suggested in [9]. Finally
these techniques could be incorporated with the mesh interfacing
technique described in [1] and [3] so that very realistic models of
complete musical instruments could be achieved.
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