
Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-1

SOUND PROCESSING WITH THE SndObj LIBRARY: AN
OVERVIEW

Victor Lazzarini

Music Technology Laboratory
Music Department

National University of Ireland, Maynooth
Maynooth Co. Kildare

Ireland
e-mail: Victor.Lazzarini@may.ie

ABSTRACT

This paper presents an overview of the sound processing
applications of the Sound Object (SndObj) Library version 2.0.
The SndObj library is an object-oriented sound synthesis and
processing programming library. It is designed for the
development of music applications, as well as research and
implementation of DSP algorithms. The paper includes a brief but
comprehensive description of the library class trees. It also
presents the new features and changes introduced in the latest
version of the library. A discussion of sound processing and
synthesis programs, including some code examples, completes
this article.

1. THE LIBRARY

The SndObj Library is a C++ object-oriented library. It was
developed to assist the development of audio synthesis and
processing software on general-purpose computers [3][5]. It
comprises a series of signal processing and control classes which
can be used in a number of signal processing applications. The
library can be employed directly in music software applications,
as a toolkit [7] or serve as a framework for the development and
implementation of new sound processing algorithms. It has been
developed with a great number of applications in mind, from the
implementation of text-based or sound processing systems to
DSP research and development.

The SndObj library has three important characteristics. The first
one is encapsulation: the library classes encapsulate all the
processes involved with production, control, manipulation,
storage and performance of audio data. The second is modularity:
processing objects can be freely associated, as if they were
modules in an analogue synthesizer, or unit generators in a
computer music system, as described in [2] and [6], each one
performing specific functions. The final characteristic is
portability: the core of the code is portable to any platform,
requiring simply a (POSIX compliant) C++ compiler. The library
also allows for machine-dependent specialization when
necessary; for example, the realtime IO classes, dealing with
specific DAC/ADC, are platform-specific.

Parts of this project have been developed on a number of
different platforms, Sun Sparc under Solaris, IBM RISC 2000
under AIX, SGI O2 under IRIX, as well as on Intel PC under
Linux and Windows (under Cygwin/Gnu g++). At the moment,

the latest (beta) versions of the library have been released for
Windows, Linux and IRIX operating system. The latest version
of the library, discussed in this article, is licensed under the GNU
Public License and it is available for download from
http://www.may.ie/music/musictec.

2. CLASS HIERARCHY

The SndObj library v.2.0 is based on four base classes: SndObj,
SndIO, Table and SndThread. The first three are basic models for
types of objects involved directly in sound processing tasks,
respectively: signal processing, signal input/output and
mathematical function-tables. The fourth base class is a new
addition to the library, introduced in its latest version. This class
tree, for which only one class has been developed so far, is
designed to supply thread (and in the future, process)
management to the library.

2.1. SndObj classes

Objects of the SndObj class share some basic properties, such as
the sampling rate, output vector size, an output buffer (for the
processed signal), a SndObj input object (which provides the
signal to be processed) and an on/off switch, as shown in fig. 1:

Figure 1. The model for a SndObj object

These objects will also share methods for the basic operations,
such as addition, subtraction and multiplication (new on version
2.0), as well methods for setting and retrieving their basic
attributes. These include a method for retrieving samples from the
output buffer, which plays a very important part in the
connectivity of the objects.

The SndObj classes also include a main processing method,
DoProcess(), which is overridable. This is coded differently
on each derived class, according to the processing algorithm
implemented by the class. Typically, this method will access the

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-2

output signal from an input object and perform its processing,
which will eventually fill the output buffer. For instance, the
SndObj base class copies the signal from an input object to the
output buffer. This is not in itself a very interesting operation and
objects of the SndObj class will seldom be used (although there
are some situations where they can be useful). Nevertheless, the
importance of the SndObj class is that it provides a working
mechanism for its derived classes.

Since objects of these classes will typically process a vector_size
group of samples each time they are called, their DoProcess()
methods are usually placed on a loop of some sort. Earlier
versions of the library implemented the output on a single-sample
basis. This permitted some useful tricks, such as multiple
sampling rates for control purposes, etc., as well as a more simpler
implementation of the processing methods. Nevertheless, as the
use of a vectorial processing is usually more efficient, this was
modified in the latest version of the library. As it turns out, the
processing method implemented permits the use of dual sampling
rates (i.e. audio and control), which is usually sufficient if extra
performance is needed.

Figure 2. The SndObj class tree.

Input signals to SndObj objects, as hinted before, are obtained
from input objects. Details of implementations are beyond the
scope of this paper, but can be found in the documentation
(available online at the download site) and in [3]. The base class
contains one such input, which is the signal to be modified. Some
of the derived classes will not use signal from an input object, as
in the case of certain signal generators. Others will implement
more than one signal input (used for controlling parameters such
as a variable frequency or delaytime input). There is freedom
within the framework for any number of inputs. For a very large,
or an unspecified, number of inputs, classes will usually
implement these as linked lists of objects (the Mixer class is a
typical example of this). Processing parameters can also be
controlled by constant values (as opposed to signal vectors), using

the Set..() methods provided by the different classes. Fig. 2
shows the SndObj class tree.

2.2. SndIO classes

Objects of the SndIO class tree (fig. 3) are designed to deal with
input and output of audio. They implement five basic tasks:
standard IO (stdin/stdout/stderr), soundfile IO, digital-to-analog /
analog-to-digital converter IO, buffer memory (RAM) IO and
Musical Instrument Digital Interface (MIDI) input. Other types of
IO can also be implemented under this tree (such as network
streams, screen graphics output, gesture control input, etc.).

The SndIO base class implements a very simple standard IO. As
with SndObj, the importance of this class is that it sets the basic
mechanism for input/output. The most important methods of this
class are the overridable Read() and Write() functions.
These, as their names suggest, perform the reading and writing
tasks associated with IO operations. As in the classes of the
SndObj tree, the derived classes of SndIO will implement these
methods according to what operations they are supposed to
perform. These methods also operate on the same vectorial basis
as the SndObj processing functions, so they should also be placed
accordingly on a loop. Because of the nature of their operation,
certain classes, like the realtime audio ones, will also implement
other secondary software and hardware buffers (as well as the
ones used for the output vectors), depending on the platform.

Figure 3 The SndIO class tree

The SndIO classes connect with SndObj classes in two ways: they
can receive input from SndObj objects (which will be sent to
whatever output they implement) and they can send their signal to
special SndObj classes (such as SndIn, MidiIn and Bend) which
can then be used in the processing chain. There are also two
operators (<< and >>) defined within SndObj which can be used
to receive and send audio signals from/to SndIO objects.

As expected, some SndIO classes are platform dependent, which
is the case of SndRTIO and SndMidi/SndMidiIn. These classes
are implemented on three platforms only (Linux/OSS, SGI (Irix)
and Windows/MME) and are the exception on what is otherwise
a fully cross-platform library. The SndRTIO class is now the sole
realtime audio class in the latest version of the library, taking the
place of SndOssRTI/O, SndSgiRTI/O and SndWinRTI/O. These
classes were all consolidated in one, resulting in a more easily
portable code. There are still some minor differences in the
syntax of the declarations for these classes on the three platforms,
but in general programs can be written which can largely ignore
the differences.

Other changes introduced in version 2.0 include the consolidation
of separate input and output classes into a single class and a
rationalization of the class tree. All base classes were transformed

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-3

into instantiable ones, which eliminated a number of intermediate
abstract classes. There was also a (well overdue) revision of the
code, especially of the soundfile classes, which increased the
efficiency and performance of objects.

2.3. Table classes

The classes found in the Table class tree are basically designed to
generate utility objects for use in the sound processing
algorithms. Obvious examples of mathematical function tables
are found on table-lookup oscillators and other similar
algorithms. These classes implement a series of useful tabulated
functions, from harmonic ones (HarmTable) to generalised
windows (HammingTable) and conversion tables (NoteTable).
There are also tables which can hold audio signals (SndTable) for
sampling and other similar applications.

2.4. The SndThread class

The SndThread class (new in version 2.0) has been developed to
implement some experimental thread-management tasks. This
class encapsulates the main processing loop as a separate POSIX
pthread [1]. Typically, applications implemented with this class
will instantiate objects of SndObj, SndIO and Table classes, and
one (or more) object(s) of the SndThread class. The processing
objects will then be passed to the SndThread class which will
then control the synthesis/processing operations.

The SndThread class has three basic attributes: two lists of SndIO
objects (for input and output, respectively) and a list of SndObj
objects. Methods are provided for adding (to the top of the list),
inserting (to any position in the list) and deleting objects (from
the list). At the moment, this class does not implement any
sorting algorithm to position objects in the right order for
processing, as it is expected that the application using SndThread
objects will take care of this task. A means of sorting objects will
probably feature in later versions.

The processing control implemented by SndThread is very
straightforward. The methods ProcOn() and ProcOff are
used to switch the processing thread on/off. Since it runs on a
secondary thread, control is always returned to the calling main
program. The example below shows how a typical SndThread-
based application works:

// SndObj (or derived) objects instantiated
SndObj obj1(…);
SndObj obj2(…);

// ibid. SndIO
SndIO input(…);
SndIO output(…);

// ibid. SndThread
SndThread process;

// Add the objects to the thread
process.AddObj(&obj1);
process.AddObj(&obj2);
process.AddObj(&input, SNDIO_INPUT);
process.AddObj(&output, SNDIO_OUTPUT);

// Start the processing
process.ProcOn();

(…)

// Finish the processing
process.ProcOff();

Parallel processing can be implemented with the use of more than
one thread class and synchronization can be achieved by the use
of SndBuffer objects. As this is an experimental class, it is
expected that more complex types of synchronization will be
implemented, as well as a more powerful parallel processing
support.

3. APPLICATIONS

The SndObj library is distributed with a number of examples of
sound processing applications, as well as templates for the
development of new classes. These programs are designed to
present in a simple way the use of SndObj objects in signal
processing and they do not include any GUI code which could
obscure the examples given. This section will discuss this
applications in more detail. A number of useful graphical
applications have also been developed with the library, in
conjunction with a commercial application framework for the
Windows platform. Some of these applications are also available
for download at the site mentioned in the first section. An
example of this type of programs is presented later in this paper.

3.1. A signal processing example: cvoc

The cvoc program implements a simple filter-based vocoder,
based on Butterworth filters. It analyses a signal with any number
of filters, extracting its spectral envelope, which is then applied to
a second signal, using the same number of parallel bands. The
signal flowchart for one of the analysis-synhesis pair that makes
up a band is shown on fig.4. The program allocates any number of
these objects, according to the user’s specifications.

Figure 4 An analysis band of cvoc

This application presents a working example of soundfile
input/output, filter, balance and mixer objects. It also shows how
connections between objects are effected. For instance, one of the
soundfile inputs is performed by a SndWave object called
*input1; a SndIn object receives this input, making it available
to SndObj objects. It passes this signal to all of the analysis filters
(which are declared in an array). This, as well as the setting of the
filter parameters, is shown in the C++ code fragment below
(nfltrs is the number of bands used):

SndIn sound1(input1, 1); // audio input ButtBP*
Infilters = new ButtBP[nfltrs];
(…)
for(int i=0;i<nfltrs; i++){
Infilters[i].SetFreq(fr[i]);

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-4

Infilters[i].SetBW(fr[i]/Q);
Infilters[i].SetInput(&sound1);
(…)
}

From this code, the connection mechanism used in the library is
clear. Pointers to input objects are used as a way of setting the
signal chain. Similar code is used to set the other filter, balance,
etc. objects. The processing part of the code is implemented by
placing calls to the DoProcess() (and Read()/Write())
methods of the objects being used.

3.2. MIDI control

Some of the examples are provided to introduce the
implementation of MIDI control by the library. This is the case of
midisynth and pluck programs, monophonic MIDI-controlled
synthesis applications. The former is a variation on the risset
program, which is explored in detail on [3]; in this paper we will
be discussing aspects of the latter. Pluck is a Karplus-Strong-
based plucked-string synthesizer, implemented using an object of
the Pluck class. The frequency of the plucked tone is controlled
by the MIDI note number and pitchbend value, as shown in fig.
5. MIDI input is performed by a SndMidiIn object (named
midi). It listens to all channel messages and makes them
available at its output. A MidiIn (note) object is used to parse
NOTE messages and output note numbers. Objects of this class
can be set to parse any channel messages. Its output is used by a
table-lookup (conversion) object which converts the note
numbers into equal-tempered frequency values (using a
NoteTable conversion table, ptable). A Bend object (pitch),
also connected to the SndMidiIn object, is used to ‘bend’ these
frequency values up or down in an specified range (2 semitones).

Figure 5. MIDI control of frequency in pluck

SndMidiIn* midi = new SndMidiIn(port, 10); MidiIn*
note = new MidiIn(midi);
Lookup* conversion = new Lookup(&ptable, 0,
note);
Bend* pitch = new Bend(conversion, midi, 2);

The signal out of the Bend object is then used to control the
frequency of a Pluck. This outputs a full-amplitude signal which
is then attenuated by a Gain object. This object will be controlled
by the MIDI velocity value detected by midi.

Pluck* pluck = new Pluck(0.f, 32767.f, res,
pitch);
Gain* gain = new Gain(-90.f, pluck);

The processing loop is implemented as before, except that,
because of the need to detect MIDI notes and velocities, some
extra code elements will have to be included in it. The first is to
detect whether a note has been switched off (cur_note is the
current note number):

if(cur_note == midi->NoteOff())
 gain->SetGain(-90.f);

It is also necessary to detect a new note, re-initialise the pluck
algorithm (so that a new onset is generated) and set the amplitude
to correspond (more or less) to the note velocity.

if(midi->NoteOn() != -1){
cur_note = midi->LastNote();
pluck->RePluck();
gain->SetGain(midi->Velocity(cur_note) -
127.f);
}

Both midisynth and pluck send output to a DAC device. This is,
together with the MIDI functionality, implemented differently on
the three realtime platforms (Linux/OSS, Irix, Windows).
Nevertheless, The interface for these objects is very similar,
except for a few minor parameters. For instance, the MIDI ‘port’
on Windows is an integer identifier, whereas on the SGI and
Linux, it is a name string relative to the device to be open.
Similar differences are found on the SndRTIO class declarations.
These differences can be avoided by using the default values for
these parameters which hide the different types. It is also
important to note that these classes are not available on other
operating systems (but the rest of the library is).

3.3. Graphical applications

The easy integration with GUI frameworks such as V and MFC,
in the application development process is also an interesting
feature of the SndObj library. Along with the development of
library, several test programs were implemented using different
graphical frameworks. It was discovered that these provide an
easier means of implementing SndObj-based GUI programs than
the use of scripting languages such as Tcl/Tk. One of the reasons
is the uniformity of programming style that is obtained by
keeping the code in C++. Nevertheless, certain aspects of Tcl/Tk
might prove to be useful for the implementation of some
applications, such as a sound processing system based on this
library.

An example of the integration with C++ application frameworks
is found in the implementation of GUI-based computer
instruments (see definition in [2] and [6]). One of these was
created for the piece ‘The Trane Thing’, composed by this author,
for saxophone and computer. This software was implemented on
the Windows platform, with the help of a commercial C++
application framework, MFC. Designed as a single-window
‘dialog’ application, it uses elements and concepts from the MFC
application models. Nevertheless, its development process was
much more based on a perversion of than compliance with these
models.

The instrument involves two main types of process: string
resonators (based on the SndObj StringFlt class) and sampling of
live material (based on SndLoop). Graphic controls are provided
for switching the whole, or parts, of the instrument on/off, as well

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-01), Limerick, Ireland, December 6-8, 2001

 DAFX-5

as for adjusting parameters and triggering actions during
performance. The program also implements the main processing
as a separate thread, so that the graphic interface can be operated
interactively. The thread control mechanism is provided by the
MFC CwinThread class. A detailed discussion of the
implementation of this computer instrument can be found on [4].

The dependence on the MFC library makes programs such as this
one non-portable. For this reason, steps are being taken towards
the development of application, process and thread control
facilities within the SndObj library. The introduction of the
SndThread class (and the development of derived classes from it)
should provide the means for developing cross-platform graphic
applications, possibly using portable GUI frameworks (such as
V).

4. FUTURE PROSPECTS

Future prospects include the support for different types of gesture
control and new processing classes, including spectral data
manipulation. Also, more composition applications, such as the
one mentioned above, are being developed. Finally, the library is
being considered to provide the main engine for the
implementation of a distributed audio processing system. This
system will be based on the Beowulf platform [8], which consists
of the Linux operating system and one of the available
communications libraries/systems, such as MPI (Message Passing
Interface) and PVM (Parallel Virtual Machine). It will be possibly
portable to other computer platforms (including SMP machines).
A scalable design will be employed, so that the system can make
the most of the computing resources available on a particular
platform. This project will involve two main elements: the
addition of inter-process communication capabilities to the
SndObj library; and the development of a multi-processor audio
engine. The main aim of this research is to provide an affordable
supercomputing facility for sound processing and synthesis.

5. REFERENCES

[1] Bradford, N, Buttlar, D and Farrell, JP, Pthreads
Programming: a POSIX standard for better programming,
Sebastopol, CA: O’Reilly Publ., 1996.

[2] Dodge, C and Jerse, T, Computer Music: Synthesis,
Composition and Performance, New York: Schirmer Books,
1985.

[3] Lazzarini, V,“The Sound Object Library”, Organised Sound
5 (1), Cambridge: Cambridge Univ. Press., 2000, pp 35-49.

[4] Lazzarini, V, “Some Applications of the Sound Object
Library”. Proceedings of the VII Brazilian Computer Music
Symposium. Curitiba: Editora da PUCPr, 2000, 152 and CD-
ROM.

[5] Lazzarini, V and Accorsi, F, "Designing a Sound Object
Library". Proceedings of the V Brazilian Computer Music
Symposium. Belo Horizonte: Editora da UFMG, 1998, pp.
95-103.

[6] Moore, FR, Elements of Computer Music, Englewood Cliffs:
Prentice-Hall, 1990.

[7] Pope, ST, "Machine Tongues XI: Object-Oriented software
design". In: ST Pope(ed.), The Well-Tempered Object,
Cambridge, Mass.: MIT Press, 1991.

Sterling, TL, Salmon, J, Becker, CJ and Savarese, DF, How to
Build a Beowulf: A guide to the Implementation and
Application of PC Clusters, Cambridge, MS.: MIT Press,
1999

	THE LIBRARY
	CLASS HIERARCHY
	SndObj classes
	SndIO classes
	Table classes
	The SndThread class

	APPLICATIONS
	A signal processing example: cvoc
	MIDI control
	Graphical applications

	FUTURE PROSPECTS
	REFERENCES

