
 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-1

PARADIGMS FOR THE HIGH-LEVEL MUSICAL CONTROL OF
DIGITAL SIGNAL PROCESSING

Marco Stroppa

Hochschule für Musik und Darstellende Kunst
Stuttgart, Germany

stroppa@mh-stuttgart.de

ABSTRACT

No matter how complex DSP algorithms are and how rich
sonic processes they produce, the issue of their control
immediately arises when they are used by musicians,
independently on their knowledge of the underlying mathematics
or their degree of famili arity with the design of digital
instruments. This text will analyze the problem of the control of
DSP modules from a compositional standpoint. An
implementation of some paradigms in a Lisp-based environment
(omChroma) will also be concisely discussed.

1. LACK OF GENERALIZED ABSTRACTIONS

Although many ways of producing sonic processes by means
of computers have already been • devised and abundantly
investigated, littl e work has been done so far to search for
musically-relevant control models independent on a composer's
personal view. A basic definition of "control" is not diff icult to
find (see 1.1); however, when closely perused, it turns out to be
quite a thorny, possibly endless issue.

The recent development of gestural interfaces and of real-time
hardware has not solved the problem either, but has only
displaced it from one (textual) to another type of interface.
Moreover, for reasons of computational eff iciency the expressive
power of real-time devices is still quite poor in comparison with a
non real-time approach [1].

In addition, whoever used a computer over a period of time
long enough probably underwent the excruciating experience of
having to express identical concepts in different grammatical
flavors as new environments became available and the old ones
no longer worked. Not only is the time spent in porting the same
system onto another platform wasted from a compositional
standpoint, but it also reveals that a serious problem of
abstraction still subsists.

1.1. The issue of the musical control of DSP modules

To state it as plainly as possible, controlli ng DSP modules
means devising appropriate abstractions to deal with large
amounts of data sent to banks of sound-generating patches.

Such patches are collections of DSP modules1 whose main
function is to produce sound. A bank is a group of functionally
identical patches that differ only by their input data. In this text,
we will assume that a way to generate a patch is always available
and will concentrate on control data. We will also presuppose
that such data have a compositional purpose, that is they are
written and composed, as is a score for acoustic instruments. We
will not directly tackle real-time gestural controls or
improvisation, even though many questions are similar and the
two approaches could be combined.

When the goal of generating sound with a computer is not
only of simulating a pre-existing acoustic model, but also of
providing an "esthetic experience",2 the only person able to
express a final judgment of quality is the musician him- or
herself. This might seem a banal tautology, but it is precisely this
"incursion" of the musician's "Weltanschauung" into an
apparently technical issue that makes it arduous to solve and
enticing to investigate.

1.2. A first example

When the musical task is to produce a single, unique sound,
there are usually many equivalent solutions. For example, to
generate Jean-Claude Risset's first bell sound3 using a synthesizer
of the Music X family,4 the following implementations produce
strictly identical sounds when fed with the same data:5

a) wave-table synthesis

The control paradigm consists in one single oscill ator, whose
audio table is made of 9 very high harmonics (scalers: 56, 92,
119, 170, 200, 274, 300, 376, 407) of a sub-audio fundamental
frequency (4 Hz) with different relative amplitudes (0.36, 0.36, 1,

1 In whatever environment and sound-generating paradigm one might
think of. For instance, a subtractive synthesis patch is a collection of
filters (and probably of other modules as well), a patch using physical
modeling might be seen as a collection of connected vibrating units, and
so on.
2 Which embodies a certain compositional idea, apart from whether it is
judged as being "good" or not by the community of listeners. This
statement ought to be further argued and is used here only to highlight the
importance of taking into account the musician's perspective when
delving into the issue of sound control.
3 Catalogue's n. 430, three successive approximations of a bell sound [2].
4 Such as Csound, Music V, Common Lisp Music, SuperColl ider, etc.
5 To eliminate possible differences in the maximum amplitude, the
synthesis should be floating-point and the final sounds rescaled to the
same value.

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-2

0.62, 0.55, 0.05, 0.05, 0.038, 0.05).1 It is the most eff icient and
most constraining solution: all the harmonics will have the same
duration and amplitude profile. If a vibrato needs to be applied2,
they will all vibrate at the same rate and with the same interval.
However, sounds with an arbitrary amount of harmonics can be
generated in a very straightforward way by simply changing the
parameters of the table.

b) synthesis bank in the patch

The strategy is to write a patch containing simple sine-tone
generators added together and individually controlled3. The
computation is less eff icient, but the main drawback is that the
maximum number of synthesis modules is fixed4 within the patch.
On the other hand, this patch can be easily modified to include,
for instance, separate amplitude envelopes or vibrato modules for
each harmonic or groups of harmonics, which will however still
have the same duration. This implementation is a reasonable
compromise between eff iciency and flexibilit y and is often the
only possible one when using real-time hardware5. Different
versions of this control paradigm were used by Stephen Mc
Adams and his collaborators when testing the importance of
common patterns of vibrato as a means of fusing or separating
simultaneous sound sources6 [3].

c) synthesis bank in the control data

This implementation still deals with banks, but the patch
contains only one single sine-tone oscill ator. The bank is entirely
controlled from the data: each time a new harmonic is needed, a
copy of the patch is dynamically allocated. The mechanism for
adding up all the instanciated harmonics has to be provided by
the synthesizer. In the Music X family it also comes with other
control primitives, such as temporal information (starting time
and duration of each harmonic) and an automatic time sorting of
the instructions7. This is both the least eff icient and most flexible
solution: each harmonic has an independent amplitude envelope,
duration and starting time. However, other control paradigms,
such as, for instance, grouping harmonics and giving them an
identical random amplitude8 would be quite clumsy to implement.

1 The chosen synthesizer should of course provide primiti ves
implementing this abstraction. Although not used by Risset in this specific
example, this approach is consistent with the composer's control models
and was adopted in other examples of the catalogue.
2 Via a simple modification of the patch.
3 In this case the control data will l ook like couples of values, frequency /
amplitude (i.e. 224, 0.36; 368, 0.36; etc.).
4 One can always use fewer modules, by setting, for instance, the
amplitude to 0 when a module is not needed, but this solution is rather
awkward.
5 Where the size of the patch will probably correspond to the maximum
allowed by the hardware.
6 I studied these Music-10 patches at IRCAM in 1982.
7 In this example the temporal information is only used to indicate the
total duration (see the control data in chapter 2.1).
8 A typical paradigm to be performed at the level of a patch and not of
control data.

1.3. Sonic potential

It is however very unlikely that a musician generate a
"unique" sound. Whether to improve the quality9 or to generate
several sounds sharing certain common features, she or he will
have to cope with processes of sonic development, rather than
with individual sounds. These are multitudes of sound processes
which both implement and develop10 an original "idea"11. In this
framework, therefore, a sound-generating patch must be
considered in terms of its sonic potential, [4] that is of all the
classes of the sonic material that it is able to generate, an infinite
quantity, although probably only a limited amount will satisfy the
musician's requirements.

From this perspective, the implementations above are no
longer sonically equivalent. In our carefully chosen example, they
produce the same acoustical result, but since they represent it in
different ways, they belong to distinct sonic potentials. Any given
solution to a sound-synthesis problem must therefore provide
much more than just a patch: by embodying an underlying control
paradigm and a certain way to represent it, it has to generate a
sonic potential whose characteristics will more clearly emerge
when dealing with several sounds. Seen from this standpoint, a
sonic potential already captures the idea of how sound should be
structured, controlled, represented, developed and "enjoyed12".
This is at the same time a control problem, a compositional task,
an esthetical issue and an epistemological question.

2. LACK OF GENERALIZED ABSTRACTIONS

Since the esthetical needs of a musician cannot be guessed,
every attempt at searching for a more general solution must
generate a system both as open as possible and very easy to
personalize. The musician's first task will t hen be to adapt it to his
or her own particular way of thinking about sonic potentials.

2.1. Change of representation

The environment we have been developing for almost 20 years13

addresses this issue from the perspective mentioned just above14.

9 Risset proposes three increasingly more refined versions of his bell
sound. The second and third one require a control model of type "c".
10 The "development" of a musical idea is relatively easy to observe in
instrumental music, but much more diff icult when dealing with sonic
processes. It will however not be further developed here.
11 This "idea" will correspond to the musician's concept of what sort of
sonic process to obtain and how to represent it, even if the quality of
correspondence may be poor.
12 That is what a "good" sound experience is.
13 Started as a set of Music V's PLF subroutines [5] written in Fortran at
the "Centro di Sonologia Computazionale" of the University of Padua
(1980-82), it was first extended and translated into Lelisp while I was a
student at the Media Laboratory of the Massachusetts Institute of
Technology (Chroma, 1984-86). It was then ported and largely redesigned
as a virtual synthesizer in the CLOS environment (Common Lisp's object-
oriented system [6]) at IRCAM with the cooperation of Serge Lemouton
(1995-6), and finally generalized and incorporated into Open Music [7]
still at IRCAM (1999-2000).
14 The fact that it was used for all my electronic productions in several
centers and using different software synthesizers, as well by other

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-3

It implements a control paradigm of type "c", where the control
data are sets of time-tagged instructions. The data structure looks
like a matrix, where the rows and columns set up vectors of
values for identified control parameters. In the case of Risset's
example, this will yield the structure of figure 1.

Start Time
(sec)

Duration
(sec)

Amp
(0-1)

Freq
(Hz)

0 20 0.36 224
0 20 0.36 368
0 20 1.0 476
0 20 0.62 680
0 20 0.55 800
0 20 0.05 1096
0 20 0.05 1200
0 20 0.038 1504
0 20 0.05 1628

Figure 1. Control data seen as a matrix

In this matrix, some data vary at every row (e.g. the
frequency), while others do not.

The most significant conceptual change introduced by
Chroma concerns the way this matrix is represented. Instead of
having a variable number of rows (one per instance of a patch)
with a fixed number of columns (control parameters needed by
the patch), Chroma uses matrices with a fixed number of rows
(control parameters) and a variable number of columns
(instances). In other words, Chroma "turns" the rows into
columns and vice versa (fig. 2).

E
D

0 (for all the instances)

D 20 (for all the instances)
A 1 .36 .36 1 .62 .55 .05 .05 .04 .05

Fq "look for the values in a data base"

Figure 2. A different representation of the matrix

When the matrix is read vertically, column by column, each
control instruction will be reconstructed1. Such structure, called an
"event2", is the basic control model used by Chroma. It
corresponds to an arbitrarily large bank of a single DSP patch
within a given synthesizer. It is however a much more powerful
abstraction than a simple change of representation, since the
values can be given both as literals and as functions, thus
providing both the abstraction3 and the flexibilit y needed by a
musician to implement his or her own functions.

composers at IRCAM already shows that a certain degree of generality
was achieved.
1 There are also other minor changes, such as the transformation of the
absolute temporal information (start time) into “entry delays” (ED)
relative to the global start time of the process. However, these changes do
not affect the basic model.
2 The words "matrix" and "event" are quite similar, although "event"
implies an underlying compositional model (the conceptual model of the
sonic process), while "matrix" has a more technical meaning (the control
interface) in the context of Chroma.
3 This was one of the main reasons for using Lisp, where data and
functions are easily interchangeable.

2.2. Implementation in Open Music: omChroma

Initially designed for symbolic computation, Open Music is a
computer-assisted composition software providing a complete
visual programming interface to Common Lisp/CLOS [6]. The
user drags and drops icons (any representable object), and
containers (editable panels giving access to the internal structure
of objects). The control matrix was implemented as a container. A
set of pre-defined and extensible generic functions allow the user
to send messages (data or functions) to instances of the container,
called factories, boxes with inputs and outputs (figured as small
round inlets and outlets) that are connected to the internal slots of
the object to be created (fig. 3).

Figure 3. Reconstruction of Risset’s bell sound in
omChroma

Another main advantage was that these functions could be
easily connected to the basic compositional processes (harmonic,
rhythmic, and the like) available in Open Music, independently
from the constraints of DSP controls [8].

In this matrix inlets can be either single values, li sts of values,
break-point tables or Lisp functions. The figure 3 shows the most
straightforward translation of Risset's example in omChroma. The

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-4

main control matrix is connected to the generic function
"synthesize" (see 2.4) calli ng "Csound". As with all Open Music
factories the values can be graphically displayed and manually
edited.

This implementation can be very easily abstracted into a more
general model for this kind of sonic potential (fig. 4): all the
inlets are fed with symbolic or algorithmically-computed values1.

Figure 4. Generalized model of the control matrix

1 Even if not familiar with this visual environment (and in spite of the
graphical resolution of the figure), it is not hard to see that, for instance,
the entry delays are randomly generated by repeating the call to "aleanum"
as many times as there are "frequencies" in the object, while the amplitude
envelope is chosen from a data base of Break Point Tables (BPF). BPF's
also control the duration and amplitudes of the sound (when a control
structure of type BPF is connected to an inlet of type "number" it will be
automatically sampled over the number of components), whereas the
frequencies come from a symbolic chord derived from Risset’s example.
Open Music allows for both a graphic programming style as well as
straight Lisp code. Some of the control algorithms are written directly in
Lisp for reasons of expressive eff iciency.

2.3. Banks are micro-clusters

Another important change refers to the way banks are
conceived. Psychoacoustical research and practical experience
have shown the importance of jitter and vibrato to obtain
perceptually more natural and musically more satisfactory
sounds. Therefore, not only have all the patches used so far for
our own personal work a jitter and vibrato module per
component, but this concept was further extended: each
component is actually represented as a "micro-cluster", that is as a
set of sub-components centered around the frequency contents of
the main component and not directly specified within the matrix2.
The density and frequential width of the cluster, the algorithm
used for its computation as well as its temporal profile are
parameters set by the user.

When density or width are 0, the model is a bank of type "c".
If they are small and aleatorically distributed, interesting,
constantly-changing beatings are produced around every
component (fig. 5)3. This implements a sort of interpretation
scheme: each time the score is computed, it never produces an
identical signal, but the same "sound idea". Each sound file is
hence acoustically unique. Finally, when the parameters are more
extreme, the result tends to be perceived as another compositional
material, although it may belong to the same sonic potential4.

; ADD1 0.0 10.0 1.0 6
; (GLOBAL EVENT START: ADDITIVE SYNTHESIS)

; St. Time, Dur, Amp, Fq, St Pan, Jitt Amp, Trem Amp/Fq, etc…
i11 0.75 2.25 0.09346 234.26 0.5 0.049 0.05 5.84
; 3 sub-components
i11 0.825 2.174 0.09 237.8 0.5 0.049 0.05 5.84
i11 0.901 2.098 0.09 244.52 0.5 0.049 0.05 5.84
i11 0.977 2.022 0.09 241.09 0.5 0.049 0.05 5.84

i11 0.572 2.427 0.88 492.83 0.5 0.036 0.018 4.339
; 2 sub-components
i11 0.638 2.361 0.093 480.86 0.5 0.036 0.018 4.339
i11 0.704 2.295 0.093 491.3 0.5 0.036 0.018 4.339

i11 0.394 2.605 0.83 767.78 0.5 0.033 0.049 2.64
; no sub-components

i11 0.0 1.0 0.19 262.81 0.0 0.067 0.05 2.693
; 1 sub-component
i11 0.03 0.8 0.19 267.89 0.0 0.067 0.05 2.693

i11 0.8 2.8 0.15 417.19 0.2 0.052 0.021 5.808

2 An elementary reference to this kind of model is already found in
Risset's third version of his bell -like sound : the two lower partials are
doubled and slightly mistuned and thus generate some beatings that
improve the quality of the result.
3 The figure 5 shows the beginning of a Csound score used for my piece
Traiettoria [9], where each component is surrounded by few sub-
components.
4 The beginning of the computer part of my work Traiettoria...deviata -
the first movement of Traiettoria - is a process where the amount of
"width" and "density" are progressively, albeit not linearly increased. The
delicate additi ve-synthesis and frequency-modulation sounds that start the
work develop into larger clusters in about fifty seconds.

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-5

; 12 sub-components
i11 1.042 2.8 0.15 407.57 0.2 0.052 0.021 5.808
i11 1.045 2.8 0.15 450.27 0.2 0.052 0.021 5.808
i11 1.048 2.8 0.15 455.13 0.2 0.052 0.021 5.808
i11 1.051 2.8 0.15 414.51 0.2 0.052 0.021 5.808
; etc…

Figure 5. Csound score with micro-clusters

2.4. Virtual synthesizer

Every sound-generating model requires control data whose
structure depends on the patch and on the actual synthesis engine
being used. Many controls,1 however, are conceptually the same,
independently of their implementation: a vibrato, for instance, is
just a "vibrato", no matter how it is controlled at the level of the
chosen synthesizer!

The abstraction procedures contained in omChroma provide
very eff icient tools for coping with these issues; since a matrix
knows which synthesis engine it is using, it can isolate its
peculiarities from the external controls sent to it, thus acting as a
syntactic interface. Similar data will no longer necessitate
different structures when sent to different engines: since the
matrix will automatically take care of it, the user is free to
concentrate on higher musical issues2. Algorithms for sound
control are therefore isolated from a given synthesis engine by an
intermediate layer called a virtual synthesizer, that is, a "language
to represent the specific parameters of sonic processes
independently of any given real synthesizer, synthesis engine and
computer platform".

The interpretation of the matrix data is concentrated within
the method synthesize. Depending on the target synthesizer, it
will automatically dispatch to either the appropriate score-
generation function (as with Csound) or a method talking in real
time with such engines as Max/msp or jMax via a communication
channel3. As new synthesis engines are added to the environment,
only the low-level layer providing the interface with the
synthesizer will have to be updated.

The figure 6 shows a simple application of the virtual
synthesizer. The basic material comes from an analysis of the
sound of a cymbal using Diphone's ModRes4. ModRes produced
an SDIF file loaded into the patch "fob".

The left side of the figure instanciates an event of type Chant
and passes it to "synthesize" calli ng the chant's patch number 0
(FOF bank). The right side instanciates an event of type Csound,
which receives the same analytical data. The two sounds are
strikingly similar.

This example elucidates the salient features of a virtual
synthesizer: the same data are used to run different synthesis

1 Such as amplitude envelopes, frequencies, maximum amplitudes,
vibrato, and so on and so forth.
2 Notice that the choice of this interpretation of the matrix is arbitrary; it is
made here only because it is the most practical one when dealing with the
Music X style of control. When applied to other engines, different
interpretations will eventually be necessary.
3 Currently, methods are available for Csound, Chant, and Modalys [10]
as well as for writing data in the SDIF file format.
4 Models of Resonance (see the work of the Analysis and Synthesis Team
at IRCAM, www.ircam.fr, for further details).

engines or various algorithms. In this case, an identical DSP unit
is run on two distinct engines. It would have been possible to use
the same data to control other synthesis algorithms (additive
synthesis, formantic frequency modulation, filters, etc.) within the
same synthesis engine.

Some restrictions, however, do apply, since any given engine
has some peculiarities that are not found in others, let alone
changes in the implementation or the eff iciency.5

Figure 6. Same control data dispatched to two different
synthesis engines

2.5. Further developments

Possible developments are only briefly hinted at. Among
many alternatives they include: finding classes that represent the
synthesis engine itself, and not only its control data; further
extending the independence of the control abstraction from a
synthesis model itself, that is generalizing the model of a virtual
synthesizer; implementing algorithms that link the symbolic
computation of material for instrumental music with analysis and
control data for computer-generated sounds; providing a data
base "presets" of proved importance.

5 For instance, the Csound FOF contains a built-in "octaviation" field that
is not directly accessible in Chant and ought to be implemented in a
higher control layer. Being an object of type “matrix” , it also directly
allows for different entry delays of each FOF. This would be relatively
cumbersome to implement in Chant. On the other hand, Chant allows for
several embedded layers of control, like a global “phrase envelope”
applied to a whole sequence of events, that are quite laborious to realize in
Csound.

 Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9, 2000

DAFX-6

3. EPISTEMOLOGICAL SIGNIFICANCE

We started this text by highlighting the puzzling aspects of
any system for the high-level control of sound: its exigency of
both eff iciency and generality requires a powerful and expressive
environment; its final dependence on the composer's judgment
demands both flexibilit y and easiness to personalize. These are
hard features to combine together and might explain the meager
amount of research in this domain.

We have seen that each "event" necessarily "captures" a
certain way of thinking about sound, which is related both to
some more or less implicit knowledge about sound potential and
to esthetical considerations. As a consequence, even if many tasks
still remain very technical, it is not possible to thoroughly delve
into this issue outside of a fundamental epistemological
framework, the best-suited context where to tackle this sort of
questions in their essence.

3.1. Educational responsibility

Such a framework is not easy to handle. Unfortunately, one of
the hardest tasks facing a musician when learning sound control
is the scarcity of analytical documentation available about past
works in this domain1, let alone insuff icient technical reports or
program notes. Too often is the musician forced to start once
more from scratch! This greatly contrasts with the study of other
artistic disciplines, where he or she can learn both from the
example of the masters of the past as well as from personal,
creative work.

This text has attempted to show that it is not only a matter of
building yet another environment, but mainly of addressing the
appropriate epistemological framework. The study of such a
framework, with its essential abstract quality with respect to a
given synthesis engine or model might become a precious source
of information for musicologists and musicians, something
comparable to examining a composer's sketches for instrumental
music.

The detailed analysis of the examples will probably speed up
the learning process, hence leading to the expression of more
advanced needs, which will i n turn call for more powerful
solutions, and so on. A much better understanding of the mixture
between these embedded, contrasted, sometimes opposed
intellectual tasks is therefore needed in order to come up with
more powerful solutions. It is an endeavor that requires a highly
interdisciplinary approach drawing from such diverse domains as
machine-independent visual programming, music cognition, DSP,
symbolic music writing and sound design.

The high-level musical control of sonic processes is indeed a
very multi faceted and subtle domain. Further research might
reveal radically different approaches, which will eventually lead
to the discovery of yet unsuspected ways to compose sonic
processes and to methods to link them with both instrumental
composition and processes coming from other media.

1 Or, in the rare cases where it is available, it refers most of the time to
obsolete systems , that are no longer in usage.

4. REFERENCES

[1] Stroppa, M. 2000. "Live Electronics and Live Music:
towards a Critique of Intercation", in "The Esthetics of Live
Electronics", M. Battier, ed. Harwood Academic Press.

[2] Risset, J-C. 1969. "An Introductory Catalogue of Computer
Synthesized Sounds", reprinted in "The Historical CD of
Digital Sound Synthesis", Computer Music Currents nº 13,
Wergo, Germany.

[3] Mc Adams, S. 1981. "Spectral Fusion and the creation of
auditory images", in M. Clynes, ed. Music, Mind, and Brain:
The Neuropsychology of Music. New York: Plenum.

[4] Cohen-Lévinas, D. 1993. "Entretien avec Marco Stroppa".
Les Cahiers de l'IRCAM, Nº 3, pp. 99-117.

[5] Mathews, M. 1969. "The Technology of Computer Music".
MIT Press.

[6] Steele, G.L. 1990. "Common Lisp The Language", 2nd
Edition. Digital Press.

[7] Assayag G., Rueda C., Laurson M., Agon C., Delerue O.
1999. "Computer Assisted Composition at Ircam :
PatchWork & OpenMusic". Computer Music Journal 23:3.

[8] Agon C., Stroppa M., Assayag G. 2000. "High Level Musical
Control of Sound Synthesis in OpenMusic", Proceedings of
the International Computer Music Conference, Berlin.

[9] Stroppa, M. 1984. “Traiettoria”, a cycle of three pieces
(Traiettoria…deviata, Dialoghi, Constrasti) for piano and
computer-generated sounds. Recorded by Wergo, Digital
Music Digital, n. WER 2030-2. Pierre-Laurent Aimard,
piano, Marco Stroppa, sound projection.

[10] Eckel, G., Iovino, F., Caussé, R. 1995. "Sound Synthesis by
Physical Modelli ng with Modalys". Proceedings of the
ISMA.

