
METRIX: A Musical Data Definition Language and Data

Structure for a Spectral Modeling Based Synthesizer

Xavier Amatriain, Jordi Bonada, Xavier Serra
Audiovisual Institute, Pompeu Fabra University

Rambla 31, 08002 Barcelona, Spain

 {xamat,jboni,xserra}@iua.upf.es http://www.iua.upf.es

Abstract

Since the MIDI 1.0 specification [1], well over 15 years ago, many have been the attempts to give

a solution to all the limitations that soon became clear. None of these have had a happy ending,

mainly due to commercial interests and as a result, when trying to find an appropriate synthesis

control user interface, we had not many choices but the use of MIDI. That’s the reason why the

idea of defining a new user interface aroused. In this article, the main components of this interface

will be discussed, paying special attention to the advantages and new features it reports to the end-

user.

1 Introduction

A lot has been written about the problems in MIDI:

speed, channels, program numbers, modes, stuck

notes...

The new proposals which are more likely to be

accepted by the synthesizer industry are those which

not only keep compatibility but also are just

extensions of MIDI such as X-MIDI [2] or Fuzzy-

MIDI [3]. These possible standards offer different

improvements to MIDI limitations but don't face the

problem for which MIDI doesn't seem a long-term

supportable standard : keyboardism.

The basics of MIDI start tumbling when it comes to

controlling a string synthesizer, which can have two

strings playing the same note but sounding different,

or a wind synthesizer, which can have continuos

controls such as lip pressure or frequency.

The solutions given to this problem start by being

able to control not only key numbers, instruments or

channels. Some proposals such as Open Sound

Control [4], Synth Control [5] or SKINI [6] offer the

possibility of controlling any kind of synthesis events

by giving them their own address or ID number.

A more complete solution was given by ZIPI [7]. In

ZIPI, an instrument was described as a set of notes

which could be addressed and modified

independently. This concept is similar to the one we

have named generator, the minimum unity within an

instrument which is capable of producing a sound by

itself (a string, a key, a drum...). Needless to say that

this idea of generator has little to do with the idea of

synthesis generator used by some protocols as the

Soundfont 2.0 [8].

The whole system, is a transport-independent

protocol, and although it was not designed with a

particular transport layer in mind, features shared by

modern networking technologies are assumed.

Therefore, the design is not preoccupied with

reducing musical information to the minimum.

2 General Concepts

The interface is made up of a Musical Score

Description Language (MSDL), an SMS [9]

Instrument Definition Language (SMSIDL) and a set

o C++ classes which together with other more general

purpose classes conform the SMS Class Structure

(SMSCS)[10]. The MSDL is intended to be general

purpose and might be useful to other synthesis

techniques while the SMSIDL and the SMSCS are

based on our particular needs. The distinction of an

Instrument File from the Score File has already been

used in synthesis control system being the most

renamed Csound [11].

The goal of the complete interface is to offer an easy-

to-use but yet flexible tool to control all the different

aspects involved in digital instrument synthesis. In

the following sections I will give a brief description

of its main components.

3 The Spectral Modeling Synthesis

Class Structure

In this section, only the classes in the SMSCS that are

more related and have indeed been developed for this

layer are discussed.

Up to this moment, no compatibility has been

intended with MPEG-4's Structured Audio

Specifications (SAOL) [12] although the main

guidelines have been observed.

2.1 The Synthesis Controller Class

This is, in fact, the class responsible for controlling

all the different aspects involved in the synthesizer.

Its first commitment is to read the information

contained in the Instrument File and in the header of

the Score File initializing all instruments and global

variables that will later be involved in the synthesis

process.

Then, it starts and keeps control of the Synthesis

Loop in which it receives new events from the Score

File and controls the Generators active at that

moment. The Synthesis Controller keeps trace of

active Generators and Instruments.

2.2 The Instrument Class

The Instrument Class contains all the information

read from the Instrument File.

One of the main features in the Instrument Class is

the Timbre Space. Although the name and concept

has been taken from previous works [13] its purpose

and implementation is completely different. The

Timbre Space is an n-dimensional virtual space

formed by the positioning of the different SMS Data

Tracks in a specific location. The class knows how to

obtain the appropriate Track Frames by interpolating

the already loaded information. See section 4.2 for

more information on the Timbre Space.

2.3 The Generator Class

As mentioned in section 1, a Generator is the

minimum unity within an instrument capable of

producing a sound by itself, and that is the reason

why the Generator Class has pointers to all the SMS

global Synthesis Classes necessary and sufficient to

fill a synthesis buffer by themselves.

Each Generator has also a pointer to the Instrument

Class in order to obtain all the information loaded

from the Instrument File and that affects that

Generator.

Another important feature contained in each

generator is a pointer to a Synthesis Parameters Class.

This is a special class that keeps trace of all the

different synthesis parameters (low and high-level)

and their value at any time.

2.4 The Score File Class

The Score File Class is the class responsible for

reading the information stored in a standard text file

according to the MSDL general rules. The class reads

all the information contained in the Header as well as

all the events when its member function Load is

called.

When the Synthesis Controller Class initializes all

instruments and generators, it asks for the

information loaded from the Header of the score file.

Then, in the synthesis loop it keeps asking for the

events with a time tag included within the current

synthesis period until the Score File Class recognizes

the end of the file being read. It is clear that this kind

of working is fully compatible with the real-time idea

of reading events stored in a buffer since the last call

from the Synthesis Controller.

2.5 The Instrument File Class

This class is responsible for reading all the

information contained in a standard text file

according to the SMSIDL. After reading, all the

information is loaded in a special structure accessible

 Sound

Score File Instrument File

Figure 1. Class Structure.

Synth Controller

Class

Instrument Class

Generator Class

Instrument File

Class

Score File

Class

General

Synthesis and

Sound Classes

from the Instrument when the Synthesis Controller

asks for its initialization.

3 The Spectral Modeling Synthesis

Instrument Definition Language

No low-level bit structured messages are involved in

defining an Instrument File with the SMSIDL. A set

of reserved words are defined which combined,

following an easy syntax, conform the messages in an

Instrument Definition File. An SMSIDL File can be a

standard ASCII text file and be modified with any

word processor or either any kind of real-time stream.

The Instrument File is divided into four different

parts that conform the complete definition of an SMS

based Instrument, that is: definition of Instrument

Generators, Instrument Timbre Space, Time and

Parameter Envelopes and SMS and Control

Parameters. All of them will be introduced in the

following sections. A simple example is given in

section 4.5.

It should be pointed that the order of these parts in the

Instrument File is indeed critical and must follow the

one here introduced. Otherwise, references to not

previously introduced information, will not be solved.

2.6 Generators

In this part of the Instrument File, a unique name and

integer identification number must be given to each

generator.

The identification number will be used in the other

parts of the Instrument File in order to access the

different generators. The name will be accessed later

from the Score File.

2.7 Timbre Space

The idea of a Timbre Space was already introduced in

section 2. The definition of a Timbre Space with the

SMSIDL consists in the definition of three different

aspects.

First, the number of dimensions to be used. The

instrument designer must decide what features of the

instrument represent a substantial change in the sound

that cannot be achieved using the different

transformations available. These dimensions such as

loudness, pitch, articulation, etc... must have the

correspondent SMS data extracted from a previous

analysis of those features in the instrument. A

compromise between sound quality and amount of

synthesizer memory used must be adopted.

Next, the kind of Interpolation to use between the

Data stored. A set of standard interpolation types are

available.

Finally, the positioning of each SMS data in a

concrete location in the space.

The Instrument Class will be capable of solving

intermediate positions by the interpolation of the

SMS data loaded from the files.

E.g. A good quality piano sound can be obtained by

storing the SMS Data from just eight of the piano

keys (A0 thru A7) and obtaining the rest by

interpolation. Thus, only one dimension is used

(pitch). Other features such as loudness can be

obtained by applying different transformations on the

data available.[14]

2.8 Envelopes

Two kind of envelopes are available: Time Envelopes

and Parameter Envelopes. An envelope is defined by

giving a name, an interpolation type and any number

of envelope points from which the others will be

computed.

A Time Envelope is a user defined function that

returns a single value according to the relative time

elapsed since the beginning of an event.

Unlike Time Envelopes, Parameter Envelopes return

a complete envelope that will be applied to the

parameter involved according to its definition.

2.9 Parameters

In this part, SMS and Control Parameters are

initialized. Other parameters, will not be accessible

from the Score File.

To initialize an SMS Parameter, only its maximum,

minimum, and default value are specified.

Besides that, when initializing a Control Parameter,

the instrument designer must define the relationship

between that parameter and the set of SMS

Parameters or the Timbre Space location. A single

Control Parameter can have any number of low-level

references. Any kind of standard formulas or

Envelopes previously defined in section 4.3 may be

used in this field. An standard set of Control

Parameters is available but the list is still not

complete as it depends on each kind of instrument to

define and the musicians gestures to describe.

2.10 Example

In the following example, a simple SMS based piano

synthesizer is implemented [14]. Only one dimension

of the timbre space is used and the number of SMS

and Control parameters used have been reduced to

the minimum to keep the example simple. A more

complete explanation is given at [10].

The reserved characters '#' and '@' mean the value of

the parameter and the number of the generator

involved respectively.

Generators :{

"Name[0-85],Key" }

SMSTimbreSpace :{

"nCoord,1"

"IntType,PianoPitch "

"c:\Metrix\Piano\A0.sms,0 "

"c:\Metrix\Piano\A1.sms,0.1412 "

"c:\Metrix\Piano\A2.sms,0.2824 "

"c:\Metrix\Piano\A3.sms,0.4235 "

"c:\Metrix\Piano\A4.sms,0.5765 "

"c:\Metrix\Piano\A5.sms,0.7176 "

"c:\Metrix\Piano\A6.sms,0.8588 "

"c:\Metrix\Piano\A7.sms,1 " }

ParamEnvelopes :{

 "PianoLPF,Linear, (0,1)(0.5,0.39*# +0.5)(1,0.00006*# ^2)" }

TimeEnvelopes :{

"FadeOut,Linear,(0,1)(T,1)(T+0.3,0.1)(T+0.6,0)" }

SMSParams :{

"Amp,0,0.2,0.1"

"AmpSine,0,1,1"

"AmpSpec,0,1,1" }

ControlParams :{

"KeyVelocity,0,127,64,

[Amp,#/127*0.2*TimeEnvelope(FadeOut)]

[AmpSine,ParamEnvelope(PianoProva)]

[AmpSpec,0.0000506*#^2+0.00145*#]"

"KeyNumber[@],@,@,@,[TimbreSpace,(@/85)]"

"Pitch[@],28.8316*1.0595^@,27.16*1.0595^@,28*1.0595^@

, [TimbreSpace,(@/85)]" }

end

3 The Musical Score Description

Language

The MSDL is a text-based synthesis control language

which takes part of its features from previously

released languages as the NEXT ScoreFile Language

[15] or SKINI [5]. No low-level packed messages are

involved in defining a Score with the MSDL. With a

quick look at an MSDL Score File any musician can

get a grasp of what is going on. A simple example is

given in section 5.3.

As the Instrument Definition File, a Score can be a

standard ASCII text file and be modified with any

word processor or either any kind of real-time stream.

Although no exact match with the SMSIDL syntax is

meant, similarity and compatibility is intended.

The Score is made up of two different parts, which

will be discussed in the following sections: the

Header and the Body.

2.11 The Score Header

The Score Header is where all the global variables

relative to the score information or to the output

sound are defined. Concepts such as Tempo, Beat,

Output Sound File or Sample Rate must be included

in this part or either will be assumed as default.

Another feature included in the Header is the

definition of all the instruments to be used in the

score. A reference to the Instrument File location

must therefore be included.

And last but not least, all kind of user variables can

be initialized in this part of the Score. The user can

define an unlimited set of variables in order to access

the instruments, generators or even groups of

instruments. Note that if more than one instrument of

the same kind is to be used, its Definition File will

only be loaded once and can then be referenced by

the use of user defined variables such as piano1,

piano2...

2.12 The Score Body

The Body is the part of the Score where the actual

musical information to control a digital instrument is

included. It is made up of a list of events; sorted by

the time they take place in order to keep real-time

compatibility.

An event is a group of words that define a message

sent to the synthesizer controller. The standard event

statement is made up of four statements sorted this

way: T V P:PV, where T is Time Statement, V is

Variable Statement, P is Parameter Statement, and

PV is Parameter Value Statement.

These, together, conform a message that means:

Modify Parameter (P) referring to variable (V)

according to its new value (PV) at the moment

specified (T).

The Time Statement includes features such as the

possibility to use standard time, SMPTE timecode or

musical Beat notation.

Variable statements can refer to user defined

variables or directly to instruments initialized thus

affecting all variables.

There are two levels of indirection, which the user

can access from the Score in order to control an SMS

based instrument. These two levels correspond to the

two kind of parameters that can be used in the

Parameter Statement: the low-level SMS Parameters,

or the high-level Control Parameters. The SMS

Parameters control instrument features such as the

amplitude of the partials and transformations such as

pitch shifting or morphing. There is a complete list of

parameters at [10].

2.13 Example

This example shows the main possibilities of using

the MSDL for controlling a synthesis process. Note

the different kind of instruments used: the first two

have already been defined and included in the

synthesizer standard bank, the next two are loaded

from an Instrument Definition File during run-time,

and the last one is a single SMS File containing any

kind of information accepted by the SMS File Format

[10].

Score_Info{

Tempo:130/2

 Meter:3/4

Resolution:24 }

Sound_Info{

Bits:8 }

Instrument_Info{

Piano

guitar

oboe[InsDef:"c:\score\oboe"]

violin[InsDef:"c:\mpegscore\violin"]

clarinet[SMSDef:"c:\SMS\clarinet"]}

Def instrument a=piano

Def instrument c=violin

Def generator nvar=10 c=c.string

Def instrument d=violin

Def generator a1=a.key1

Def generator a2=a.key2

Def instrument n=clarinet

begin

#01:01:02.04 a1 Pitch:C#3 Loudness:mf Duration:t00:00:01

t00 clarinet AmpFn:[0(1)1(0.5)]

t04 piano.key2 Pitch:f2

t04 Score_Info: Tempo:140

t05 a1 Loudness:ffff

end

3 Conclusions

The whole interface is meant to be simple but yet

flexible enough to offer a complete set of classes and

syntax rules that could be enhanced in the future to

observe other features that have not been included in

this first implementation. MIDI and other interfaces

compatibility is also thought to be available in the

near future.

Up to this moment, the program is running as a stand-

alone utility for PC but it will soon be included in a

more general SMS interface.

Definitions of other instruments as well as other score

examples are also on the way. All new features will

be available at [10].

References

[1] MIDI Manufacturers Association. MIDI 1.0

Detailed Specification. Los Angeles: The

International MIDI Association, 1998.

[2] E. Lukac-Kurac. Extended Midi White Paper.

Meise, Belgium: Digital Design &

Development, 1995. ftp://ftp.cs.ruu.nl/pub/

MIDI/DOC/xmidi.html

 [3] S. Wilkinson. “Fuzzy MIDI (MIDI Spec

Revision)”. Electronic Musician, April 1995.

 [4] M. Wright and A. Freed. “Open SoundControl:

A New Protocol for Communicating with Sound

Synthesizers”. Proc. ICMC, 1997.

[5] M. Wright and A. Freed. The Synth Control

network protocol version 1.0, 1996.

http://cnmat.cnmat.Berkeley.edu/Adrian/

SynthControl.html.

[6] P. Cook. Synthesis toolKit Instrument Network

Interface (SKINI) 0.9 Implementation notes.

Princeton University, 1996.

http://www.cs.princeton.edu/~prc

/SKINI.txt.html

[7] K. Mc Millen. “ZIPI: Origins and Motivations”.

Computer Music Journal 18(4), pp 48-96, 1994.

[8] E-mu System Inc. Soundfont Technical

Specification, Version 2.00a, 1995.

[9] X. Serra and J. Smith. “Spectral Modeling

Synthesis: A Sound Analysis/Synthesis System

based on a Deterministic plus Stochastic

Decomposition”. Computer Music Journal.

14(4). pp12-24, 1990.

[10] Music Technology Group. SMS Homepage.

http://www.iua.upf.es/~sms

[11] B. L. Vercoe. The CSound Manual Version

3.48. A Manual for the Audio Processing System

and supporting program with Tutorials. MIT

Media Laboratory. Edited by Jean Piché,

University of Montreal, 1992.

ftp://ftp.musique.umontreal.ca/pub

[12] Synthetic/Natural Hybrid Coding (SNHC)

section of the MPEG-4. Final Committee Draft

Version 1.8. Document num.FCD ISO/IEC

14496-3 Subpart 5. MIT Media Laboratory,

1997. http://sound.media.mit. edu/mpeg4

[13] D. L. Wessel. “Timbre Space as a Musical

Control Structure”. Computer Music Journal,

2(3), 1979.

[14] J. M. Solà. Disseny i Implementació d'un

sintetitzador de piano. Graduate Thesis.

Polythecnic University of Catalonia, 1997.

 [15] E. Selfridge-Field. Beyond Midi. MIT Press,

1997

