
Using Ideas from Natural Selection

 to Evolve Synthesized Sounds

Kaare Wehn
Department of Informatics, University of Oslo

kaarew@ifi.uio.no http://www.ifi.uio.no/~kaarew/

Abstract

This paper describes a system for the automatic creation of digital synthesizer circuits that can
generate sounds similar to a sampled (target) sound. The circuits will consist of very basic signal
functions and generators that are arbitrarily interconnected. The system uses a “genetic algorithm”
(GA) to evolve successively better circuits. First it creates populations of such synthesizers,
generates the output and a fitness value of each individual circuit. The ones that are best at
imitating the target sound will be kept. They are used for “breeding” to form a new generation
where, hopefully, at least some individuals perform better than their parents did. The end result
will be a circuit that can create a sound that resembles the target sample. Because it’s a synthesizer
we can manipulate the different parameters when generating the sound. We can also get a very
compact representation of the sound that can be useful when distributing music over a limited
bandwidth communications channel (e.g. Internet). As we shall see, it also gives the user a very
powerful tool for creating totally new sounds.

1 Introduction

By combining simple signal elements it is possible to
create some very interesting sounds. Indeed, this is
what analog and most digital synthesizers utilize.
The number of ways in which these elements can be
hooked together is limitless. Most of these
configurations (graphs or circuits) are quite useless,
but among all the possible combinations we certainly
should expect to find a few interesting ones too.
Those utilized by synthesizers today are very basic
and relatively easy to analyze. Even the
configurations used in physical modeling are a
subset of the complex signal graphs that this paper
describes. In this context complexity means many
connections between elements and many levels of
feedback. This makes them hard to analyze and
virtually impossible to design. They rather have to be
discovered. Therefore we need an algorithm to
automatically search this huge space of possible
configurations.

2 Genetic Algorithms

In computing there are many tasks that require a vast
amount of computing power if we use brute force
methods to reach an answer. That is, search through
all possible combinations and stop when we arrive at
a satisfactory solution.

Many of these tasks are so computationally intensive
that we can’t hope for an answer in our lifetime.
Therefore we must try to find alternative strategies.

If we know enough about the structure of the
solution to a problem, we can often find search
methods that greatly limits the search space.
However, when we don’t have such clues we have to
turn to other strategies. A Genetic Algorithm (GA)
may be well suited for this kind of search. GA’s are
inspired by the theory originally proposed by Darwin
and later enhanced by others. One significant
discovery was the DNA molecule (the genotype),
which is the basis for all life on earth. It’s a long
chain of amino acids that contains the information on
how a body (the phenotype) should grow, although
in a very indirect way. In nature all changes in a
species are result of random mutations and the
combining of DNA’s from two different parents. If a
new DNA produces a successful body, the changes
can be passed on to new generations [3]. These are
the ideas that we take advantage of in the Artificial
Life System (ALS) of this article.

One difference should be mentioned though. Today
this ALS has no genotypes, that is, all the processes
of breeding and mutations are done directly to the
phenotypes (the graphs) [1, 2]. This design choice
where made in an early stage of the development and
is likely to be changed soon. The subject will be
discussed in “future work”.

3 The Synthesizer Signal Elements

The basic elements (nodes) of the synthesizers apply
simple functions to their input signals.(See Figure 1)
All elements have one output and typically two

inputs. Table 1 shows the functions that have been
implemented in the system today.

Many other, more sophisticated, signal elements
could be imagined and shall be explored in future
versions of the system.

Figure 1. Symbols for signal elements

Function Inputs1 Input2 Input 3

Noise - - -

Sinus Frequency Phase -

Triangle Frequency Phase -

Square Frequency Phase -

Ramp Frequency Phase -

Adding Signal 1 Signal 2 -

Multiply Signal 1 Signal 2 -

Filter, bandpass Frequency Q value Signal

Table 1. The signal elements

4 Connections

Most nodes have input lines. These can each have
one connection to the output of any node in the
configuration (including it’s own output). Every
input line is weighted by a value, usually between –1
and 1. If the input line is not connected to an output,
the weight itself is used as a constant input signal. A
collection of nodes and connections is referred to as
a graph.

5 Fitness value

We now have the building blocks for our
synthesizers but before we can search through graph
space for new sounds, we need a direction in which
to move. So we have to introduce a goal. The target
sound will serve this purpose. All new configurations
we encounter will have to be measured against this
sound, or rather its amplitude spectrum. So, before
evolution begins, a spectral analysis is done on the
scaled target sound. The amplitude spectrum of this
FFT is referred to as T and typically has 1024
frequency bands. This normally would constrain the
input wave to a length of 2048 samples, but you are
able to specify any number of FFT windows to
sequentially cover the whole target wave.

When a graph is to be evaluated against the target,
the output signal is first tested to check that it

actually contains any oscillations. If not, the fitness
value is set to a maximum.

If it does contain a valid sound, a frequency analysis
is preformed on this scaled signal and the result is
denoted G. We then use the following formula to
calculate the fitness value:

∑ ∑
<≤ <≤

−=
21 10240

2))((
w b

w

b

w

b GTe

In the formula w denotes the FFT window number
and b is the frequency band. (The calculation of the
square root is skipped in the actual system.) The
fitness value is the Euclidean distance between the
amplitude spectrums of target wave and graph
output. Therefore lower fitness values are better and
a perfect match gives a zero fitness value.1

6 The evolutionary process

Each generation typically consist of 100 graphs. We
use a random creation method to generate the first
population. Then the evolutionary process can start.
The resulting output waveform from each graph is
calculated and evaluated against the target sound.

Figure 2. The evolutionary process

The graphs with lowest (best) fitness values are
selected for survival and breeding. In this system
20% of the population is singled out in this way and
the rest are destroyed. Using different kinds of
breeding a new generation is created. The relative
success of a graph will determine how many children
to be created from it. Now, the process can start
over. (See Figure 2.)

1 A perfect match will sound similar, but may have very different

phase characteristics.

Create random population

Calculate graph output signals

Select the fittest

Create new population

Calculate fitness values

QFreq.

OutputOutputOutput

SinusNoise Filter

Phase Freq. Signal

7 Breeding techniques

Since we have no genotype to work on, breeding is
done directly by copying from one or two parent
graphs to the new child graph. Three types of
breeding techniques are used to form new graphs;
cloning, grafting and crossover. After creation graphs
are subject to random mutations and a garbage
collection that removes inactive nodes and
connections.

When cloning the system just makes a copy of one
parent. Since copying won’t give us any changes
from parent to child, mutation rate is set much higher
than for the two other techniques.

Grafting takes two parents. They are both copied to
the child and a random new connection between the
subgraphs is added. Then the graph is subject to
mutations and garbage collection. (See Figure 3.)

Figure 3. Grafting (without mutation)

Crossover also takes two parents and moves trough
the nodes of one parent and copies them one by one.
At a random point the system will switch to the other
parent and use this as the source. It can also switch
back again. Such a switch between the parents will
on average happen one time per new graph. As
always the child is subject to mutation and garbage
collection. (See Figure 4.)

Figure 4. Crossover (without mutation)

8 Mutation

During the mutation stage, one of the nodes in a
graph is always replaced. The type of the new
element is randomly chosen and it inherits all
connections and weights from its predecessor if
possible. If not, weights are set to random values and
no connections are made. Even without any
connections the node can survive the garbage
collection if it is “lucky” during the last phase of the
mutation stage.

As mentioned earlier the mutation rate may vary.
With a rate of 1.0 the following events will usually
occur once before the new graph is passed on to
garbage collection:

1. A node is added. With random type and weights.

2. A connection is moved or a weight is changed.

It should be pointed out that the mutation strategy
has emerged in a very empiric way. By watching the
ALS and making observations about where the
evolution gets trapped, these steps have been
modified several times.

9 What can be expected?

It is important to remember that the graphs that this
ALS evolves usually can’t give us an exact match of
the target sound. There are two reasons for this:

1. The fitness value uses the amplitude spectrum.

2. Real life sounds are too complex.

In theory these graphs could imitate any sound. This
is easy to realize if we look to the Fourier
transformation. E.g. by combining 256 sinus nodes
an exact match for any sound wave with 512 samples
could be generated. But this kind of solution is not
desirable. The system used to test this ALS has a
maximum number of nodes set to 16. This means that
the evolution is forced to find more innovative
solutions than different flavors of traditional
transformations.

10 Results

GA’s have been tested extensively during the past
decades and have found many applications. Even
creationists should be able to recognize the success
that these methods have had in the digital world.

Therefore, it should not come as a surprise that
genetic algorithm’s works in this application too.
Figure 5 shows a typical result.

Parent 1 Parent 2

Child

Child after garbage collection

Parent 1 Parent 2

Child

Child after garbage collection

Figure 5. Fitness value vs. generations

As expected the fitness value decreases quite fast in
the beginning. Then the ALS has a tendency to get
trapped in a local optimal point. To get out of this
trap evolution needs a significant change in a graph
to escape. This will seldom happen so we can
observe long periods with virtually no improvement.
During these periods the populations seem to be too
genetically homogenous. The result is that
evolutionary progress tends to work in steps as seen
in the figure. This is a problem that every
implementation of GA has to fight.

The system is able to find graphs with output that is
similar to the target sound, but there is certainly
room for improvement. During testing the output
from a known graph has been used. (See Figure 6.)

The system is able to arrive at this configuration, but
only after a large number of generations.

Figure 6. Test target graph. Sinus major chord

On the other hand, to observe the system while it is
running can be quite entertaining. New sounds are
playing all the time in a tremendous tempo. Most of
them are similar to classical synthesizer sounds, but
once in a while you may encounter very rich and
strange sounds. These and their corresponding
graphs can be saved for later use. The operator can
also bypass the fitness value selection and choose
which graphs that should survive. But this is
impractical. It takes to long and it is very difficult to
know which graphs that have most potential.

11 Future work

To make the system less prone to be trapped in local
maximums many techniques can be implemented:

1. A genotype [4]. Every graph will then be the
result of the decoding of a string of bits. This is
more in line with traditional GA and will greatly
simply and cleanup the process of breeding and
mutation. But it requires a thorough
consideration when selecting the coding scheme.
One solution is to use a Lindenmayer system (L-
system) of production rules [5, 6]. This can
generate graphs with a fractal structure similar
to the one shown in Figure 6. Another method is
to have a fixed structure of elements and
connections and use the genotype string of bits
to encode only the input weights.

2. Geographical isolation between several
populations with occasional exchange of genetic
material. This allows different characteristics to
evolve in each population. When evolution
converges, fresh gene material from another
population could trigger new progress.

3. A geographical location for each member in a
population. Mating will only occur between
neighbors. This will hopefully preserve genetic
diversity.

12 Conclusion

The results presented in this paper are promising.
The implementation of this ALS shows that the
concept works. It is capable of finding graphs with
an output similar to the target sound. These graphs
would usually be impossible to design by hand. The
system comes up with very complex and innovative
solutions. On its way towards a solution it also
creates many graphs that fail miserably in mimicking
the target sound. But these sounds can have a value
of their own. Musicians should be able to utilize the
system to discover totally new sounds not
necessarily similar to the target. For them the target
sound will function as a loose hint given to the
system about what kind of sound they are looking
for. Then they can sit back and listen while the
system gives them different alternatives.

Given the preliminary state of this work there should
be room for significant improvements. If this proves
to be true other application emerges.

It could be used as a very efficient compression
technique to save bandwidth when transmitting
sound waves.

Sinus
1.498 X

Sinus
1.260 X

Sinus
1.0 X

Sinus
2.0 X

Sum
1.0 1.0

Sum
1.0 1.0

Sum
1.0 1.0

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

3 5 0 0 0

4 0 0 0 0

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

13 Acknowledgements

This work is a part of my master thesis. Thanks to
my supervisor Øyvind Hammer for his valuable
ideas, knowledge and encouragement.

14 References

1. Sims K., “Evolving Virtual Creatures”,
Computer Graphics, Annual Conference Series,
July 1994, pp.15-22

2. Sims K., “Evolving 3D Morphology and
Behavior by Competition”, Artificial Life IV

Proceedings, ed. by R. Brooks & P. Maes, MIT
Press, 1994, pp.28-39

3. Dawkins R., The Blind Watchmaker, Harlow
Longman, 1986.

4. Whitley D., A Genetic Algorithm Tutorial,
Computer Science Department, Colorado State
University [whitley@cs.colostate.edu]

5. Channon A., The Evolutionary Emergence route

to Artificial Intelligence, MSc in Knowledge-
Based System 1995/96, School of Cognitive and
Computing Sciences, University of Sussex.

6. Channon A., The Artificial Evolution of Real

Intelligence by Natural Selection, Image, Speech
& Intelligent Systems Research Group,
University of Southampton.
http://www.soton.ac.uk/~adc96r

