
SMS Composer and SMS Conductor:

Applications for Spectral Modeling Synthesis

Composition and Performance

Eduard Resina
Audiovisual Institute, Pompeu Fabra University

Rambla 31, 08002 Barcelona, Spain

eduard@iua.upf.es

Abstract

SMS Composer and SMS Conductor are Windows applications designed to take musical advantage

of both the flexibility and potential of SMS sound transformations and its current capability for

real-time synthesis. SMS Composer offers a powerful compositional environment for SMS score

generation, editing and synthesis. SMS Conductor is a real-time SMS controller, mainly focused on

the problem of tracking and translating conductors’ queues into time-stretch synthesis fluctuations.

1 Introduction

Spectral Modeling Synthesis (SMS) [1], provides a

musically attractive and powerful tools for sound

transformation. The increasing speed of CPUs makes

it possible, and highly appealing, to apply this

system to new and more complex musical situations

than to what it could be attempted some time ago.

Through 1998, some applications designed to

control and manipulate the synthesis parameters of

SMS analysis files have been developed at the

Audiovisual Institute of the Pompeu Fabra

University of Barcelona. SMS Composer and SMS

Conductor form, together with SMS Performer (an

application by A. Loscos and E. Resina presented in

another paper in these proceedings) [2], a trilogy of

such SMS control related applications.

Where as SMS Performer has been designed for

real-time performance (real-time parametric control

and synthesis), SMS Composer stands by a different

and somehow opposed kind of musical premises and

demands. SMS Composer is a score (list of events or

parameter specifications for the synthesis of some

SMS analysis file) generator, editor and synthesizer.

It is not designed for real-time synthesis, but rather

for detailed editing of the events’ synthesis

parameters.

On the other hand, SMS Conductor stands

conceptually somewhat in between SMS Performer

and SMS Composer. SMS Conductor is also

designed to perform real-time synthesis of an SMS

file, yet, most of the conditions defining the

program’s behavior during performance must be

entered and edited in advance.

Obviously, there is no redundant work at all in these

applications since each one of them addresses

problems concerning completely different contextual

needs and situations.

2 SMS Composer

The design of SMS Composer responds both to

demands derived from previous compositional

experience using SMS [3][4][5], and to the influence

of some other score generation environments used

through these last few years (especially J. Rahn’s Lisp

Kernel [6] and R. Taube’s Common Music [7]) for

CSound score generation, as well as the Lisp

embedded list philosophy which turns to fit so nicely

into the proliferation of musical levels so natural to

compositional thinking.

2.1. From the beginning

When the user starts an SMS Composer new session,

an ordered list or map of all the available synthesis

parameters appears on screen. When the application

writes the score file, only the selected (highlighted)

parameters will be taken into account. (Figure 1)

Before any of the parameters can be edited, the user

will be prompted to enter the path of at least one SMS

file. In order to edit any of the hybridization

parameters the user must enter at least another SMS

file for this purpose.

Both InputSmsFile and InputHybridFile dialog boxes

can register up to twenty different SMS files. The user

will be able to assign any of these synthesis and

hybridization files to each individual event or group

of events to be generated in the score.

2.2 The Envelopes

By double-clicking on any of the parameters on

screen, an envelope window with a double eventline

vs. timeline) mode is shown. Most of SMS parameters

can take either a single value or an envelope as input.

The window for these parameters can be switched to

envelope type of input.

In such a case, the points on the main envelope refer

to one of the twenty secondary envelopes the user can

define per parameter. Every parameter’s main

envelope can edit up to four independent voices or

sequences of events. Every voice has an event or time

offset, as well as an independent amount of

randomness which will be applied to the voice’s

values if selected. (Figure 2)

The points can be entered directly into the envelope

though mouse clicking, by playing on a MIDI

keyboard, or (in the case of the various frequency and

duration parameters) by mouse clicking on a

Figure 1

Figure 2

Figure 2

graphical keyboard representation, or by selecting

musical notation duration values which can represent

a large range of rhythmic combinations including

triplets, quintuplets and septuplets. When using

musical notation for the durations (instead of absolute

decimal notation), the user will be able to change the

duration ratio by modifying the global tempo at will.

Events between points can either interpolate or hold

the last point’s value, and a number of editing tools to

set and modify the value of a group of points is

provided.

2.3 Lists and sublists

The recursive nature of SMS Composer is

implemented in such a way that every EnvPoint

object owns a pointer to a list. This is, every point can

become a list, and every List object can hold any

number of points which in turn can become sublists.

This way the user can descend down a tree of some

twenty levels of sublists.

SMS Composer inherits some of the item stream

types implemented in Common Music (cycle,

sequence, rotation, palindrome, random, etc.) The

user can keep track of the ramifications and visualize

a representation of the sublist tree by pressing the

TRACE button. The graph will show the type of list,

its period, as well as all its descendants. (Figure 3)

Figure 3

2.4 Ending the session

Once the score has been generated, it can be edited

from within the application. The editor can search any

voice’s event either by event number or by event

time, making editing of the score fast and easy.

Finally, the user can synthesize the score and listen to

the resulting sound from within SMS Composer, or

select a sound editor. In this latter case, SMS

Composer will automatically open the selected sound

editor and load the resulting sound file when the

synthesis is done. When writing to an existing sound

file the user can select to overwrite the file or to write

on top of the sound data mixing the newly synthesized

sound to the previously existing one. By saving the

session the user has no need to keep the score after

the sound has been synthesized. The score can be

instantaneously recreated when opening the session,

and all the settings and editing will still be there for

further modifications.

A number of additions are being incorporated to the

synthesis capabilities of SMS which obey to emerging

compositional demands that have come out while

implementing SMS Composer or while composing

with SMS. One of them is the possibility of

generating stereo sound files and the addition of

panoramics as a new SMS synthesis parameter. Until

now SMS could only generate mono sound files.

Even though SMS Composer has been designed to

suite the demands of composing with SMS, the

structure of the application makes it easy to adapt it to

other environments in order to generate different

types of scores or events. Indeed, a version of the

application for generating CSound scores will be

available in short.

 3 SMS Conductor

SMS Conductor takes advantage of the recent

possibility of running SMS in real-time. The main

idea is for a conductor to be able to control the time-

stretch synthesis parameter in performance at the

same time the sound is being generated, without

having to be especially trained, by simply marking,

with clarity, the moments of inflexion where he

wishes to modify the pre-established tempo.

The input to SMS Conductor is an SMS inharmonic

analysis of a sound file. The analysis file is not loaded

into cache memory (as does SMS Performer in order

to optimize the reading into the file). Since the

analysis of the sound file to be conducted will

probably be large, SMS Conductor cannot take

advantage of this resource. Real-time synthesis will

still work in a Pentium Processor at 266 MHz even if

the analysis file is not loaded into cache memory. In

order to optimize speed, time stretch frame

interpolation is disabled, which should not make

much of a difference considering that, in general,

tempo deviations are not expected to be enormous.

One of the important handicaps at this experimental

estate of SMS Conductor is that SMS real-time

synthesis works only on mono sound files. One way

around this problem would be to have a different

computer for the synthesis of each of the channels.

Since minor synchronization problems could be

expected, SMS Conductor establishes a

synchronization protocol that allows SMS to know

the exact runtime position so that it can be corrected

when running out of phase.

Indeed, SMS Conductor should be running on a

different computer to the one doing the synthesis,

even when synthesizing one single analysis file. SMS

Conductor must receive, filter and process incoming

MIDI messages, the messages must then be evaluated

in relation to the expected tempo at that given

moment in the performance to calculate the time

stretch value to be sent to SMS. Furthermore, the

screen must be continuously redrawn to display the

advance of the music and the updated values referring

to the performance and the tempo fluctuation

statistics. All this tasks would make it very hard for

SMS real-time synthesis to work properly unless

running on a separate computer. The ideal setting for

SMS Conductor in performance is shown next.

(Figure 4)

Figure 4

It is needless to say that it is simply a matter of time

before a single personal computer can handle all this

tasks by itself.

3.1 Input data

While editing, SMS Conductor can either take an

SMS analysis file or a sound file for sound wave

graphical display purposes. When the user saves a

session and the SaveWaveData option is selected, the

minimal sound data required for the application’s

display is saved together with the session (441 Hz, 8

bit data). This is useful because a 20 minutes mono

sound file at 44.1Khz takes about 100MB hard disk

space, while the corresponding SMS analysis file

(without any compression) would take up to 350MB.

The display wave data would take around 5MB

instead, freeing the user from having to work where

the SMS or sound file is stored, or forcing him to

move this huge amount of data back and forth.

Obviously, if the sound file is loaded, it will not be

possible for the user to listen to any sound

transformation. Only the original sound can be

listened to. If only display data is loaded, nothing can

be played, yet the user will still be able to visualize

the amplitude and time stretch transformations. It is

possible to work on a session even if no wave data

has been loaded, but the sound wave display is very

useful to check whether the music score matches

specific sound events, allowing the user to edit the

score data (tempo, measures, etc) in accordance.

3.2 Measure attributes

When starting a new session, the user selects an initial

tempo, time signature, subdivision and measures’ beat

distribution, as well as the default maximum tempo

deviation allowed in performance (if this latter value

is set to zero, then there is not much of a reason to use

SMS Conductor at all). Once the session is started,

each measure’s settings can be modified at will by

double clicking on the square with the corresponding

measure’s number. An editing dialog box will be

displayed. (Figure 5)

A measure can be made the head of a group of

measures. In this case, any modification that affects

the head measure will be applied to the whole group

of measures.

Measures can be set to three different modes: inherit

(the default), linked, and locked. Inherit mode means

that when you modify any of the measures in a

session, the modifications might be applied to all the

measures in inherit mode following the edited one.

Figure 5

Linked mode means that a measure (or group of

measures) is linked to some previous measure (or

group of measures). Modifications on the latter will

be applied to the linked one. Locked mode means that

a measure (or group of measures) can only be

modified by directly editing it.

When editing a measure, the user can decide how far

down in the inheritance chain the changes must be

applied. Furthermore, a measure can be made a

barrier to stop modifications descending through the

chain. The inherit-mode measures beyond a barrier

will only be affected by modifications to a measure

located also after that barrier.

The user can change the time signature of a measure

or group of measures, make it subdivisible, and select

the number of beats per subdivision. If the measure is

subdivided, subdivision marks will be displayed on

the measure. In this case, SMS Conductor will pay

attention to conductor’s queues within the limits of a

subdivision. The deviation is then entered as a

percentage of the subdivision’s duration. Else, SMS

Conductor will only take queues within the deviation

limits surrounding the measure’s downbeat. In this

case, the deviation percentage refers to the measure’s

duration.

If a measure (generally a group of measures) is

marked Ad libitum, SMS Conductor will place a

fermata at the end of the group. Time stretch will not

be applied during this section. A conductor’s queue

will then position the application in alert state waiting

for a second queue to start playing the measure after

the fermata. If the section was not done yet, SMS

Conductor will jump to the fermata location and skip

part of the sound. If the section has been entirely

played, three options can be applied:

1. The synthesis is paused waiting for a queue to

continue.

2. The synthesis is paused, a short amplitude decay

is applied to the synthesis before pausing, and a

short amplitude rise applied when restarting.

3. An endless loop is applied on the synthesis of the

last few frames of the analysis waiting for a

queue to move forward.

These options are selected by using one of three

different types of fermata. (Figure 6)

Figure 6

3.3 Other score editing options

The length of the drawn squares representing the

measures is proportional to the measures duration.

When the user enters new tempi or

accelerandi/ritardandi markings the duration of the

measures and their graphical representation are

modified accordingly.

Besides tempo markings, fermata and text, dynamic

markings can also be entered (crescendi, decrecendi,

forte, piano, etc.). When entering dynamics, the user

can either select to enter them simply as reminders

(graphical display) or allow them to actually modify

the synthesis amplitude. In this case, the user must

define the value in decibels of the dynamic symbol he

chooses to display on screen.

Finally, rehearsal sections can be defined and linked

one to another in case a similar or identical measure

properties and distribution need to be shared at

different places in the music (reexpositions). When

rehearsing, the conductor can easily move to the

beginning of any of the defined rehearsal sections and

start performance at that point.

3.4 Synthesis transformations

In addition to the conductor’s guided time-stretch

fluctuations, SMS Conductor allows the user to

predefine envelopes to further modify tuning

(frequency), amplitude, and stretch/compress parts of

the original sound (Figure 7). This envelope

transformation can be saved, if wished, as a new SMS

analysis file, or added at performance time.

Figure 7

The latter parameters can also be modified during

performance through sliders that are displayed at the

top of the screen when SMS Conductor is in

performance mode, or by means of a set of MIDI

continuous controllers (MIDI table). There is a fourth

slider to set the expected reactive delay of the

musicians to the conductors actions (which varies

depending on the country, the conducting style, the

music, the musicians, and even the acoustics of the

hall), in order to prevent the synthesized sound to

anticipate to the musicians playing.

3.5 On conducting

SMS Conductor will wait for and measure two to four

queues (as selected) prior to starting to play. This will

set the initial tempo as long as the first measure

allows deviations on the expected tempo, otherwise

the expected tempo will be taken. From this point on,

SMS Conductor will collect the MIDI_IN messages.

If there are no input messages the application will

stand by the expected tempo. When a message gets in,

the expected musicians reactive delay is added to the

message’s arrival time. If this added time falls within

the time margin set by the current beat or measure’s

deviation, the message will be processed. SMS

Conductor does not only measure the incoming

messages against the expected tempo, but also takes

in account the last established tempo which attempts

to preserve.

For example: if the score is supposed to accelerate

from a tempo of 60 to a tempo of 80, and the

conductor is already conducting at 80 (translated to a

time stretch synthesis value of 1.33333), SMS

Conductor will try to accelerate accordingly to a

tempo around 106, it will not stay at 80 (which would

mean to fall back down to a stretch value of 1). If the

allowed deviation at that point is smaller than the

attempted one, SMS Conductor will accelerate as

much as possible within the given margin as long as

no new conductor’s queues are detected.

The messages are processed by a separate thread

which sends the transformation data to the

synthesizing computer(s) via MIDI. This is done this

way because, even though MIDI_OUT messages need

not be sent with a frequency higher to three or four

times per second (unless envelope values are applied

during performance, in which case messages are sent

at a frequency of 100Hz), SMS Conductor must be

free to receive and evaluate incoming messages at a

much higher frequency (both MIDI and system

messages).

During performance, the conductor’s tempo is

monitored as a level fluctuation above and below the

expected tempo. Two clocks showing score time and

performance time appear on screen as well as the

current measure number and tempo numeric value.

There is also a sort of street light indicator that lets

the conductor know whether or not his/her action has

successfully reached its goal.

3.6 The MIDI interface

Any device capable of sending a MIDI note-on can be

used, though hopefully we will avoid having a

conductor pressing a keyboard key with one hand

while conducting with the other.

The interface we are currently experimenting with is

GAMS [8]. This device uses four speakers,

conveniently located, that send ultrasounds by means

of which, the position of a small interface (wand)

placed on the conductor’s hand is detected. Even

though the device is capable of tracking, not only the

position of the hand, but also the speed and direction

of its motion (which could inspire a more complex

and risky attempt to guessing the conductor’s

intentions), it is safer not to ask a conductor to

substantially modify his/her usual behavior.

Future versions of SMS Conductor will include the

possibility of entering a musical score representation

or a midi file to track and match in performance,

allowing the application to synthesize the sound

following a musician’s playing which will be sending

note messages via a MIDI pitch converter.

4 Conclusion

SMS has, for some time now, been developed and

researched with few applications to composition and

performance. The musical practice world imprints a

series of demands that are currently being translated

into user applications, which will allow musicians to

take advantage of the great potential that SMS offers

them in their various creative tasks. SMS Composer

and SMS Conductor are two of such applications

intended to enrich the possibilities of both computer

generated works and computer assisted performance.

5 Acknowledgments

SMS Composer uses the SMS Classes written by

Jordi Bonada to synthesize SMS files.

I want to thank all the research team working on SMS

at the Audiovisual Institute of the Pompeu Fabra

University in Barcelona, and especially to Xavier

Serra and Jordi Bonada for their help and support.

References

[1] X. Serra. “Musical Sound Modeling with

Sinusoids plus Noise”. G. D. Poli and others

(eds.), Musical Signal Processing, Swets &

Zeitlinger Publishers, 1997.

[2] A. Loscos and E. Resina. “SmsPerformer: A

Real-Time Synthesis Interface for SMS”.

Proceedings of the Digital Audio Effects

Workshop (DAFX98), 1998.

[3] E. Resina. L’Esquizofrènia dels Sons, for

reciter, septet, and computer generated sound,

1993-94. (SMS running on NeXT).

[4] E. Resina. si eSe Me vieSe, 1996. (SMS running

on NeXT).

[5] E. Resina. Menstruació, for female voice and

computer transformed voice, 1998. (SMS on

Windows).

[6] J. Rahn. “The Lisp Kernel: “A Portable

Software Environment for Composition”,

Computer Music Journal 14(4):42-58, 1990.

[7] H. Taube. “Common Music: A Music

Composition Language in Common Lisp and

CLOS”, Computer Music Journal 15(2):21-32,

1991.

[8] GAMS by Acoustic Positioning Research Inc.

