
Constraint-Based Spatialization

François Pachet

Olivier Delerue
Sony Computer Science Laboratories - Paris.

pachet{delerue}@csl.sony.fr http://www.csl.sony.fr

Abstract

This paper describes an application of constraint programming to interfaces for audio mixing. Mi-

diSpace is an interface representing each sound source of a musical piece as a graphical icon, as

well as an object corresponding to the listener in a window. MidiSpace is coupled to a spatializa-

tion system so that moving graphical objects modifies the audio mixing of the musical piece ac-

cording to the respective position of the sound sources to the avatar. We further introduce a con-

straint-based mechanism which allows to maintain consistency in the overall mixing. Constraints

represent properties of related sound sources, which should always remain true, and may be stated

by the user through the interface. When an object is moved, a constraint solver uses the constraints

to propagate changes. We describe the library of currently designed constraints, and propose an

extension of the system to handle reproduction systems with multiple loudspeakers.

1 Music Spatialization

Music spatialization has long been an intensive object

of study in computer music research. Most of the

work so far has concentrated in building software

systems that simulate acoustic environments for ex-

isting sound signals. These works are based on tech-

niques allowing to recreate impression of sound lo-

calization using a limited number of loudspeakers.

For instance, The Spatialisateur IRCAM [4] is a vir-

tual acoustic processor that allows to define the sound

scene as a set of perceptive factors such as azimuth,

elevation and orientation angles of sound sources

relatively to the listener. This processor can adapt

itself to any sound reproduction configuration, such

as headphones, pairs of loudspeakers, or collections

of loudspeaker. Other commercial systems with

similar features have recently been introduced on the

market, such as Roland RSS, the Spatializer (Spatial-

izer Audio Labs) or Q-Sound labs’s Q-Sound, which

builds extended stereophonic images. This tendency

to propose integrated technology to produce 3D

sound is further reflected, for instance, by Microsoft’s

DirectX API now integrating 3D audio.

Spatialization techniques have mostly been used to

enhance existing interfaces or systems such as the

Cave or CyberStage [2] [3]. Conversely, we are inter-

ested in building interfaces for controlling spatializa-

tion per se. The main applications are 1) high level

interfaces for mixing devices, and 2) interfaces for

future multi track listening devices. In this context,

the main concern is to maintain some sort of consis-

tency of musical pieces, while allowing the user to

navigate freely in a control space.

We will first describe our system MidiSpace, which

precisely allows users to control in real time spatiali-

zation of sound sources, without any restriction. In

Section 3, we will show how to add some semantics

to limit the range of user actions in a meaningful way.

Finally in Section 4 we will show how to extend the

system to handle sound reproduction systems with

several loudspeakers in an homogeneous way.

2 The MidiSpace System

2.1 The basic system

MidiSpace is an interface for controlling an arbitrary

spatialization system. The basic idea is to represent

graphically sound sources in an editor, as well as an

avatar that represents the listener itself. In this editor,

the user may either move its avatar around, or move

the instruments themselves. The relative position of

sound sources and the listener’s avatar determine the

overall mixing of the music, according to simple

mapping functions, as illustrated in Figure 1. The 2D

interface of MidiSpace is represented in Figure 2.

The real time mixing of sound sources is realized by

sending Midi volume and panoramic messages to the

spatialization system.

listener’s

avatar

sound source

α ρ

Figure 1. Volume of sourcei =

f(distance(graph_objecti, listener_avatar)). f is

a function mapping distance to Midi volume.

Stereo position of sourcei =

g(angle(graph_objecti, listener_avatar)), where

angle is computed relatively to the vertical

segment crossing the listener’s avatar, and g is

a function mapping angles to Midi panoramic

positions.

An application of MidiSpace is the control of mixing

consoles (e.g. the Yamaha 02R). Indeed, a mixing

console can be seen as a simple spatialization system.

3 Introducing Mixing Consistency

with Constraints

There are two main problems with the basic system

described above:

1) users can move only one object at a time, which

may be cumbersome in a lot of situations

2) users have in some sense too much control: the

configuration of sound sources may be freely ed-

ited by the user, which may not have the required

knowledge to ensure that the overall sound is not

distorted, let alone “pleasant”.

To solve these problems, we introduce constraints in

the systems. Constraints allow to ensure some sort of

consistency in the mixing, and also to raise the level

of the communication with the system.

3.1 Mixing Consistency

Mixing involves a set of actions that can often be

defined as compositions of atomic actions. For in-

stance, sound engineers use knowledge on the energy

of the signal to ensure that it always lies between

reasonable boundaries. One effect of this property is

that sound levels are usually not set independently of

one another. Typically, when a fader is raised, an-

other one, (or a group of other faders) should be low-

ered. Conversely, several sound sources may be logi-

cally dependent. For instance, the rhythm section may

consist in the bass track, the guitar track and the drum

track, and all these tracks may have to be edited to-

gether. Other typical mixing action is to assign

boundaries to instruments or groups of instruments,

and so forth.

The main idea of MidiSpace is to encode this type of

knowledge on sound spatialization as constraints,

which are interpreted in real time by a constraint

propagation algorithm.

3.2 Constraints and Mixing Consistency

Constraints are defined by relations holding on vari-

ables. We will first describe the variables needed, and

then the relations.

3.2.1 MidiSpace Variables

In MidiSpace, the variables are the following. First

there are as many variables as sound sources on the

interface. More precisely, each sound source is repre-

sented by a point pi , i.e. two integer variables (one

for each coordinate): pi, where pi = {xi, yi } with xi, yi

∈ [1, 1000] (a typical screen).

Moreover, there is one variable representing the posi-

tion of the listener’s avatar, itself consisting of two

integer coordinate variables: l, where l = {xl, yl } with

xl, yl ∈ [1, 1000].

3.2.2 MidiSpace Constraints

Most of the constraints on mixing involve a collection

of sound sources and the listener. We describe here

the most useful ones.

• Constant Energy Level

The simplest constraint is the constraint stating that

the energy level between several sound sources (i =

1, .., n) should be kept constant. According to our

model of sound mixing, this constraint can be stated

between variables pi, i = 1, .., n as follows:

p l Ctei
i

n

− =
=

∏
1

Intuitively, when one source is moved toward the

listener, the other sources should be “pushed away”.

• Constant Angular Offset

This constraint is the angular equivalent of the pre-

ceding one. It expresses that the spatial organization

between sound sources should be preserved, i.e. that

the angle between two objects and the listener should

remain constant. It can be stated between variables p1

and p2 as follows:

(, �,)p l p Cte1 2 =

• Constant Distance Ratio

The constraint states that two or more objects should

remain in a constant distance ratio to the listener:

p l p l1 1 2 2− = −α ,

• Radial Limits of Sound Sources

This constraint allows to impose radial limits in the

possible regions of sound sources. These limits are

defined by circles whose center is the listener’s avatar

(as represented graphically in Figure2).

p li − ≥ αinf
 (lower limit) p li − ≤ α

sup
 (upper limit)

• Grouping constraint

This constraint states that a set of n sound sources

should remain grouped, i.e. that the distances between

the objects should remain constant (independently of

the listener’s avatar position):

()∀ ≤ − =i j n x x Ctxi j i j, : ,
and ()y y Ctyi j i j− = ,

3.3 Constraint Algorithm

The examples of constraints given above show that

the constraints have the following properties:

• The constraints are not linear. For instance, the

constant energy level (between two or more

sources) is not linear. This prohibits the use of sim-

plex-derived algorithms, such as [1].

• The constraints are not all functional. For instance,

geometrical limits of sound sources are typically

inequality constraints.

• The constraints quickly induce cycles. For instance,

a simple configuration with two sources linked by a

constant energy level constraint and a constant an-

gular offset constraint already yields a cyclic con-

straint graph.

There is no general algorithm, to our knowledge,

which handles non linear, non functional constraints

with cycles. We designed a simple propagation algo-

rithm which implements only a part of our require-

ments, but with predictable and reactive behavior.

The current algorithm we use is based on a simple

propagation scheme, and allows to handle functional

constraints, inequality constraints. It handles cycles

simply by checking conflicts. It is described in [5].

Basically each constraint requires two specifications:

1) an invariant, defined in terms of the positions of

the sources and the listener. This invariant repre-

sents a relation which should always be true.

2) a propagation method, which specifies the choices

made, in case of indeterminacy. This method

specifies how the invariant should be satisfied

when one of the variables in the relation sees its

value changed, either by the user, or by the propa-

gation algorithm itself.

3.4 The Interface

The interface for setting constraints is straightfor-

ward: each constraint is represented by a button, and

constraints are set by first selecting the graphical

objects to be constrained, and then clicking on the

appropriate button. Constraints themselves are repre-

sented by a small ball, whose color depends on the

constraint’s type, linked to the constrained objects by

lines. Some constraints have specific behavior, such

as “limit constraints”, showing a circle centered on

the listener’s avatar to display their scope (Figure2).

constraints

the upper limit

constraint, set

on the bass

Figure 2. The 2D MidiSpace interface for specifying

mixing constraints.

4 Multi Loudspeakers Systems

In this section, we focus on the application of MidiS-

pace to handle arbitrary configurations of loudspeak-

ers. We will first introduce a useful constraint which

allows to represent pairs of coupled sound sources,

and which can be seen as an approximation of a pair

of loudspeakers. We will then revisit the MidiSpace

system by stressing on two important underlying

assumptions regarding the status of the sound repro-

duction system. We then propose to handle multiple

loudspeakers by introducing a “trick”: represent loud-

speakers as constraineable objects in the interface.

4.1 The “Stereo Pair” Constraint

This constraint allows the representation of tightly

coupled sources, such as the microphones of an XY

pair. Its representation requires the use of a “virtual”

object that defines the azimuth of the pair : this object

is then used as a handle to the whole pair.

This constraint ensures that both sources remain

symmetrically opposed with respect to the handle

which can be done by combining a constraint on

angles with a constraint on distances, using the han-

dle as a reference position.

Specific choices in the propagation method of this

constraint are made in order to provide several con-

trols on the parameters of the pair. As a result, when a

source is moved, the constraint propagates the change

to the other source, rather than to the handle : this

allows to adjust the stereo angle of the pair. On the

other hand, moving the handle propagates to both

sources, and changes the overall angular position of

the pair, as well as its global level.

Thus, this constraint can be used for representing a

pair of loudspeaker, e.g. two sound sources corre-

sponding to left and right channels of a stereo signal.

However, it is not sufficient for handling multi loud-

speaker configurations.

4.2 Introducing Multi Loudspeakers

MidiSpace in its basic form is based on two strong

assumptions. First, it is assumed that the loudspeakers

are positioned at fixed places, and second, that the

listener (the real one, not its avatar) is ideally cen-

tered between the loudspeakers. In the case of stereo

configurations, these assumptions are most often

approximately satisfied. However, in the case of

multi loudspeakers configurations, this is no longer

true.

MidiSpace is designed to control any spatialization

system. In particular, Ircam’s spatializer is interesting

because it can handle arbitrary configurations of

loudspeakers. Indeed, one of the original characteris-

tic of Ircam’s spatializer is to separate clearly the

layer in charge of the spatialization from the layer in

charge of the actual sound reproduction system.

In principle, therefore, it is possible to use MidiSpace

in a multi-loudspeaker setting. This would require

two interfaces:

1) MidiSpace’s current interface to control the rela-

tive positions of sound sources

2) an interface to set the parameters corresponding to

the actual sound reproduction.

However, this may be cumbersome to use and con-

trol, since it requires two indirections. Instead, we

propose minimal extensions of MidiSpace to handle

directly the configuration of the sound reproduction

system. In particular we propose to represent in the

same interface the sound sources, as well as the loud-

speakers. This “trick” allows to have only one inter-

face instead of two. Additionally, it allows to create

interesting mixings which would be impossible to do

otherwise. To implement this, we need two things: a

redefinition of the mapping functions to handle sev-

eral loudspeakers, and 2) a global constraint to ensure

that the loudspeakers always remain “coherent”.

4.3 Mapping Functions for Several Loud-

speakers

Taking into account multi loudspeaker outputs in-

duces a major change in the “sendSpatMsg” method

of each sound source. In the case of a stereo configu-

ration, a sound source outputs a signal s that will be

amplified by both speakers, according to the sound

source position. If the coordinates of the source are

represented in a polar system as (¯,�� the right ampli-

fication is expressed as a function of these coordi-

nates: ()RightAmp f= ρ θ, as well as the left amplifi-

cation: ()LeftAmp g= ρ θ,

Source S

left right

ρ
θ

−1 1

Figure 3. Polar coordinates of a sound source

In order to keep a constant energy level when the

sound source moves along a constant radius, these

functions must verify: () ()∀ + =θ ρ θ ρ θ, , ,f g Cste2 2 .

Moreover, for symmetrical reasons, we need:

() ()∀ = −ρ θ ρ θ ρ π θ, : , ,f g . A solution to this problem is:

() () ()f ρ θ ρ θ, cos= −1 2 and () () ()g ρ θ ρ θ, sin= −1 2 with

[]θ π∈ 0, and []ρ ∈ 0 1,

This model can be extended in the case of multi loud-

speaker outputs, by representing the positions of each

loudspeaker within the same coordinates system:

Source S

left

front

right

back

ys

xs

Speaker s1

xs1

ys1

Figure 4. Representing the loudspeakers within the

coordinates system

Amplifications values are then computed as a combi-

nation of two transfer functions mapping front/back

and left/right axis.

left right

left speakers right speakers

0

128

front back

front speakers back speakers

0

128

Figure 5. Transfer functions for front/back and

left/right axis

Eventually, the “sendSpatMsg” method of a sound

source will result in computing its amplification val-

ues for each loudspeaker and send them to the spa-

tialization device.

4.4 Coherence of Loudspeakers

The loudspeaker “objects” in MidiSpace represent

particular objects which are in fixed positions. To

ensure that the interface always reflects this state, we

add a constraint on all loudspeakers.

This constraint ensures a constant position of “vir-

tual” loudspeakers with respect to the listener avatar.

It corresponds exactly to the “Grouping” constraint

defined in 3.2, with the following additions:

• The listener is considered as a constrained object

(so that the group constraint can be set)

• The loudspeakers cannot be moved explicitly by

the user (so that the listener is not forced to move

by the constraint).

5 Conclusion

We have described MidiSpace, a system to control

spatialization systems through an intuitive interface.

Constraints are added to MidiSpace to ensure consis-

tency of mixings. We described an extension of Mi-

diSpace to handle configurations of multiple speak-

ers, based on the idea of representing loudspeakers as

sound sources in an homogeneous way, together with

specialized constraints. The resulting system allows

to control precisely the spatialization system, and to

create novel but realistic mixings.

6 References

[1] Borning A. Lin R., Marriott K., “Constraints for

the web”, Proceedings of ACM Multimedia Con-

ference, Seattle, pp. 173-181, 1997.

[2] Dai P., Eckel G., Göbel M., Hasenbrink F., Lalioti

V., Lechner U., Strassner J., Tramberend H.,

Wesche G., “Virtual Spaces: VR Projection Sys-

tem Technologies and Applications”, Tutorial

Notes, Eurographics '97, Budapest, 1997.

[3] Eckel G., “Exploring Musical Space by Means of

Virtual Architecture”, Proceedings of the 8
th

 In-

ternational Symposium on Electronic Art, School

of the Art Institute of Chicago, 1997.

[4] Jot J.-M., Warusfel O., “A Real-Time Spatial

Sound Processor for Music and Virtual Reality

Applications”, Proceedings of ICMC, 1995.

[5] Pachet F., Delerue O., “MidiSpace: A Temporal

Constraint-Based Music Spatializer”, Proceeings

of ACM Multimedia, Bristol, 1998.

