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Abstract

The purpose of this presentation is to demonstrate the practical interest of an original improvement
of the classic Fourier analysis.  The n-th order short-time Fourier Transform (FTn) extends the
classic short-time Fourier transform by also considering the first n signal derivatives.  This
technique greatly improves Fourier analysis precision not only in frequency and amplitude but also
in time, thus minimizing the well-known problem of the trade-off of time versus frequency.  The
implementation of this analysis method leads to an enhanced phase vocoder particularly well-
suited for extracting spectral parameters from the sounds.

1 Introduction

In order to faithfully imitate and also transform
existing sounds using a computer, a formal
representation is needed for these sounds.  Spectral
models provide general representations in which such
operations can be performed in a very natural and
musically expressive way.  Such models require an
accurate analysis method to extract spectral para-
meters from sounds which were usually recorded in
the temporal model, that is audio signal amplitude as
a function of time.  The accuracy of the analysis
method is extremely important since the perceived
quality of the resulting sounds depends mainly on it.

In spite of its many drawbacks, the short-time Fourier
transform is often used in the very first step of the
analysis process.  The purpose of this presentation is
to show the practical interest of an original improve-
ment of the classic Fourier analysis.  The n-th order
short-time Fourier Transform (FTn) takes advantage
of the first n signal derivatives in order to improve the
precision of the Fourier analysis not only in
frequency and amplitude but also in time, thus
minimizing the problem of the trade-off of time
versus frequency in the classic short-time Fourier
transform.

After introducing in section 2 the sound model which
is considered in the rest of this paper, we summarize
in section 3 the principles of the FTn method and the
way to implement it for n = 1, section 4 presents the
precision enhancements achieved, and section 5 gives
some results obtained using an enhanced phase
vocoder based on this method.

2  Sound Model

Analyzing a sound means extracting parameters from
it according to a certain mathematical representation
of the sound: a sound model.  Defining the model
precisely is necessary before describing the analysis
method itself.

Since spectral models parameterize sound at the
basilar membrane of the ear, the resulting sound
transformations are closely linked to the acoustic
perception.  Xavier Serra and Julius O. Smith III
propose in [1] a spectral model based on a
deterministic plus stochastic decomposition.  This is
the model mainly considered here, except that the
equations have been reformulated for the purposes of
homogeneity and some hypotheses have been
modified.  This sound model decomposes any audio
signal in two parts: a deterministic part consisting of
sinusoids, plus a stochastic part also called noise.

The present work focuses on a restriction of this
model assuming that the noise component can be
neglected.  In practice, this restriction means that the
considered sounds should have a low noise level,
which is true for many clear natural sounds.

The remaining deterministic part consists of a sum of
sinusoidal oscillators (partials) for which frequency
and amplitude evolve in a slow time-varying manner.
More formally, the expression of an audio signal a is
given by the following equations:
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where t is time expressed in seconds, P is the number

of partials, f p , a p , and ϕ p  are the frequency,

amplitude, and phase of the p-th partial respectively.

The initial phases (for t = 0) will be ignored during
analysis and can arbitrary be set to 0 (zero) for
resynthesis (this choice can be done according to
psychoacoustic experiments which are beyond the
scope of this presentation).

Another restriction is that the partials have to be
sufficiently spaced in frequency, i.e. given any sound
a there must exist a minimal distance d > 0 so that:

min {| ( ) ( )|},i j t j if t f t d≠ − >          (3)

This condition, which also prevents two partials
frequencies from “ crossing ”, is a reasonable
hypothesis verified for almost every monophonic
natural sound.  The reasons why it is needed will be
discussed in the next section.

3  Principles of FT
n

An exhaustive theoretical presentation of the FTn

method is beyond the scope of this paper.  This
presentation can be found in a research report by
Myriam Desainte-Catherine and Sylvain Marchand
[2] submitted for publication.  However this section
summarizes its most important points for n = 1, since
this is necessary for the understanding of the results
exposed in the rest of this presentation.  Basic
knowledge of the classic short-time Fourier analysis
is also required.

In the sound model which is considered in this paper
both frequency and amplitude are slow time-varying
parameters, so that during a single analysis window
of the short-time Fourier transform the frequency and
amplitude derivatives are close to 0 (zero).  Under
such conditions using the first signal derivative can
help improving Fourier analysis precision both in
frequency and amplitude.  The idea behind this
technique is extremely simple: derivating a sine gives
a sine, with a different phase but the same frequency.

3.1  Signal Derivatives

Since ap is slow time-varying, let us assume that its
derivative is 0 (zero). From Equations 1 and 2.1:
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This section summarizing the first order Fourier
analysis method (FT1), only the first signal derivative
must be examined.

3.2  Spectral Parameters

In practice the audio signal a is uniformly sampled at
rate R.  Let us note DFTk the amplitude spectrum of
the Discrete Fourier Transform of the k-th signal
derivative, computed using N consecutive samples
from a certain location l.  More formally:
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where w is an N-point analysis window.

A consequence of Equation 1 and Equation 4 is that
for each partial p there is a maximum in both DFT0

and DFT1 spectra for a certain index mp.  Note that
DFT0 is the classic short-time Fourier analysis, and
using only DFT0 leads to the classic phase vocoder.
Very good introductory texts on this subject can be
found for example in [6], [7], or [8].  Approximate
frequency and amplitude values are:
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Taking advantage of DFT1, a much more accurate
frequency value can be obtained using the equation:
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It is extremely important to note that the effects of
any analysis window are the same on both DFT0 and
DFT1 as soon as the same analysis window is used to
compute these two spectra, and these effects are
compensating thanks to the division in the preceding
equation.  The accurate partial amplitude is:
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where W f( )  is the amplitude of the continuous

spectrum of the analysis window w at frequency f.
With the FT1 method this window should be chosen
as small as possible.  The only condition is that two



frequencies must lie in two different Fourier
transform bins, which is always possible thanks to the
model restriction defined in Equation 3. When this
condition is not satisfied, a bin contamination occurs
and makes Equation 8 false.

4  Analysis Precision

The analysis window w has a great impact on the
analysis precision in both frequency and amplitude.
An exhaustive discussion about analysis windows is
beyond the scope of this paper, and can be found in
[3].  Before presenting some results of the FT1

method on complex natural sounds, we point out
some limitations and imprecisions of the classic
Fourier analysis - fixed by the FT1 analysis - using a
single sinusoidal oscillator.  Of course this example is
synthetic but this is a real reference example for any
analysis.  Indeed many sounds consist of a sum of
partials and the analysis process is a linear operation.

Figure 1 and Figure 2 show the results of the short-
time Fourier analysis on a single sinusoidal oscillator
for which frequency is linearly increasing while its
amplitude remains constant.

4.1  Frequency Precision

With the FT1 analysis the evolutions of the partial
frequency shown in Figure 1 are almost perfectly
recovered even with a very small N thanks to
Equation 8.  Such a result would have been
impossible to achieve with the classic short-time
Fourier analysis since a large analysis window is
needed to have such a great frequency precision, in
which case the time resolution is so bad that the
evolution of the frequency with time can not be
successfully recovered.  That is the reason why the
classic phase vocoder yields poor results when
analyzing sounds with vibrato.

        frequency

time

Figure 1. Original (dashed) versus Fourier
analyzed (solid) frequency evolutions for a
single sinusoidal oscillator for which
frequency is linearly increasing while its
amplitude remains constant. (The marks on

the time axis indicate when the oscillator
frequency goes from one bin to the other.)
The analyzed frequency curve is not a line as
it should be, but a sort of stairs, due to
spectrum sampling.

4.2  Amplitude Precision

With respect to amplitude, again the FT1 analysis
accurately recovers the evolutions of the partial
where the classic Fourier analysis has failed.  The
effects of windowing on the amplitude are almost
completely cancelled thanks to Equation 9.  With the
classic short-time Fourier analysis, the analyzed
amplitude curve is not flat, i.e. not a constant, but a
succession of bumps, due to the shape of the analysis
window mainlobe.  This is why the classic phase
vocoder can perform poorly when analyzing sounds
with tremolo.

Of course such little deformations can not generally
be heard, but they may become dramatically audible
as soon as some transformations are performed.
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Figure 2. Original (dashed) versus Fourier
analyzed (solid) amplitude evolutions for the
same oscillator as in Figure 1.  The analyzed
amplitude curve of the oscillator is distorted
as its frequency goes from bin to bin, due to
the shape of the analysis window mainlobe.

5  Results on Natural Sounds

The short-time Fourier analysis is present in the very
first step of many spectral analysis methods like the
McAulay-Quatieri analysis [4] used in  Lemur [5] and
Spectral Modeling Synthesis (SMS) [1].  When no
precautions are taken, the imprecisions pointed out in
the previous section appear.

The FTn analysis method has been implemented as a
part of a sound analysis software package running on
different platforms, called InSpect [9].  This program
features accurate partial tracking for low-noise sound.
It also performs basic sound operations (time
compression and expansion, amplitude envelope



extraction, etc.) and allows resynthesis according to
the spectral model considered.  In the first step of its
analysis algorithm, the classic phase vocoder based
on the short-time Fourier transform has been replaced
by an enhanced version using the FTn method, which
is particularly well-suited for analyzing the
deterministic parts of sounds.  Our method has been
successfully tested on both synthetic and natural
sounds with a low noise level, and the same precision
improvements as in section 4 happen when such a
replacement is done.

For example it is well-known that sounds with vibrato
are hard to analyze with the classic short-time Fourier
transform.  In order to analyze the voice with deep
vibrato of a soprano singer, the FTn method requires
an analysis window 8 times smaller than the classic
Fourier method does and a great quality improve-
ment is achieved, as shown in Figure 3.

Of course the FTn analysis succeeds with classic
instruments like guitars, pianos, trumpets, etc.
Samples are available on the Internet [9].  On most of
high-pitched sounds (more than 180 Hz), excellent
results have been achieved with very small analysis
windows, down to 256 points with R = 44100 Hz, i.e.
less than 6 ms analysis time.

Figure 3. Snapshot of the InSpect
program analyzing a soprano voice with
deep vibrato.  The analysis window is
512-point Hann and R = 44100 Hz.  The
curves represent the partial frequencies as
functions of time (only 0.3 seconds are
visible on the picture).

Originally designed for sounds with slow time-
varying partials, our method has turned out to allow
precise analysis of instruments with quite fast
evolutions (even for the attack phase).  This is indeed
possible because small analysis windows are
sufficient for high-pitched sounds.

6  Conclusions

In this presentation FTn - n-th order (short-time)
Fourier Transform - has been introduced. This
method is an enhancement of the standard short-time
Fourier transform, providing greater accuracy for
both frequency and amplitude with small analysis
windows, thus permitting greater time resolution.
From the complexity point of view, this method is
very interesting, since it requires the computation of
two small discrete Fourier transforms instead of one
much larger.

This method can be practically used during the
analysis phase of spectral modeling synthesis, instead
of a classic phase vocoder.  Making a comparison
between the FTn method and the zero-padding plus
interpolation method described in [10] and used in
SMS should be an interesting research topic.

The main interest of this analysis method, providing
precise spectral modeling parameters, is to allow ever
deeper musical transformations on sounds by mini-
mizing deformations due to analysis artifacts.  The
next step is to structure the sound model in such a
way that musical operations can be simply expressed.
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