FX8010 - A DSP Chip Architecture for Audio Effects

Steve Hoge

Joint E-mu/Creative Technology Center

steveh@emu.com, http://www.emu.com, http://www.creaf.com

Abstract

FX8010 is a DSP chip architecture specifically designed for time-domain 3D audio and effects
processing. It is a 32-channel, 32-bit integer design that can deliver 100MIPS at a S0KHZ audio
sample rate. It features powerful delay memory and I/O engines that execute in parallel with and are
decoupled from microprogram execution. Its highly regular architecture supports the simultaneous
execution of large numbers of separately compiled and downloaded programs with zero-overhead
signal patching. A compiler for FX8010 programs generates code from C-style expressions and
control-flow constructs. FX8010 has been implemented in two differentASICs for PC multimedia

and professional audio applications.

1. Introduction

FX8010 is a real-time digital signal processing
architecture specifically designed to implement time-
domain digital audio effects and multichannel mixing.
By coupling a highly regular four-operand, 32-bit
integer architecture with independent delay memory
and I/O engines, FX8010 delivers 100MIPS at
S0KHZ sample rate and is capable of simultaneously
executing up to eight high-quality reverberators or
dozens of simpler algorithms.

The FX8010 architecture has already been
implemented in two different ASICs. The
EMUIOKI, a PCl-based wavetable synthesizer,

DirectSound accelerator and audio interfacechip, uses
the FX8010 as part of its 3D and environmental audio
effectsengine and is a major element of the Creative
Technology SBLive! and E-mu Audio Production
Studio products. The RChip is a dedicated effects
processor for embedded musical instrument and
professional audio applications, and is one of several
custom DSPs used in E-mu's Mantis digital audio
mixing system. Numerous patents are pending on
unique aspects of the FX8010 architecture.

2. Basic Architecture

The FX8010 design comprises a 32/67 bit execution
unit, a 1K memory array of 32-bit General Purpose
Registers (GPRs) for signals, coefficients, and
addresses, and 32 channels of 32-bit signal I/O via
double-buffered]/O GPRs. Microprogram storage is
an array of 1K instruction words, each of which
specifies one opcode and four GPR operand addresses.

The processor's opcodes include fractional and integer
multiply/accumulate instructions, linear interpolation,
bit-wise logical operations, conditional instruction
execution and data movement, and single-cycle
logarithmic and exponential conversion. The
multiply/accumulate unit uses a 67-bit accumulator
including 4 guard bits and can accommodate double-
precision operations.

*Data lnddress Ictrl A 1RQ

Host Interface To 1M
Samples
External
TRAM
TRAM
Buffer L _>
GPRs Engine
1X | l 1K GPR
Instr w Memor: Internal
32 Memory Y TRAM
Chan (EMU10K1) 32 Chan
Audio T Audio
Inputs I/0 Outp|:_s
Buffer »
|_GERs |

Figure 1. Basic FX8010 Architecture

Internal and external "tank" memory (TRAM) for
audio delay lines and table look-up is managed by a
TRAM engine that operates independently of and in
parallel with microprogram execution. This engine
transfers audio samples between external memory in a
IM word off-chip address space and internal dual-
ported data buffer GPRs shared between the TRAM
engine and the FX8010 execution unit. Up to 256
delay line or table accesses each sample period are
implemented by this addressing and data move
engine.

In contrast to most commercial DSP chips, the
FX8010 is sample-locked and runs without jumps or
branches, though conditional data movement is
available and block-oriented control flow constructs
can be implemented using conditional instruction
execution. The architecture is specifically designed to
support the execution of multiple simultaneous but
independently compiled and loaded effects programs,
a capability that is facilitated by the conditional
execution mechanism, a lack of exposed pipelining,
and the direct addressing of GPR operands.

Since FX8010 cannot operate alone but is designed to
be controlled by a conventional microprocessor, a
high-bandwidth host interface provides mapping of
the FX8010's internal GPR and microinstruction
memory directly into the host's address space.
Interrupts from the FX8010 to the host can be
generated under control of DSP programs and when

signal saturation (clipping) occurs. A debug facility
allows the processor to be run in single-step mode.

3. Execution Unit
3.1 Arithmetic

The FX8010's 32-bit integer arithmetic exceeds the
accuracy of single-precision floating point, and has
sufficient dynamic range and precision for almost any
audio processing or filtering operation. Total
dynamic range is over 192dB, and the center
frequency resolution of a biquad filter using 32-bit
coefficients is less than 1HZ across the entire audio
range. While all fractional coefficientsmust lie in the
range of [-1.0..1.0], sufficient footroom exists to
normalize most filter topologies so that their
coefficients fall within this range. Limit cycles that
can arise in recursive filters from asymmetric
truncation of results towards - are not typically an
issue in FX8010 due to the small magnitude of the
truncation error.

The accessibility of both the MS and LS halves of the
FX8010 67-bit accumulator allow the
multiply/accumulator unit to perform either fractional
or integer arithmetic, depending on which half is
retrieved as the result operand and how it is saturated.
This accessibility also makes possible double-
precision operations, if necessary. With both integer
and fractional multiplication available, the FX8010
compiler can generate coefficients that implement
conventional left and right shift operators (<< and
>>),

3.2 GPR Operand Architecture

The FX8010 execution unit is connected directly to a
IK GPR address space for operand storage. Each
FX8010 instruction includes an opcode and four
independent GPR addresses that define the
instruction's three input operands A, X and Y and the
result operand R. For multiply/accumulate
instructions, A is the accumulator while X and Y are
symmetrical multiplier inputs. There are no visible
hazards in the FX8010 operand pipeline, so the result
operand of one instruction can become any of the
input operands on the next instruction cycle.

Many DSP architectures place input registers ahead of
their execution units that must be kept filled with
operands by the programmer (often with parallel move
operations) in order to extract maximum compute
bandwidth from the processor. Keeping these
registers full at all times is a challenging problem of
operand sequencing and sometimes even memory
layout, and becomes one of the arcane skills of the
DSP programmer. By contrast, the FX8010 math
unit has no such input registers; instead, all
instructions fetch their operands by directly
addressing GPR memory. In this respect the FX8010
architectureis very programmer-friendly.

Similarly, most DSPs also have volatile
accumulators or output registers that must be saved
with data move instructions or recycled as "special"

input operands. While the FX8010 also has a
volatile accumulator output register, FX8010 result
operands are typically ordinary GPRs whose data
movement is implicit in the result operand address.
This accumulator can be reused by explicitly
specifying its GPR-mapped address as the A
operand, but is only necessary when extra headroom
(the accumulator guard bits) or precision (the LS 32
of the accumulator's 67 bits) need to be retained
through the next multiply/accumulate instruction.

The accumulator is one of several special registers
that are GPR-mapped, including the condition code
register (CCR), interrupt register, read-only delay line
and table base address registers, and noise (dither)
sources. In addition, FX8010 maps a collection of
useful ROM constants into GPR space that are used
as implicit operands in many instructions.

3.3 Instruction Set

Opcode | Operation

MAC Fractional multiply/add/subtract with optional
saturation/word wrap

MACINT | Integer multiply/add/subtract with optional
saturation/word wrap

ACC3 Accumulate 3 inputs with saturation

MACMV Multiply/accumulate with additional data move

SKIP Conditionally skip over instructions

ANDXOR | Multi-purpose bitwise logical instruction

TSTNEG Test and conditionally negate the result

LIMIT Test and conditionally output a higher/lower
threshold

LOG Convert linear to logarithmic representation

EXP Convert logarithmic to linear representation

INTERP | Linear interpolate between two values

Table 1: Typical FX8010 opcodes

As seen in the table of opcodes, the FX8010's
instructions implement traditional DSP arithmetic as
well as some more unusual operations:

MACMYV performs multiply/accumulation on X, Y
and the accumulator, while in parallel moving the A
operand to R. This simultaneously accomplishes the
MAC and data shift required for FIR filtering.

ANDXOR R = A & X ~ Y) allows the FX8010
compiler to take advantage of the 4-operand
architecture and built-in ROM constant GPRs to
synthesize bitwise AND, XOR, NOR, NAND, NOT
and OR operations from a single opcode.

LOG and EXP perform transformations to and from a
signjexponentjmantissa representation with a
programmable maximum exponent. Applications are
data compression, dB conversion, waveshaping and
log domain arithmetic approximating division and

roots. Interesting distortion effectsare also possible,
especially by modulating the exponent size.

INTERP, which performs the linear interpolation r =
a*x + y*(1-x) allows single-instruction lowpass
filters, parameter smoothing, and inversely
proportional signal mixing (e.g., wet/dry or pan
control.)

LIMIT and TSTNEG are both forms of conditional
move instructions, useful for threshold detection and
control signal generation. The compiler synthesizes
ABS() and SIGN() from TSTNEG by the right choice
of GPR operands and ROM constants.

4. 1/0 Engine

32-channel signal input and output is accomplished
in FX8010 through buffers which are mapped into
GPR space. Since I/O is fully double-buffered, new
input signals appear synchronously at the beginning
of each sample period in the 32 input GPRs, and the
contents of the 32 output GPRs disappear off -chip.

In EMU10K1, physical input signals originate in the
wavetable synthesizer and various AC97, I’S and
S/PDIF codecs, and are output through codecs or
back across PCI to the host. The RChip also
supports I’S and S/PDIF, but mainly uses EMU32, a
serial 32-bit, 32-channel interface, for I/O connections
with other DSPs.

5. TRAM Engine
5.1 Circular Delay Addressing

The TRAM engine transfers samples between GPR-
mapped buffersin the FX8010 and TRAM memory
in a 1M off-chipaddress space. TRAM is used for
delay lines as well as indexed table look-up. For
delay lines, the TRAM engine uses a circular
addressing mechanism, computing the absolute
address of each TRAM access by adding a relative
delay offsetto a global base address counter modulo
the entire delay address space, and decrementing the
counter once per sample period. Since all delay lines
recirculate within the same physical memory,
modulo-addressing of individual delay lines is not
required.

5.2 Decoupled TRAM Execution

Each TRAM access is implemented using a pair of
buffer registers mapped into GPR memory and a third
register that contains flag bits that control the type of
TRAM access. One buffer GPR stores the TRAM
address offset and the other stores an incoming or
outgoing sample word (for reads or writes,
respectively.) By GPR-mapping the buffers, FX8010
programs can operate on TRAM data like any other
GPR operand and can compute new TRAM offsets for
modulated delay effects or table-lookups. Triples
composed of these data, offset and flag registers are
organized in an array of contiguous memory locations
where they are operated on sequentially by the
TRAM engine every sample period. If the flag register

is viewed as an opcode and the data and address
buffers as operands, then the TRAM engine can be
seen as an independent execution unit that iterates its
own simple microprogram once each sample period.

A dual-port memory architecture ensures that accesses
by the execution unit and TRAM engine do not
collide. Since operation of the TRAM engine is
decoupled from program execution, 100% TRAM
bandwidth utilization is guaranteed by design without
stalling the execution unit or requiring the FX8010
programmer to manage memory transactions.

A hardware mechanism that returns zeros from each
delay line until it contains valid data obviates the
need for the time-consuming TRAM zeroing that
would otherwise be required at program load time.

5.3 Physical TRAM Implementation

Variations in TRAM architecture constitute the
major differences between the RChip and the
EMUI10K1 implementations of FX8010. TRAM on
the RChip is implemented exclusively with external
SRAMs, but in the EMU10K]1 this off-chipmemory
can include system DRAM accessed across the PCI
bus in the host processor's address space. To
preserve PCI bandwidth, it has an additional block of
TRAM located in a separate address space on-chip.

All TRAM in the EMUI10K1 is 16-bits wide, but the
RChip can be programmed to accommodate 16, 24 or
32-bit wide memory. TRAM less than 32-bits wide
can be accessed using a hardware-based encoding
scheme that is transparent to the DSP programmer
and extends the TRAM's effective dynamic range.
This encoding contributes greatly to a low noise floor
in recursive algorithms like reverberators, which are
often plagued with noticeable truncation distortion
and noise-like limit cycles, especially as feedback
coefficients are increased.

While all GPRs are 32-bits wide, address offsets
occupy only the top 21-bits of the TRAM buffer
GPR. These MS 21 bits and the remaining LS 11

bits can be thought of as the integer and fractional part
of the address, respectively. In a single MACINT

instruction, the LS bits can be masked and left-shifted
to become the coefficient to an INTERP instruction in

order to implement a linear-interpolated delay line.

6. Microsequencer
6.1 Microprogram Control Flow

FX8010 microprograms are stored on-chip in an array
of wide microinstruction memory which cannot be
written to by the execution unit. The FX8010
executes in sample-locked fashion, so that the
instruction rate is a fixed multiple of the sample rate.
The FX8010 runs straight through its entire
microinstruction array each sample period without
jumps, branches, or subroutine calls, so that it is
impossible to fall out of real-time operation.

While straight-line execution is an appropriate model
for implementing linear time-invariant filters, many
common audio effectsrequire event processing at a
regular sub-audio control rate or even asynchronously.
FX8010 accommodates this by providing conditional
move operations and conditional execution using the
SKIP instruction. With this technique, the FX8010
does not actually skip forward over sequences of
instructions but, based on tests of its Condition Code
Register (CCR), converts these sequences into NOPs.
This conditional mechanism also supports
multiprogramming by skipping over areas where new
programs are being loaded without disturbing other
executing programs.

6.2 Condition Code Register

The FX8010 CCR holds 5 bits, some or all of which
are updated after each instruction cycle:

¢ Z - set if the result is zero

* M - set if the result is negative (minus)

* N - set if a normalized result (MSB=next MSB)
* S - set if the result saturated or wrapped

* B - set if a borrow occurred in a subtraction

Typical SKIP conditions such as M + Z (less than or
equal to zero) or more exotic ones such as M + (S ¢
~M) (negative or saturated positive) can be specified
by CCR test masks. By computing CCR masks and
their inverses along with the proper skip counts, the
compiler is able to generate if/then/else constructs
nested to any depth from the familiar C-language
source code syntax. While the CCR mask and skip
count are typically compiler-generated constants,
since they are stored in ordinary GPRs they can also
be computed by the microprogram.

7. Effects Development
7.1 FX8010 Compiler

fxasm, the FX8010 program compiler, accepts source
code files in a C-like expression syntax and generates
a portable object code format. Currently, fxasm is
integrated into an effects development system using
Microsoft Developer Studio.

FX8010 programmers combine executable statements
with declarations of input and output ports, GPRs,
mix registers, constants, tables, and delay lines.
These objects are linked symbolically to the high-
level parameter control code running on the host
processor through #include symbol files. All GPR,
microcode and TRAM addresses emitted from the
compiler are virtual; virtual-to-physical translation
happens both at program load time and at run-time,
when real-time parameter updates and queries are
relocated on-the-fly.

7.2 Drivers

A driver stack written in C manages multi-program
resource allocation, loading, patching and parameter
control in real-time across multiple FX8010s. Pools
of temporary GPRs and other resources are maintained
for shared use by all loaded programs. An abstraction

layer allows the same effectsmanagement code to run
efficiently on top of both of the current FX8010
hardware implementations. For example, on a P166
running Win95, relocating and loading a typical
reverberator requires approximately 2ms.

Above the driver stack are self-contained effects
software plug-ins which encapsulate the FX8010
program and the host code necessary for parameter
control. In Win95 these plug-ins take the form of
independent registered COM objects which can be
further encapsulated in ActiveX wrappers for use by
DirectShow-aware applications.

7.3 Benchmarks

The efficiency of the FX8010 architecture allows
instruction counts for most algorithms to be
estimated simply by the number of multiplies
required. Thus a reverberatorallpass filter takes two
instructions and a direct form biquad requires five, as
shown in the sample listings of FX8010 source code.

The implementation of FX8010 in the EMU10K1 is
sufficientlypowerful that the E-mu Audio Production
Studio product is able to simultaneously run high-
quality reverb and chorus algorithms as well as a
flanger, echo, "auto-wah" envelope filter, distortion,
compressor/limiter, pitch-shifter, 4 parametric EQs, 4
shelving EQs, and a large mixing matrix, all with
smoothed parameter updates and ditherable outputs.

//Allpass|[] is automatically
// allocated in TRAM

DELAY allpass[50msec] ;
GPR in, out ;

out = in * .6 + Allpass[40msec] ;
Allpass[] = in - out * .6 ;

Listing 1: FX8010 source code for Reverb allpass

// Output is in state[2]
GPR state[4], in ;
GPR a[3], b[2] ; // A/B Coefficients

ACC = input *a[0];
state[l]=state[2],ACC+=state[l]*a[2];
state[0]=input, ACC +=state[0] *a[l];
state[3]=state[2],ACC+=state[3]*b[1l];
state[2]= ACC + state[2] *b[0];

Listing 2: FX8010 source code for
Direct Form 1 Bigquad

//dB peak meter in 2 instr. (LOG+LIMIT)
GPR in, peak ;

TEMP GPR tmp ;

tmp = ABS(LOG(in)) ;

peak = tmp > peak ? tmp : peak ;

Listing 3: FX8010 Source code for peak VU meter

