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Abstract

Aperiodic 1D systems introduced in physics in the field of quasicrystals are used in

this work, in order to generate selfsimilar aperiodic time structures. The Fourier

analysis of series of impulses distributed in time in a non periodic but ordered way,

shows that for some cases the spectrum has a discrete part that can be used for sound

synthesis.

1  Introduction

The models used today for sound generation are

basicaly of three types, namely instrumental, spectrum

and abstract models. This work belong to the abstract

models category.

In the last decade a new type of structures, lying

somewhere between order and disorder, between

periodicity and randomness, appeared in

mathematical physics.

There are several methods to generate the structures:

projection from a periodic lattice, use of substitution

rules and others. In this work, we consider 1D

aperiodic structures generated by substitution or

production rules in a special type of formal grammars,

known as D0L systems [1].

A very well known example of an aperiodic 1D

structure is the Fibonacci sequence, with a

distribution of points along the time axis according to

[2]:

  tn=n+α+[[n/τ+β]]/τ                                      (1)

where [[x]] is the greatest integer less than x,

τ=(1+√5)/2≈ 1.618 is the golden number, α and β are

arbitrary real numbers, and n is a non-negative

integer. This equation describes a sequence of points,

such that the interval between two consecutive points

can be only of two lengths:  l1=τ and l2=1. They

appear in a non periodic but ordered sequence, where

the ratio of the number of l1-intervals to the number

of l2-intervals is also equals to τ.

An equivalent way to define the Fibonacci sequence

is through a D0L system which consists in an

alphabet, a set of production rules for the allowed

words, and an axiom or starting symbol. Consider the

alphabet A,B, the production rules

            A → AB                           B → A

and the axiom A. The language consists in the words

A,AB,ABA,ABAAB,ABAABABA,....

If we associate to A and B two segments of lengths

lAand lBwith lA/ lB =τ  we get the Fibonacci chain.

The sequence is selfsimilar: a change of scale by a

factor τ produces another sequence represented by the

same word.

The Fibonacci chain can be used to structurate the

time in a non periodic way [3]. Although the golden

number is not rational, we can take rational

approximants for it. If we define the Fibonacci

numbers Fn as

                        Fn+1= Fn + Fn-1

with F0= F1 =1 it is very well known that

Fn/Fn-1→τ when n→∞.

The sequence 2/1,3/2,5/3,8/5... can be used to

generate aperiodic rhythms, with two rhythmic units

A and B in a rational ratio.

Another example of a selfsimilar structure with the

same basic cells can be obtained by applying the

production rules

A → AABA                           B → BAB

The scaling factor in this case is τ+2.

 If we use the alphabet  L,S,T, axiom  L, and

production rules

                        L→ LST, S→LS, T→L



the scale factor is θ=1+2cos2π/7≈ 2.247  if we take

lL/ lS=2cos2π/7 and lT/ lS =1-2cos3π/7. We can get

rational approximants by defining the numbers

   Ln+1= Ln + Sn +Tn, Sn+1= Ln + Sn, Tn+1= Ln

with L0=1,  S0=0,  T0=0 or also L0=0,  S0=1,  T0=0.

The temporal structure derived from the substitution

rules

                    L→LSL, S→LST, T→ST

is also selfsimilar with scaling factor φ=1+2cosπ/7.

Observe that the word selfsimilarity is not being used

in the same sens as for fractals. In fact there is always

a minimum separation between points; there  is not

the ever finer detail that occurs in fractals. Obviously,

infinite sequences of regularly spaced impulses are

also selfsimilar, in the sens that if we replace each

impulse by two impulses separated half the distance,

the result is again an infinite sequence of regularly

spaced impulses. But one of the most interesting

properties of rhythms constructed with the aperiodic

sequences considered in this work, is that they are not

predictable: given a word it is not always possible to

know what is the letter after a given one, without

reproducing the whole word. Other substitutional

sequences have been already used to produce musical

shapes (see for instance [4]).

2 Time structures with discrete

spectrum

A distribution of impulses on the points tk of the time

axis, with k integer, can be represented by the

function

   ρ(t)= Σ k δ(t- tk)                                         (2)

where the Dirac delta-function  δ(x)  has the

properties: δ(x) =0  unless  x=0, δ(0) =∞.

Its Fourier transform is

 limN→∞((1/N)Σkexp(itk))                               (3)

where N is the number of impulses. The Fourier

transform of a sequence of impulses distributed along

the time axis, is called the spectrum of the sequence,

and is a sum of discrete and continuous components.

The discrete component indicates order, the

continuous component disorder. In this section we

consider the aperiodic systems defined in section 1.

The Fibonacci system and the LST-system with

scaling factor θ, have discrete spectrum and therefore

"enough order".

A periodic distribution with period of length a   can

be represented by the function

 Ma(t)=Σkδ(t-ka)                                            (4)

If t  denotes the time in seconds, then the Fourier

transform of Ma (t)  is proportional to M2π/a(ω)

where ω  denotes the frequency in Hertz. For instance

if we take a=π/33  we get the harmonic series:

C2,C3,G3,C4,E4,G4,Bb4,C5,D5,E5... all of them

with the same amplitude, which is measured by the

proportionality factor of the function M2π/a (ω) .

In the Fibonacci case the impulse distribution is

Ma(t)=Σnδ(t-tn)                                             (5)

where tn  is given by equation (1). The spectrum of

the distribution is discrete, and can be computed with

the help of the golden number τ  and two integers p

and q  ,through the following expression:

ω
pq = (2π /(1+1/ τ 2

))[p + q /τ ]                 (6)

and with a different amplitude for each component. If

we take X = 2πq −ω
pq

/ τ ,then the amplitude is

proportional to  (2sin(X / 2))/ X     (see Figure1).

A pitch defined by  p  and  q  is more intense if

τq − p  is small or p / q close to τ,  that is

when  p,q  are successive Fibonacci  integers

Fn,Fn-1. Outside this sequence, the amplitudes

decrease strongly and, above a certain amplitude

threshold, the number of partials below a fixed

frequency is always finite.

Figure 1.  Spectrum for the Fibonacci system.

Given an arbitrary aperiodic system, it is not easy to

find closed expressions for the amplitudes, as in the

Fibonacci case. However recursion relations can be

obtained allowing to get the Fourier amplitudes in an

efficient way ([1] and references therein).



Figure 2. Discrete part of the spectrum for

the L-S-T system with scaling factor θ

The order that lies behind the chain of temporal

intervals, is reflected in the frequency distribution. In

the AB-case it can be shown, that  a set of partials

separated by intervals of two lengths  can be taken.

The computations show that the ratio of the two

intervals is the golden number (see the wavetable f1

in section.3, and compare the differences between

consecutive partials). We can also extract from the

spectrum of the first LST-system, a set of partials

separated by intervals of three lengths, with the same

ratio as lL, lS, lT (see f2 in section.3).

The words obtained in the frequency space do not

belong to the language generated by the grammar

defining the temporal chains. In the Fibonacci words

two B intervals can never be adjacent, nor can three A

intervals. It can be seen that in the frequency space

there are two consecutive short intervals.

3 Some examples

Due to the lack of translational symmetry, the spectra

are always inharmonic. If the Csound language is

used, the pairs frequency-amplitude for the Fibonacci

system give the following composite waveform of

weighted sums of simple sinusoids:

 f1          0           4096       9         1   6.92784   0

2.618   19.4934    0    3.618    12.9569     0     5.236

14.398       0       6.236   18.5066  0    7.854    8.27371

0        8.854      21.363     0

9.854    5.67165      0    11.472      20.3011  0   12.472

11.49      0       14.09  15.7818  0      15.09  17.3651  0

16.7  9.6877  0                 17.71  21.022    0   19.326

4.27182  0          20.326    20.9093       0        21.326

10.0286     0

where we remind that the three p-fields in GEN09

correspond to the partial, strength of the partial and

initial phase. A function table for the first LST system

is:

f2          0           4096       9      1   0.659804    0

2.24734    0.875313   0  3.24751    1.08665    0

4.49468    0.292446      0    5.04974    5.47652     0

6.29692   1.37356      0  7.29708   1.94143     0

8.29725     0.46514  0   9.54442     0.28039    0

10.0995    0.918011  0    11.3467      5.61295       0

12.3468    1.19516     0    13.594     1.06184    0

14.149     4.70316    0   15.3962    2.48997     0

16.3964     6.05437    0    17.3966       1.28956     0

Bell-like timbres can be generated with the classical

additive synthesis technique due to J.C.Risset [5]. The

amplitude peaks of the partials are taken from f1 and

f2 with exponential decay, durations inverse to their

frequencies and beatings of the lowest two partials.

Other examples can be obtained from additive

synthesis of filtered noises with center frequencies

located at multiples of the partials given in f1 and f2,

appropriate bandwidths, and gaussian envelopes with

peaks placed at different times according with other

parameters like frequency or amplitude.

If the recursion relations are used, temporal

evolutions of the different partials can be

implemented also, by increasing the number of

impulses in the time axis: the ratio of amplitudes to

number of time points stabilizes, when we increase

the number of iterations.

4 Conclusion

In this work, aperiodic ordered temporal structures

having discrete inharmonic spectra, have been

discussed. A criterion based in number theory has

been given in [6] to characterize a system with

discrete spectrum. According with their results, the

AB-system with scaling factor τ+2 and the LST-

system with scaling factor φ have no discrete part in

their Fourier transforms.

In the compositional level, selfsimilarity suggest that

musical form can also be articulated with the help of

these multilevel hierarchies. The underlying grammar

structure can represent connections between different

sections of music having a high structural generality.

Also the range of raw musical data that can be

represented is high. The rhythmic structure shows

both autonomy and solidarity with the pitch-intensity

material.

Although only 1D examples have been considered in

this work, the analysis of aperiodic structures in 2D

and 3D [1] are also a rich source of musical

applications. Some of them have discrete Fourier

components and can be described in terms of formal

grammars.

Spectral modeling of musical sounds (SMS)

representing sinusoids and noise as two separate

components has been developed in the last years (see

[7] and references therein). The analysis detects time



varying sinusoids which corresponds ,in our

terminology, to the discrete part of the spectrum.

These partials are then subtracted  to obtain the noise

component. This technique can be used also in our

model in order to get the (static) continuous part of

the spectrum. The use of aperiodic systems in

combination with SMS and other techniques, like

wave terrains or granular synthesis [8], could give

results of interest.

The ideas presented in this work have been the basis

of Estudio del Tiempo Iluminado II  for tape, realized

in the authors personal studio and in the LIEM-

CDMC (Centro de Arte Reina Sofía,Madrid 1997).
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