
Enhanced Quality and Variety for Chorus/Flange Units

P. Fernández-Cid, F.J. Casajús-Quirós
SSR, Escuela Técnica Superior de Ingenieros de Telecomunicación, UPM

Ciudad Universitaria s/n; 28040-Madrid, SPAIN

pablo@gaps.ssr.upm.es

Abstract

Chorus and flanger are two classical effects that can be found in any current digital audio FX unit.

Available chorus/flanger just translate into digital implementations the behaviour and parameters

typical of cost-sensitive analogue realizations. But they can be greatly improved on a digital

implementation with simple additions to the software. After an introduction to chorus/flange and

their digital realizations, we address two such additions (randomized modulation law, and

application of energy envelope for noise control), and then discuss further improvements easily

achiveable by digital means (multiscale implementations).

1 Introduction

Typical modulation law in chorus/flanger units is a

sinus or triangle (sometimes other periodical signals),

and this causes a percetually boring result, once the

ear detects the regular repetition pattern. A noisy

modulation can be used for less of a regular pattern

with pleasant results, though some considerations

should be made about how to generate the noise.

The fact that chorus/flanger sum up modified versions

of the original signal (particularly for feedbacked

flanger and multivoice chorus) increases the noise in

the final signal. Also the fact that the final signal has a

‘timbral modulation’ makes the original noise (steady,

with a fixed spectral envelope, hence easy to ‘forget’

or mask) a dominant component of the signal during

low level passages (noise is no longer static but ever-

changing). This can be improved on a ‘multieffect’

unit, by using the envelope follower part of a

compressor to drive the dry/wet mix of the

chorus/flanger. This is an example on how side chains

in multiFX units can, at a very low computational

cost, provide enhanced results in relation to the

simple series conection through FX algorithms.

Finally, benefits of a multiscale approach to

chorus/flange are addressed.

2 Chorus and Flanger

Chorus and flanger are two applications of a more

general ‘modulated delay’ device. The difference

between them is just the adjustment of some of the

parameters, but leads to very different results.

Chorus tries to recreate the illusion of more than one

instrument from the signal of one player. Two

musicians never play in perfect unison (both time and

pitch wise). In order to build up the proper illusion,

one can sum the original signal with a slightly delayed

and detuned version of itself. Instead of a constant

pitch deviation, more natural results are to be

expected from a varying pitch deviation (two players

never keep constant their relative pitch distance).

The flanger started its life as a mechanical realization:

two identical tapes were run in parallel while a human

operator randomly controlled the speed of each unit,

making minor variations up and down the nominal

tape speed. Mixing the sound from both tapes, the

signals sometimes aligned in phase, while other times

aligned in counter phase, resulting in a time-varying

filtering that has been named ‘flanger’. The structure

of the flanger is then that of the mix of two randomly

delayed copies of a signal.

The chorus effect can in fact be obtained with the

very same structure: the variable ‘detune’ can be

imposed by means of a variable ‘delay’ (variable

delay reproduces the original waveform at a non-

constant speed that makes minor changes to pitch). A

general ‘chorus/flanger’ can then be built like:

z
-D

x [n]

z
-D

y[n]

fb

(delay has been split in a fixed and a -smaller-

variable part, and a feedback path has been included,

as can be usually found in flangers to further

pronounce the effect).

3 Comb filter

The structure shown in previous figure, can be seen as

that of a comb filter, or can also be thought of

(nulling the feedback) as a two-ray propagation

system: The original signal is summed with a

(somewhat modified) close echo of itself. According

to the period of the components of the signal and the

delay between both rays, some of these components

will be enhanced (both rays sum in phase if the delay

is a multiple of the component’s period), while others

will cancel (counterphase). The maxima and minima

of this ‘filtering’ are harmonically related, and change

(always keeping its harmonic distribution) if the delay

between rays changes. A mathematical description of

comb filters can be found in [Moore].

This is the kind of modification to be expected from a

flanger: harmonically related enhancement and

cancellations in the spectrum changing their positions

up and down.

Feedback enahnces difference between peaks and

valleys and is most often used in flangers (it is a user

adjustable parameter), up to the point that the

harmonic structure of peaks and valleys imposes a

tonal character of its own on the original signal (the

feedback path can even be driven into self-oscillation,

transforming the original sound into a ‘siren’ like

complex tone). This tonal character of the spectral

(timbral) modification gives the flanger its somewhat

‘metallic’ colour.

Typically the delay time on flangers is changed very

slowly, to better appreciate the ‘sweeping’ movement

of resonances, and the mean delay is quite short (few

milliseconds, 0-10) so that the resonances fall in the

audio region. Mean delay controls the main ‘tone’ or

colour, that smoothly changes through time according

to the delay’s modulation intensity and speed.

Main delay and feedback are the parameters that

make the chorus sound so different to a flanger. The

short delay in the flanger means that we can not hear

both instances of the sound appart from each other,

they mix and end up -perceptually- as a single,

dinamically filtered sound. On the other hand, the

main delay on the chorus is larger (typically from 10

to 40 ms), so that both rays do no longer join a a

single sound, but can give the illusion of two players

(no feedback is applied on chorus, as the larger delay

would make feedbacked rays sound as a repetitive

echo, and would break the more-than-one player

illusion: accumulated delay would be too long to be

creditable as unison playing).

4 Digital modulated delay

Let x(t) be a sound signal, correctly sampled at fs Hz.

to give the equivalent sequence x[n]. A delayed

version of x[n] is xd[n]=x[n-d]. If d is an integer

number of sampling periods, xd[n] is one of the past

samples of x[n]. If delay magnitude is fixed, y[n] =

x[n]+xd[n] is a simple filter (an LTI system), whose

main characteristics had been studied in the previous

section. If the delay is not integer, we can no longer

rely on past samples to get the y[n] signal.

The fact that delay is not fixed but moving in both

chorus and flanger, means that sometimes the delay

will not be integer in sample periods, but fractional. A

possible approach would be to sample at a non fixed

sample rate, but it is much more simple (hardware

wise) to keep the fixed rate sampling and use

interpolation to calculate the value of the signal in

between available samples.

Suppose by now that the delay we want is fixed

(though fractional). Let it be d composed of a di

integer part and a df purely fractional part. The

integer part is easy to obtain (by changing the position

of the read pointer in the input buffer), so we can just

face the problem of how to obtain a purely fractional

delay. Linear interpolation can be used (sometimes it

is used in commercial units), but of course is not the

best interpolator available. Error in the interpolation

would be heard as a ‘noise’ in the processed sound

(further enhanced if feedback increasingly degrades

signal to noise ratio on each pass though the loop).

In order to evaluate how much computation is needed

to obtain a good quality interpolator, we can think of

the best one and then introduce compromises. The

best (perfect reconstruction) interpolator is the sinc

shape. The following equality can be easily derived

for signals sampled at fs:

x[n-d] = x[n] * sincd[n]

where the * operator stands for convolution, sincd[n]

stands for a ‘delayed’ sinc shape (sinc[n-d]), the

sinc[n] function is defined as sin(πn)/πn. This

convolution (or the perfect interpolator) can not be

exactly computed due to the infinite length of the sinc

function:

0

1

d

Figure. Continous and sampled delayed sinc

but we can approximate it arbitrarily by using us

much coefficients of the sinc function as needed (in

order to make the effect of discarding the tails

negligible).

Say that we use N coefficients each side of the origin

from the sincd[n]. We can evaluate signal to noise

ratio due to this approximation to the ideal fractional

delay. The error, not only depends on N, but also on

the magnitude of d (a one half sample delay is more

difficult to obtain than a 0.001 sample delay).

d =0 .5

d =0 .1

N (ha l f the n u m b er o f fi l te r co e ffi ci en ts)

8 0

6 0

4 0

2 0

0
1 0 5 0 1 00 2 00 1 00 0

Figure. Signal to noise ratio achiveable on the

windowed sinc approach to fractional delay

for 0.5 and 0.1 sample delay, and various N.

Clearly, the amount of computation needed for a CD-

quality (16 bit, or 96 dB S/N) fractional delay unit is

really large. Though we usually tend to think of

reverb as the highest computing power demandant

FX, also chorus and flanger demand high computation

to keep far away enough from noise.

Also notably, the large number of coefficients for a

high-quality implementation, imposes restrictions on

the minimum value for the delay (in order to keep the

system causal), compromising the realization of (low-

delay) flangers.

Taking this into account, a higher than CD-DA

sampling rate is the only real world method to lower

the inherent noise of these units to CD figures.

Chorus and flanger use a varying delay, so we can no

longer talk about an LTI system, though the delay is

usually changed at low (subaudio) speeds. It is then

posible to apply the concepts of LTI systems, though

on a short-time extent. The action of these modulated

delays systems is still that of a (slowly moving) filter.

5 Laws for delay modulation

Traditionally, chorus and flanger have used simple

periodic modulation to change the delay through time.

Hearing the results of this approach ends up being

perceptually boring. Better results are to be expected

by using less predictible laws, particularly if some

noisy (heavy uncorrelated) modulation source is used.

The sampling rate of the audio signal is ‘fs’, most

probably 44.1 or 48 KHz. The noisy signal is a

modulation signal that takes the role of the subaudio

sinusoid for modulation, so it is expected not to vary

very fast. Clearly the fs sampling frequency is large

too fast for such a slow signal, though we still need to

know the detailed evolution of the noise at the fs

speed (otherwise stair modulation would be produced

-useful sometimes, not the everyday needs-).

Ideally we would like to control the perceptual

‘speed’ (central frequency) of the modulation and the

degree of ‘randomness’ (bandwidth), in order to be

able to blend from the usual ‘sinusoidal’ behaviour to

a ‘random’ one, keeping a sensation of ‘faster’ or

‘slower’ modulation in spite of the random nature.

One approach would be to use a white noise source

sampled at fs (like a random number generator), and

to use an adjustable bandpass filter. Unfortunately,

the bandwidth of the filter would be typically of few

Hz over a ~20000 Hz wide noise process. An

enormously high Q filter is needed: a large number of

coefficients (and computation) for a FIR realization,

or an IIR with close to unit-circle pole distribution

(with phase, stability and coefficient quantization

problems). Neither way seems attractive.

We can also generate a noisy process at a low (say 40

Hz) sampling rate, and then interpolate these samples

to generate a low speed random process at the fs rate.

This time it is the interpolating filter that needs a

complex realization (with the same problems).

By means of FM synthesis it is easy to generate wide

band white-like noise, but is still highly computing

demandant to create a very thin bandwidth noise.

The method we have finally implemented, generates a

random process at a (user adjusted) low sampling

frequency, and then uses a raised cosine law to

‘interpolate’ available points to the fs sampling rate.

The raised cosine warranties an infinitely derivable

shape (avoids clicks), and also is free from the large

uncontrolled excursions that may appear with low-

order polynomial interpolation. This produces a DC

centered noisy signal (with a non flat, thin bandwidth

spectrum), that can then be centered on the frequency

of interest by a point to point multiplication with a

cosine law of the desired central frequency. Lets call

fsm (sampling frequency for the noisy modulation

signal) the frequency at which new random values are

calculated. Our implementation uses an (adjustable)

integer submultiple of fs (for example we can

calculate one new random value each 4410 samples to

get 10 new ‘noise’ values per second at fs 44.1 KHz,

which -more or less- corresponds to a 5 Hz wide

noise process). This simplifies computing

requirements, but keeps good enough resolution (the

noise ‘period’ is always very large in fs samples, and

so we have high resolution to define it). The flat

shape of the raised cosine extremes, makes it possible

to dynamically change the noise generation speed

(fsm), while keeping an endlessly derivable final

noise shape, so that the ‘randomness’ can be changed

through time.

The exact shape of the noisy control signal spectrum

with this approach is easy to obtain, because the

whole process is equivalent to the interpolation of the

fsm noise to an fs sampling rate by means of

convolution with a cosine shaped (or Hanning)

window. This final spectral shape of the noise is not

flat nor strictly concentrated around the central

frequency of interest, but the result is still pleasing

because it avoids discontinuities in any derivative and

also uncontrolled excursions in between original

sample values, keeping the benefit of using a non-

periodic waveform. Implementation demands a

pseudo-random generator at fsm rate (random

generators are already available by hardware in many

processors) and a cosine function (called at many

times: for noisy control signal interpolation, for

modulation of DC noise to the frequency of interest,

and for the generation of the proper sinc values for

the modulated delay -if they are not stored in ROM,

as usual-), at a cost that is well within the current

processors reach.

6 Hiding unwanted noise

As said before, and particularly for feedbacked

flanger, the fact that the signal is summed with

(delayed) versions of itself, greatly increases the noise

in the final signal. This added noise is not static but

changing so it becomes much more perceptually

relevant.

To keep this undesirable noise down is a must. The

multi-FX units of today make it possible to hide this

noise at a low cost.

Current multi-FX just chain (in series or parallel)

different FXs to create a more complex sound

modification. There is room for improvement here, as

some of the parameters calculated at one of the boxes

can be used at another one with benefits at no cost.

Dynamic margin modifiers (like compressors,

expanders, etc.) can be easily implemented in a multi-

FX, as their computational load is very low. Appart of

their own interest, they extract the energy envelope of

the input signal: a measure of the level of the signal at

each moment.

In a typical Chorus/Flanger then Expander/Gate

(serial) configuration, the expander (or gate)

decreases (nulls) the level of low energy fragments of

the Chorus/Flange output, in order to hide the noise

when there is no signal to mask it. Note that input

signal for the Gate is the output of the Chorus (not

really the original signal). Various well known

artifacts do appear (like ‘noise pumping’).

A best approach is to use the envelope of the original

input signal to control the ratio between original

signal and delayed signal in the Chorus/Flanger. Here,

the original signal is always to be found at the output

(with no ‘gating’) for a completely natural sound (the

user still has the option to add the gate if he wants to),

and it is just the processed paths of the

Chorus/Flanger that are controlled by the energy of

the signal.

7 Multiscale vs. multivoice chorus

To increase the chorus (multi-player) sensation, a

common approach is to use various chorus in parallel.

Simpler units share a single LFO for the control of the

varying delay (for example applying the same control

signal with just a sign change). More complex units

provide independent complete chorus units in

parallel, each with its own LFO, for a more complex

so-called multivoice chorus.

Risk of noise enhancement (as it happens in the

feedbacked flanger) is increased, due to the larger

number of processed voices that are added.

We have tried a different approach without having to

sum up so many outputs (with their associated noise).

The idea is to use a filterbank to split the original

signal (and the noise) into bands, and then to apply a

different chorus to each band. By adding the outputs

of these choruses, a signal results wich is (basically)

the result of the sum of the original signal and just

one (though multiband) delayed version of itself. The

effect is less obvious than the classical single

voice/single channel chorus (where modulation law is

the same for all components of the signal), but is not

so prone to noise as a complete multi-voice chorus.

The current implementation uses a simple filterbank

(a diadic structure with octave splitting) and we call

the resultant chorus ‘multiscale’ to differentiate it

from the ‘multivoice’ approach.

For still better results, we have tested a combination

of the ‘multiscale’ chorus with per-scale envelope

tracking to automate the original/processed mix ratio

at each channel of the filterbank. This approach

enables frequency selective action of the chorus, so

that bands with little energy are heard unprocessed,

while bands with more energy are heard with a

combination of original and processed sound.

When the multiscale chorus structure was used to

generate flanger like process, we found that the

‘metallic’ character typical of flanger (due to

harmonically related peaks and valleys of the notch

filter), was easily changed into a less ‘tonal’ one, not

unlike the difference between the flanger and the

phaser.

The phaser is similar to flanger, but instead of

changing the delay time (a fixed delay for all

frequencies) moves the phase of the signals

(equivalent to a frequency dependent delay). The

phase response of the phaser is usually such that by

mixing the original signal with the processed one,

many nulls appear on the spectrum, but those nulls do

not fall into a harmonic serie (like in flanger), but in a

log-spaced set of frequencies. This spacing generates

a sound that is not so ‘tonal’ (or ‘metallic’) as that of

the flanger.

This non-tonal character is also easy to achieve in the

multiscale structure, with the benefit that the

behaviour can be constantly changed from that of a

flanger-like effect to a phaser-like sound. If each scale

uses its own independent chorus, non-metallic

flanging results. On the other hand, if all scales share

a single modulation law, ‘metallic’ character arises.

8 Applications of envelope signal

Changing the fsm value according to the envelope,

the chorus/flanger can automatically increase its own

randomness (a more complex sound for loud signals).

Envelope driven feedback control in the flanger gives

a more metallic sound during loud parts.

Envelope signal, applied to main delay (not to the

variable delay part) can automatically change the

color or tonal center of the flanger, so that changes in

intensity are correlated with changes in tonal color of

the processed sound, more intimately linking the

effect results to the signal.

References

[1] Moore. 1990. Elements of Computer Music.

Prentice Hall.

[2] Casajús-Quirós and Fernández-Cid. Notes for

the course Técnicas de Audio Digital. ETSIT-

UPM.

