
SMS3d: An application for the visualization of SMS data

Bernardo Macías Bécares
Audiovisual Institute, Pompeu Fabra University

Rambla 31, 08002 Barcelona, Spain

bmacias@iua.upf.es http://www.iua.upf.es

Abstract

SMS3d is an application for the three-dimensional visualization of the SMS analysis of a sound,

with which the user can control the viewing of the representation with specific controls. This

application has been programmed with Visual C++ under Windows using the API OpenGL.

1 Introduction

 Two approaches have dominated the representation of

musical signals: temporal representations and

frequency representations [1].

 There are two basic categories for frequency

representations: static and time varying [2]. The static

representations capture the instantaneous spectrum of

a sound and it is projected into a two-dimensional

plane where the vertical axis is amplitude and the

horizontal on frequency. But, the spectral

characteristics of a sound are constantly changing in

time and we recover this important property of the

sound in the time varying representations, where we

see the amplitude and frequency changes in the

spectrum. A traditional time-varying representation is

the spectrogram. A spectrogram shows frequency in

the vertical axis, time in the horizontal axis, and

amplitude as gray levels or colors. If we convert the

amplitude into a third axis we have a three-

dimensional representation.

 The SMStools program [3] is a graphical front-end

for the SMS (Spectral Modeling Synthesis)

analysis/synthesis environment [4]. With it, we can

view the sinusoidal plus residual representation with

a display similar to a spectrogram. One possible

improvement is the three-dimensional representation

of the same data points, including a user interaction

with the representation.

 This paper describes the SMS3d application which

features the visualization of a sound analysis made

with SMS. In section 2 we describe the different

environments for programming 3D graphics. Section

3 describes the implementation and use of the

application and section 4 presents some conclusions

and possible improvements.

2 3D environments

At the time we started this project we knew of more

than 50 APIs (Application Programming Interface)

that could have been used for our purpose [5]. Which

one do we chose?

The three applications that we considered were:

Silicon Graphics’ OpenGL, Apple’s QuickDraw 3D,

and Microsoft’s Direct3D.

For cross-platform work, OpenGL (available for

UNIX, Windows NT and 95, and Mac OS) is clearly

the choice, especially for developing technical

applications. Its client/server architecture enables

desktop systems to off-load graphics processing to a

server. QuickDraw 3D (QD3D) also has an advantage

here, running on both Power Macs and Window (NT

and 95).

OpenGL, however, does not handle some high-level

functions (ex. File formats). QD3D and Direct3D

both remove that particular headache from your

development list. QD3D also has hardware

abstraction, plus ready-made objects and built-in

editing support.

If you program for the Mac as well as Windows, you

want to develop for QD3D. If you want to take full

advantage of PC hardware (as games might), both

Direct3D and Apple’s RAVE (Rendering

Acceleration Virtual Engine, the device-independent

interface that QD3D uses) offer solutions.

You can call OpenGL [6] from a variety of

languages, including C/C++, FORTRAN, Ada, and

Java. It support both an immediate mode and a

retained mode for graphics operations. In the

immediate mode, an application sends graphic

commands to OpenGL, which promptly executes

them. In the retained mode, sequences of graphic

commands are stored in data structures known as

display lists. You only have to reference its display

list to display an object.

OpenGL supports a wide range of graphics

environments that cover the spectrum in terms of

cost and performance. On the low end, it provides

software-only rendering for desktop PCs. But it can

also communicate directly with high-end

workstations equipped with visualization hardware

that can draw 110 millions polygons per second. With

its industrial-strength graphics primitives, it is ideal

for CAD and architectural design programs.

3 SMS3d

SMS3d is an application developed in Visual C++ [5]

under Windows and uses the API OpenGL for three-

dimensional graphics. From an input SMS file it

displays the sinusoidal and residual information that

it contains.

3.1 Graphical display

Each partial is represented as a time-varying

amplitude and frequency envelope. Points of each

frame are joined and trajectories are drawn like

“walls”. We display the envelope of the magnitude of

the residual, and its change in time, as a three

dimensional surface. This surface is filled with

rectangles that vary in color without any empty space.

3.2 Workspace

A unique workspace shows the three-dimensional

representation of the analyzed sound. This workspace

is divided in two parts; one for the graphic

representation, the other for the movement and

representation of the visualization controls.

Allowed operations for the representation are:

⇒ Increase or decrease of the axis scale for a better

visualization.

⇒ Increase or decrease of the residual resolution.

This operation has been implemented because

when representing all the residual data, the

application suffered and excessive slow-down.

That’s why it was decided to allow the user to

decrease the number of data points represented via

the resolution control.

⇒ Choose whether to display sinusoids, residual or

both.

Control zone

Control zone

Display

zone

Active

options

Time axis

Freq axis

Observer axisAmp axis

Walls

for

partials
Envelope

residual

From the control area the user can access all the

operations existing in the application. Partials (SIN)

and residual (RES) can be showed, residual

resolution can be increased or decreased (R+ and R-)

and selected axis scale increased or decreased (E+

and E-). With the control arrows in the middle of the

control area, the user moves and rotates the display.

The up and down arrows allows the movement in

positive or negative direction of an axis. In case the S

axis is selected (observer direction), the

representation is approached or moved away. The left

and right arrows make the representation rotate anti-

clockwise and clockwise respectively in the axis

direction. If the S axis is the selected axis, the result

will be in “we rotating”. The different axis for the

movement or scale are shown in the right.

3.3 Software modularization

For the development of the Visual C++ code, the

application was divided into one class for each of the

main processes involved.

The following classes were developed:

• CRepresentation3D

∗ Controls the partials and residual display.

∗ Initializes and calculates the colors of the

representation.

∗ Renders the represents, axis and control area.

∗ Supervises the control zone.

∗ Initializes the display zone.

∗ Calculates the representation initial position.

∗ Controls the window size changes.

• CTrans3D

∗ Increases and decreases the axis scale.

∗ Realizes the movements through the

representation.

• CMath3D

∗ Calculates the plane normals.

∗ Calculates the matrix multiplication.

3 Conclusion

The application gives the user a more expressive

vision of a sound than the current graphical

application used for SMS. In order to watch different

aspects and details of the sound the user can

manipulate the representation interactively.

The selection of OpenGL allows to do each three-

dimensional draw on a Windows system. It has a very

high flexibility because it is only necessary to specify

the figure vertex and it will be displayed

automatically. Also, it has a wide range of effects and

many transformations can be easily done. A

disadvantage is the necessity of representing simple

objects (e. g. the arrows of the application control

system). Each single graphical object has to be

completely defined. Also it is not easy to insert text

into the application (e.g. the text in the control area

has been drawn using bitmaps in order to make it

different from the axis text).

This application can be expanded in many new

directions. Simple extensions would be to incorporate

the edition of the sound being represented, to add the

capability of representing more than one sound at a

time, to investigate the use of an accelerator card, and

finally to incorporate this application into the current

SMS graphical front end.

4 Acknowledgements

I would like to thank all the members of the Music

Technology Group of the Audiovisual Institute for

their support in this project.

References

[1] G. de Poli, A. Piccialli and C. Roads. [eds.].

Representations of Musical Signals. Cambridge,

Massachussetts: The MIT Press, 1991.

[2] C. Roads. The Computer Music Tutorial.

Cambridge, Massachussets: The MIT Press,

1996.

[3] Music Technology Group. SMS Homepage.

http://www.iua.upf.es/~sms/. IUA-UPF.

[4] X. Serra. “Musical Sound Modeling with

Sinusoids plus Noise”. G. D. Poli and others

(eds.), Musical Signal Processing, Swets &

Zeitlinger Publishers, 1997.

[5] D. J. Kruglinski. Programación avanzada con

Visual C++. McGraw-Hill, 1996.

[6] T. Thompson. “Must-See 3-D Engines” Online.

http://www.byte.com/art/9606/sec11/art4.htm

21 may 1998.

[7] J. Neider, T. Davis and M. Woo. OpenGL

Programming Guide. The Official Guide to

Learning OpenGL, Release 1 (Red Book).

Addison-Wesley, 1993.

