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Abstract

In this paper, a new wavelet-based, scaleable approach to audio compression will be presented.

A signal-adaptive wavelet filterbank with an almost arbitrary time-frequency tiling allows to
optimally adapt the filterbank in a rate-distortion-sense or depending on psychoacoustic criteria.
No windowing or boundary wavelets are necessary in order to process the signal on a block-basis
Based on the flexible time-frequency tiling of this new filterbank-approach, each subband can have
an individual segmentation in time. The psychoacoustic model takes care of the control of the
filterbank and performs an optimal decomposition of the audio signal. The scalability of the audio
coder offers the ability to trade bitrate versus signal-quality and therefore graceful degradation can
be achieved although the transmission bandwidth may be temporarily limited. An improved
psychoacoustic model is integrated into the framework of the adaptive filterbank, the adaptive

quantizer and the adaptive entropy-coding stage

1 Introduction

In the last few years, many high quality audio
compression algorithms have been developed but
most of them use a perceptual measure and operate at
different but fixed bitrates. A variety of these
algorithms are based on uniform polyphase
filterbanks, modified discrete cosine transforms [1],
using window switching or alternatively on lapped
orthogonal transforms [2],[3]. Many proposals for
wavelet-based audio coding schemes [4],[5] have
been published recently. Uniform polyphase
filterbanks can be implemented efficiently, but they
do not well approximate the human auditory system
and they do not offer large coding gains in a rate-
distortion metric. Transform coders use block-based
processing and show spectral distortion at the block-
boundaries and pre-echo phenomena. The variety of
existing musical instruments such as castanets,
harpsichord or pitch-pipe exhibiting various coding
requirements due to their completely different
temporal and spectral fine-structure, suggests to use a
filterbank with variable time-frequency resolution.
Wavelet-filterbanks are known for a flexible time-
frequency tiling but most wavelet-based audio coding
algorithms are focussed to mimic the response of the
human auditory system. It is the ultimate goal of this
new audio coding algorithm to adapt the filterbank
based on perceptual and rate-distortion criteria.
Additionally, each subband can have a different
segmentation in time, which allows to take care of the
temporal fine-structure of the audio signal and to take

advantage of temporal masking effects. A best basis
search algorithm in a perceptual and rate-distortion
sense for the wavelet-packet transform has been
developed and implemented successfully.

Best-basis search algorithms in a rate distortion sense
for wavelet-packet transforms have been published
for a fixed time-segmentation [6] as "single-tree”
algorithm as well as for variable time-segmentation
over all subbands as "double-tree" algorithm [9]. We
extended these techniques to a variable time-
segmentation in every subband [7]. This framework
allows to individually switch nodes of the wavelet-
packet tree at completely different locations in time
without affecting other nodes of the tree. The
approach is well adapted to musical notation. In order
to track each individual note, a flexible time-
segmentation of every subband must be achieved and
the position and the width of the subband in terms of
pitch must be altered as well.

2 Adaptive Wavelet-filterbank

In order to optimize the coding gain based on
perceptual and rate-distortion criteria, a flexible
wavelet-filterbank has been developed. The filterbank
offers a flexible time-frequency tiling and allows
individual time-segmentation in every subband. In
order to process finite length signals, a framework has
been evaluated which enables the switching of the
wavelet-packet bases in every node of the tree and
additionally no blocking artifacts such as pre-echoes



or spectral distortion at the frame-boundaries can
occur.

2.1 Boundary Conditions

The wavelet-packet transform can be written in
matrix-form, using infinite matrices:

yoo = AooXoo

In order to process finite length input vectors of
length k, a submatrix A out of the infinite matrix A, is
selected in such a way that A has k columns and k-(N-
2) rows for a given filterlength N. The decomposed
signal y therefore can be written in matrix form;
y=Ax. For the reconstruction, the synthesis matrix B
is chosen to be a submatrix of A'. B has k-(N-2)
columns and k-2(N-2) rows. It can be shown [10] that
k-2(N-2) samples out of the k samples can be
reconstructed perfectly:

Xk = By

This framework allows to process overlapping blocks
of input samples without using windowing or
boundary wavelets. The algorithm has been extended
to guarantee perfect reconstruction despite bases are
switching from one node of the tree to another.

2.2 Switching Bases

By implementing a  sophisticated memory
management, a framework can be realized which
allows to up- and down-switch the basis at every level
of the tree. It is evident that for tree-levels near the
root, the basis can be switched more frequently which
matches to a requested high temporal resolution in the
upper frequency bands whereas at the lowest tree-
level with narrow subbands, a lower temporal
switching-resolution due to fewer available samples
can be tolerated.

All nodes of the wavelet-packet tree can be switched
individually and the filterbank can fully adapt to the
signal, depending on different criteria.
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Figure 1: Individual switching of the wavelet bases,
depending on the input signal

3 Best Basis Search

Having developed a framework for the individual
switching of each node of the wavelet-packet tree, a
measure on how to find the best basis for each signal
interval has to be evaluated.

3.1 Rate-distortion measure

Best basis search algorithms have been published [6]
and some of them make use of a least mean square
error or a one-sided entropy metric. The momentary
entropy in subband j at level i of the wavelet-packet
tree is:

N

entropy il k] = %Z — log 2 pil k[ quantized |k — n+1]])

n=1

The reason we have chosen a common time measure
for the up- and down-switching of every node now
becomes obvious. In order to compare the entropy in
every subband, we need to scale the entropy
according to the number of samples in each subband.
The scaled entropy in each subband is computed
using a sliding window and a forgetting-factor for
past samples before becoming part of a cost-function
for each subband. The overall costs are compared for
the parent node and both children nodes and
depending on the result, the basis is switched up or
down accordingly.

The same principle can be used if the scaled energy in
every subband is used as a reference for switching the
basis. Although the one-sided metrics such as entropy
and energy do work well for fixed quantizers, they are
not optimal in a rate-distortion sense. In [9], a method
has been presented which jointly finds the optimal
basis and the optimal quantization using the
Langrangian cost function:

J(A)=D+ R

It can be shown that R-D optimality can be achieved
when all leaves of the wavelet packet tree operate at a
constant slope on their R-D curves. This approach
will give best results in a rate-distortion sense, but it
does not take any perceptual criteria into
consideration.

3.2 Perceptual measure

For a perceptual measure, masking effects of the
human auditory system are extremely important. In



frequency domain masking, a strong noise or a strong
tone masker will mask the noise or a tone of the
maskee [10].

All signals which are below the masking threshold
will not be perceived by the human auditory system
and therefore quantization noise in every subband can
be as high as the masking threshold permits. In a
subband coding system, every subband has an
individual quantizer. It may be an advantage to have a
subband decomposition equal to the critical bands of
the human auditory system in order to profit of in-
band masking. But again a flexible frequency tiling
will enable to take care of inter-band masking (e.g.
masking across critical bands).
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Figure 2: Frequency domain masking showing the
masking threshold

Masking also occurs in the time domain. In the
presence of abrupt signal transients, a listener will not
perceive signals beneath the audibility threshold in
the pre- and post-masking regions.
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Figure 3: Temporal masking

Only a few available perceptual coders take
advantage of temporal masking. A flexible, signal
adaptive filterbank allows to analyze the temporal
structure of the signal in every individual subband and
to adapt the filterbank by taking profit of all masking
effects in the frequency domain and in the time
domain. With the current filterbank framework, pre-
echoes can be avoided due to the individual

segmentation in the time-domain for every subband.
Similarly to the rate-distortion measure, we can define
a perceptual measure for searching the best basis in a
perceptual sense. A useful metric for estimating the
achievable perceptual coding gain is based on
perceptual entropy [11]. Perceptual entropy is
therefore an estimate to the lower bound of
transparent coding although it does not take into
account rate-distortion criteria and temporal masking
effects.

4 Weighted Cost Function

As it has been pointed out in the introduction, audio
signals can have completely different temporal and
spectral structure. Combining the rate-distortion
measure and the perceptual measure in a weighted
cost-function enables to cover applications such as
lossless audio coding for archiving and audio-on-
demand applications on the Internet with the very
same coding scheme. Depending on the weight of the
individual measures, the filterbank will adapt either in
a rate-distortion sense or alternatively in a perceptual
sense. Care has to be taken because these measures
are not additive in terms of overall costs. The rate-
distortion measure will operate in every subband but
for the perceptual measure, a more global analysis in
terms of frequency domain masking and temporal
masking is used. An additional input to the cost-
function is based on the complexity of the algorithm.
As pointed out in [7], switching the basis will cause
additional costs due to the redundant samples
necessary for the reconstruction. If the complexity is
to be kept as low as possible, switching the basis may
be prohibited if the overall improvement in coding
gain is rather small. Additionally, a "grid-function”
for the switching can be set in order to avoid multiple
up- and down-switching of the basis within a short
segment of time.

S Block diagram of the algorithm

The adaptive wavelet filterbank, the weighted cost
function, including rate-distortion and perceptual
measures have been presented in detail. The complete
audio compression algorithm will include an adaptive
quantizer and the entropy-coding stage. Both parts are
under development because they mainly depend on
the evaluations results and the performance of the
adaptive filterbank and the cost-function metric. A
control-loop enables to match the coding gain to the
desired target bitrate and additionally a back-channel
as proposed in the upcoming MPEG-4 standard can
be used in order to guarantee graceful degradation in
case of momentarily limited channel capacity.
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Figure 4: Overall block-diagram of the Wavelet-Audio Encoder

Additionally, advancement layers can be transmitted
for scalable applications such as transmission over the
Internet. Due to the flexible framework, this algorithm
allows to scale quality down from lossles coding,
using rate-distortion criteria only, down to to
transmission over low-bandwidth channels, where the
perceptual measure will have major impact.

6 Conclusions

A novel approach to a signal-adaptive filterbank for
audio coding applications has been presented. In
contrast to existing audio coding schemes, the
algorithm allows individual time segmentation in
every subband and every node of the wavelet-packet
tree can be switched up and down in order to increase
the coding gain. A weighted cost function allows to
optimize the filterbank based on a perceptual or a
rate-distortion measure. This system can perform
lossless compression, near-lossless compression or
perceptual compression of audio signals, depending
on the weights which have been selected for the cost
function. The cost-function additionally takes other
parameters such as computational complexity and
overall coding delay into consideration.

REFERENCES

[11 Brandenburg K., Stoll G., “The ISO/MPEG-
Audio Codec: A Standard for Coding of High
Quality Digital Audio”, AES Convention

Preprint 3336, March 1992

Princen J., Johnston J.D., “Audio Coding with
signal adaptive filterbanks”, Proceedings of
ICASSP 95, May 1995, pp. 3071-3073.

(2]

3]

[4]

[3]

[6]

[7]

8]

[9]

[10]

[11]

Malvar H.S., “Signal Processing with Lapped
Transforms”, Artech House, Norwood, 1992.

Sinha D., Tewfik A., “Low Bit Rate Transparent
Audio Compression using Adapted Wavelets”,.
IEEE Trans. on ASSP, Vol. 41, No.12,
December 1993, pp. 3463-3479.

Kudumakis P, Sandler M., “On the Performance
of Wavelets for Low Bit Rate Coding of Audio
Signals”,. Proceedings of [CASSP 95, May
1995, pp. 3087-3090.

Wickerhauser M.V., “Adapted Wavelet
Analysis from Theory to software”, /[EEE Press,
1994

Faller C., Erne M., Moschytz G.S., “Wavelet
Based Audio Compression”, Semesterarbeit an
der ETH-Ziirich,, February 1998

Coifman R., Wickerhauser M.V. “Entropy-
Based Algorithms for Best Basis Selection” .
IEEE Trans. on Information Theory Vol. 38,
No. 2, March 1992 pp. 713-718

Ramchandran K., Vetterli M., “Best Wavelet
Packet Bases in a rate-Distortion Sense”, [EEE

Trans. on Image Processing, Vol. .2, No. 2,
April 1993, pp. 160-175

Zwicker E., Fastl H, ”.Psychoacoustics Facts
and Models” Springer Verlag, 1990

Johnston J., “Estimation of Perceptual Entropy
Using Noise Masking Criteria”, Proceedings of
ICASSP 88, May 1995, pp. 2524-2527



