Download A Quadric Surface Model of Vacuum Tubes for Virtual Analog Applications
Despite the prevalence of modern audio technology, vacuum tube amplifiers continue to play a vital role in the music industry. For this reason, over the years, many different digital techniques have been introduced for accomplishing their emulation. In this paper, we propose a novel quadric surface model for tube simulations able to overcome the Cardarilli model in terms of efficiency whilst retaining comparable accuracy when grid current is negligible. After showing the model capability to well outline tubes starting from measurement data, we perform an efficiency comparison by implementing the considered tube models as nonlinear 3-port elements in the Wave Digital domain. We do this by taking into account the typical common-cathode gain stage employed in vacuum tube guitar amplifiers. The proposed model turns out to be characterized by a speedup of 4.6× with respect to the Cardarilli model, proving thus to be promising for real-time Virtual Analog applications.
Download Explicit Vector Wave Digital Filter Modeling of Circuits with a Single Bipolar Junction Transistor
The recently developed extension of Wave Digital Filters based on vector wave variables has broadened the class of circuits with linear two-port elements that can be modeled in a modular and explicit fashion in the Wave Digital (WD) domain. In this paper, we apply the vector definition of wave variables to nonlinear twoport elements. In particular, we present two vector WD models of a Bipolar Junction Transistor (BJT) using characteristic equations derived from an extended Ebers-Moll model. One, implicit, is based on a modified Newton-Raphson method; the other, explicit, is based on a neural network trained in the WD domain and it is shown to allow fully explicit implementation of circuits with a single BJT, which can be executed in real time.