Download Arbitrary-Order IIR Antiderivative Antialiasing
Nonlinear digital circuits and waveshaping are active areas of study, specifically for what concerns numerical and aliasing issues. In the past, an effective method was proposed to discretize nonlinear static functions with reduced aliasing based on the antiderivative of the nonlinear function. Such a method is based on the continuoustime convolution with an FIR antialiasing filter kernel, such as a rectangular kernel. These kernels, however, are far from optimal for the reduction of aliasing. In this paper we introduce the use of arbitrary IIR rational transfer functions that allow a closer approximation of the ideal antialiasing filter, required in the fictitious continuous-time domain before sampling the nonlinear function output. These allow a higher degree of aliasing reduction and can be flexibly adjusted to balance performance and computational cost.
Download Optimal Integer Order Approximation of Fractional Order Filters
Fractional order filters have been studied since a long time, along with their applications to many areas of physics and engineering. In particular, several solutions have been proposed in order to approximate their frequency response with that of an ordinary filter. In this paper, we tackle this problem with a new approach: we solve analytically a simplified version of the problem and we find the optimal placement of poles and zeros, giving a mathematical proof and an error estimate. This solution shows improved performance compared to the current state of the art and is suitable for real-time parametric control.