Download Improved Reverberation Time Control for Feedback Delay Networks
Artificial reverberation algorithms generally imitate the frequency-dependent decay of sound in a room quite inaccurately. Previous research suggests that a 5% error in the reverberation time (T60) can be audible. In this work, we propose to use an accurate graphic equalizer as the attenuation filter in a Feedback Delay Network reverberator. We use a modified octave graphic equalizer with a cascade structure and insert a high-shelf filter to control the gain at the high end of the audio range. One such equalizer is placed at the end of each delay line of the Feedback Delay Network. The gains of the equalizer are optimized using a new weighting function that acknowledges nonlinear error propagation from filter magnitude response to reverberation time values. Our experiments show that in real-world cases, the target T60 curve can be reproduced in a perceptually accurate manner at standard octave center frequencies. However, for an extreme test case in which the T60 varies dramatically between neighboring octave bands, the error still exceeds the limit of the just noticeable difference but is smaller than that obtained with previous methods. This work leads to more realistic artificial reverberation.
Download Extensions and Applications of Modal Dispersive Filters
Dispersive delay and comb filters, implemented as a parallel sum of high-Q mode filters tuned to provide a desired frequency-dependent delay characteristic, have advantages over dispersive filters that are implemented using cascade or frequency-domain architectures. Here we present techniques for designing the modal filter parameters for music and audio applications. Through examples, we show that this parallel structure is conducive to interactive and time-varying modifications, and we introduce extensions to the basic model.
Download Audio Transport: A Generalized Portamento via Optimal Transport
This paper proposes a new method to interpolate between two audio signals. As an interpolation parameter is changed, the pitches in one signal slide to the pitches in the other, producing a portamento, or musical glide. The assignment of pitches in one sound to pitches in the other is accomplished by solving a 1-dimensional optimal transport problem. In addition, we introduce several techniques that preserve the audio fidelity over this highly nonlinear transformation. A portamento is a natural way for a musician to transition between notes, but traditionally it has only been possible for instruments with a continuously variable pitch like the human voice or the violin. Audio transport extends the portamento to any instrument, even polyphonic ones. Moreover, the effect can be used to transition between different instruments, groups of instruments, or any other pair of audio signals. The audio transport effect operates in real-time; we provide an open-source implementation. In experiments with sinusoidal inputs, the interpolating effect is indistinguishable from ideal sine sweeps. More generally, the effect produces clear, musical results for a wide variety of inputs.
Download Neural Third-Octave Graphic Equalizer
This paper proposes to speed up the design of a third-order graphic equalizer by training a neural network to imitate its gain optimization. Instead of using the neural network to learn to design the graphic equalizer by optimizing its magnitude response, we present the network only with example command gains and the corresponding optimized gains, which are obtained with a previously proposed least-squares-based method. We presented this idea recently for the octave graphic equalizer with 10 band filters and extend it here to the third-octave case. Instead of a network with a single hidden layer, which we previously used, this task appears to require two hidden layers. This paper shows that good results can be reached with a neural network having 62 and 31 units in the first and the second hidden layer, respectively. After the training, the resulting network can quickly and accurately design a third-order graphic equalizer with a maximum error of 1.2 dB. The computing of the filter gains is over 350 times faster with the neural network than with the original optimization method. The method is easy to apply, and may thus lead to widespread use of accurate digital graphic equalizers.
Download The Shape of RemiXXXes to Come: Audio Texture Synthesis with Time-frequency Scattering
This article explains how to apply time–frequency scattering, a convolutional operator extracting modulations in the time–frequency domain at different rates and scales, to the re-synthesis and manipulation of audio textures. After implementing phase retrieval in the scattering network by gradient backpropagation, we introduce scale-rate DAFx, a class of audio transformations expressed in the domain of time–frequency scattering coefficients. One example of scale-rate DAFx is chirp rate inversion, which causes each sonic event to be locally reversed in time while leaving the arrow of time globally unchanged. Over the past two years, our work has led to the creation of four electroacoustic pieces: FAVN; Modulator (Scattering Transform); Experimental Palimpsest; Inspection (Maida Vale Project) and Inspection II; as well as XAllegroX (Hecker Scattering.m Sequence), a remix of Lorenzo Senni’s XAllegroX, released by Warp Records on a vinyl entitled The Shape of RemiXXXes to Come.
Download Improved Carillon Synthesis
An improved and expanded method for carillon bell synthesis is proposed. Measurements of a carillon bell and its clapper were made to serve as the basis for an efficient synthesis framework. Mode frequencies, damping, and amplitudes are used to form a modal model fit to measurements. A parameterized clapper interaction model is proposed to drive the bell model, reproducing variation of timbre as the bell is played in different dynamic ranges. Reverberation of the belfry was measured from several listener perspectives and an efficient modal reverberation architecture is shown to model the sound of the bell from locations inside and outside the belfry.
Download Real-Time Modal Synthesis of Crash Cymbals with Nonlinear Approximations, Using a GPU
We apply modal synthesis to create a virtual collection of crash cymbals. Synthesizing each cymbal may require enough modes to stress a modern CPU, so a full drum set would certainly not be tractable in real-time. To work around this, we create a GPU-accelerated modal filterbank, with each individual set piece allocated over two thousand modes. This takes only a fraction of available GPU floating-point throughput. With CPU resources freed up, we explore methods to model the different instrument response in the linear/harmonic and non-linear/inharmonic regions that occur as more energy is present in a cymbal: a simple approach, yet one that preserves the parallelism of the problem, uses multisampling, and a more physically-based approach approximates modal coupling.
Download Drum Translation for Timbral and Rhythmic Transformation
Many recent approaches to creative transformations of musical audio have been motivated by the success of raw audio generation models such as WaveNet, in which audio samples are modeled by generative neural networks. This paper describes a generative audio synthesis model for multi-drum translation based on a WaveNet denosing autoencoder architecture. The timbre of an arbitrary source audio input is transformed to sound as if it were played by various percussive instruments while preserving its rhythmic structure. Two evaluations of the transformations are conducted based on the capacity of the model to preserve the rhythmic patterns of the input and the audio quality as it relates to timbre of the target drum domain. The first evaluation measures the rhythmic similarities between the source audio and the corresponding drum translations, and the second provides a numerical analysis of the quality of the synthesised audio. Additionally, a semi- and fully-automatic audio effect has been proposed, in which the user may assist the system by manually labelling source audio segments or use a state-of-the-art automatic drum transcription system prior to drum translation.
Download On the Impact of Ground Sound
Rigid-body impact sound synthesis methods often omit the ground sound. In this paper we analyze an idealized ground-sound model based on an elastodynamic halfspace, and use it to identify scenarios wherein ground sound is perceptually relevant versus when it is masked by the impacting object’s modal sound or transient acceleration noise. Our analytical model gives a smooth, closed-form expression for ground surface acceleration, which we can then use in the Rayleigh integral or in an “acoustic shader” for a finite-difference time-domain wave simulation. We find that when modal sound is inaudible, ground sound is audible in scenarios where a dense object impacts a soft ground and scenarios where the impact point has a low elevation angle to the listening point.
Download Potentiometer law modelling and identification for application in physics-based Virtual Analogue circuits
Physical circuit models have an inherent ability to simulate the behaviour of user controls as exhibited by, for example, potentiometers. Working to accurately model the user interface of musical circuits, this work provides potentiometer ‘laws’ that fit to the underlying characteristics of linear and logarithmic potentiometers. A strategy of identifying these characteristics is presented, exclusively using input/output measurements and as such avoiding device disassembly. By breaking down the identification problem into one dimensional, search spaces characteristics are successfully identified. The proposed strategy is exemplified through a case study on the tone stack of the Big Muff Pi.