Download Real-time Pitch Tracking in Audio Signals with the Extended Complex Kalman Filter
The Kalman filter is a well-known tool used extensively in robotics, navigation, speech enhancement and finance. In this paper, we propose a novel pitch follower based on the Extended Complex Kalman Filter (ECKF). An advantage of this pitch follower is that it operates on a sample-by-sample basis, unlike other block-based algorithms that are most commonly used in pitch estimation. Thus, it estimates sample-synchronous fundamental frequency (assumed to be the perceived pitch), which makes it ideal for real-time implementation. Simultaneously, the ECKF also tracks the amplitude envelope of the input audio signal. Finally, we test our ECKF pitch detector on a number of cello and double bass recordings played with various ornaments, such as vibrato, portamento and trill, and compare its result with the well-known YIN estimator, to conclude the effectiveness of our algorithm.
Download Constrained Pole Optimization for Modal Reverberation
The problem of designing a modal reverberator to match a measured room impulse response is considered. The modal reverberator architecture expresses a room impulse response as a parallel combination of resonant filters, with the pole locations determined by the room resonances and decay rates, and the zeros by the source and listener positions. Our method first estimates the pole positions in a frequency-domain process involving a series of constrained pole position optimizations in overlapping frequency bands. With the pole locations in hand, the zeros are fit to the measured impulse response using least squares. Example optimizations for a mediumsized room show a good match between the measured and modeled room responses.