Download On Iterative Solutions for Numerical Collision Models
Nonlinear interactions between different parts of musical instruments present several challenges regarding the formulation of reliable and efficient numerical sound synthesis models. This paper focuses on a numerical collision model that incorporates impact damping. The proposed energy-based approach involves an iterative solver for the solution of the nonlinear system equations. In order to ensure the efficiency of the presented algorithm a bound is derived for the maximum number of iterations required for convergence. Numerical results demonstrate energy conservation as well as convergence within a small number of iterations, which is usually much lower than the predicted bound. Finally, an application to music acoustics, involving a clarinet simulation, shows that including a loss mechanism during collisions may have a significant effect on sound production.
Download Performance Portability for Room Acoustics Simulations
Numerical modelling of the 3-D wave equation can result in very accurate virtual auralisation, at the expense of computational cost. Implementations targeting modern highly-parallel processors such as NVIDIA GPUs (Graphics Processing Units) are known to be very effective, but are tied to the specific hardware for which they are developed. In this paper, we investigate extending the portability of these models to a wider range of architectures without the loss of performance. We show that, through development of portable frameworks, we can achieve acoustic simulation software that can target other devices in addition to NVIDIA GPUs, such as AMD GPUs, Intel Xeon Phi many-core CPUs and traditional Intel multi-core CPUs. The memory bandwidth offered by each architecture is key to achievable performance, and as such we observe high performance on AMD as well as NVIDIA GPUs (where high performance is achievable even on consumer-class variants despite their lower floating point capability), whilst retaining portability to the other less-performant architectures.