Download Stereo signal separation and upmixing by mid-side decomposition in the frequency-domain
An algorithm to estimate the perceived azimuth directions in a stereo signal is derived from a typical signal model. These estimated directions can then be used to separate direct and ambient signal components and to remix the original stereo track. The processing is based on the idea of a bandwise mid-side decomposition in the frequency-domain which allows an intuitive and easy to understand mathematical derivation. An implementation as a stereo to five channel upmix is able to deliver a high quality surround experience at low computational costs and demonstrates the practical applicability of the presented approach.
Download Downmix compatible conversion from mono to stereo in time- and frequency-domain
Even in a time of surround and 3D sound, many tracks and recordings are still only available in mono or it is not feasible to record a source with multiple microphones for several reasons. In these cases, a pseudo stereo conversion of mono signals can be a useful preprocessing step and/or an enhancing audio effect. The conversion proposed in this paper is designed to deliver a neutral sounding stereo image by avoiding timbral coloration or reverberation. Additionally, the resulting stereo signal is downmix-compatible and allows to revert to the original mono signal by a simple summation of the left and right channels. Several configuration parameters are shown to control the stereo panorama. The algorithm can be implemented in time-domain or also in the frequency-domain with additional features, like center focusing.