Download Extraction of Metrical Structure from Music Recordings
Rhythm is a fundamental aspect of music and metrical structure is an important rhythm-related element. Several mid-level features encoding metrical structure information have been proposed in the literature, although the explicit extraction of this information is rarely considered. In this paper, we present a method to extract the full metrical structure from music recordings without the need for any prior knowledge. The algorithm is evaluated against expert annotations of metrical structure for the GTZAN dataset, each track being annotated multiple times. Inter-annotator agreement and the resulting upper bound on algorithm performance are evaluated. The proposed system reaches 93% of this upper limit and largely outperforms the baseline method.
Download Digitally Moving An Electric Guitar Pickup
This paper describes a technique to transform the sound of an arbitrarily selected magnetic pickup into another pickup selection on the same electric guitar. This is a first step towards replicating an arbitrary electric guitar timbre in an audio recording using the signal from another guitar as input. We record 1458 individual notes from the pickups of a single guitar, varying the string, fret, plucking position, and dynamics of the tones in order to create a controlled dataset for training and testing our approach. Given an input signal and a target signal, a least squares estimator is used to obtain the coefficients of a finite impulse response (FIR) filter to match the desired magnetic pickup position. We use spectral difference to measure the error of the emulation, and test the effects of independent variables fret, dynamics, plucking position and repetition on the accuracy. A small reduction in accuracy was observed for different repetitions; moderate errors arose when the playing style (plucking position and dynamics) were varied; and there were large differences between output and target when the training and test data comprised different notes (fret positions). We explain results in terms of the acoustics of the vibrating strings.