Download Similarity-based Sound Source Localization with a Coincident Microphone Array
This paper presents a robust, accurate sound source localization method using a compact, near-coincident microphone array. We derive features by combining the microphone signals and determine the direction of a single sound source by similarity matching. Therefore, the observed features are compared with a set of previously measured reference features, which are stored in a look-up table. By proper processing in the similarity domain, we are able to deal with signal pauses and low SNR without the need of a separate detection algorithm. For practical evaluation, we made recordings of speech signals (both loudspeaker-playback and human speaker) with a planar 4-channel prototype array in a medium-sized room. The proposed approach clearly outperforms existing coincident localization methods. We achieve high accuracy (2◦ mean absolute azimuth error at 0 dB SNR) for static sources, while being able to quickly follow rapid source angle changes.
Download Phantom Source Widening With Deterministic Frequency Dependent Time Delays
We present a novel method to adjust the perceived width of a phantom source by varying the deterministic inter channel time difference (ICT D) in a pair of signals over frequency. In contrast to given literature that focuses on random phase over frequency, our paper considers a deterministic approach that is open to a more systematic evaluation. Two allpass structures are described, finite impulse response (FIR) and infinite impulse response (IIR), for phase-based phantom source widening and evaluated in a formal listening test. Varying ICT D over frequency essentially alters the inter-aural cross correlation coefficient at the ears of a listener and in this way provides a robust way to control the auditory source width. The subjective evaluation results fully support our observations for both noise and speech signals.