Download Parametric Spatial Audio Effects
Parametric spatial audio coding methods aim to represent efficiently spatial information of recordings with psychoacoustically relevant parameters. In this study, it is presented how these parameters can be manipulated in various ways to achieve a series of spatial audio effects that modify the spatial distribution of a captured or synthesised sound scene, or alter the relation of its diffuse and directional content. Furthermore, it is discussed how the same representation can be used for spatial synthesis of complex sound sources and scenes. Finally, it is argued that the parametric description provides an efficient and natural way for designing spatial effects.
Download Parametric Spatial Audio Effects Based on the Multi-Directional Decomposition of Ambisonic Sound Scenes
Decomposing a sound-field into its individual components and respective parameters can represent a convenient first-step towards offering the user an intuitive means of controlling spatial audio effects and sound-field modification tools. The majority of such tools available today, however, are instead limited to linear combinations of signals or employ a basic single-source parametric model. Therefore, the purpose of this paper is to present a parametric framework, which seeks to overcome these limitations by first dividing the sound-field into its multi-source and ambient components based on estimated spatial parameters. It is then demonstrated that by manipulating the spatial parameters prior to reproducing the scene, a number of sound-field modification and spatial audio effects may be realised; including: directional warping, listener translation, sound source tracking, spatial editing workflows and spatial side-chaining. Many of the effects described have also been implemented as real-time audio plug-ins, in order to demonstrate how a user may interact with such tools in practice.