On the limits of real-time physical modelling synthesis with a modular environment

Craig Webb; Stefan Bilbao
DAFx-2015 - Trondheim
One goal of physical modelling synthesis is the creation of new virtual instruments. Modular approaches, whereby a set of basic primitive elements can be connected to form a more complex instrument have a long history in audio synthesis. This paper examines such modular methods using finite difference schemes, within the constraints of real-time audio systems. Focusing on consumer hardware and the application of parallel programming techniques for CPU processors, useable combinations of 1D and 2D objects are demonstrated. These can form the basis for a modular synthesis environment that is implemented in a standard plug-in architecture such as an Audio Unit, and controllable via a MIDI keyboard. Optimisation techniques such as vectorization and multi-threading are examined in order to maximise the performance of these computationally demanding systems.
Download