
Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

ANTIALIASED STATE TRAJECTORY NEURAL NETWORKS
FOR VIRTUAL ANALOG MODELING

Lasse Köper and Martin Holters

Department of Signal Processing and Communication
Helmut Schmidt University – University of the Federal Armed Forces

Hamburg Germany
lasse.koeper@hsu-hh.de | martin.holters@hsu-hh.de

ABSTRACT

In recent years, virtual analog modeling with neural networks ex-
perienced an increase in interest and popularity. Many different
modeling approaches have been developed and successfully applied.
In this paper we do not propose a novel model architecture, but
rather address the problem of aliasing distortion introduced from
nonlinearities of the modeled analog circuit. In particular, we pro-
pose to apply the general idea of antiderivative antialiasing to a
state-trajectory network (STN). Applying antiderivative antialiasing
to a stateful system in general leads to an integral of a multivariate
function that can only be solved numerically, which is too costly
for real-time application. However, an adapted STN can be trained
to approximate the solution while being computationally efficient.
It is shown that this approach can decrease aliasing distortion in the
audioband significantly while only moderately oversampling the
network in training and inference.

1. INTRODUCTION

In the realm of audio signal processing, nonlinear systems are
widely used to create certain musical effects. The main class of
these effects is comprised of clipping or overdrive effects, which
add an amount of harmonic frequency content to the output, in order
to achieve a distorted sound. Historically these kinds of effects were
designed in the analog domain. The sound and behaviour of these
analog devices are sought after until today. Consequently, there is
a natural interest in recreating them in digital models, a process
referred to as virtual analog modeling. Over the last decades many
different approaches have been developed for converting the analog
circuit into a virtual model. In [1, 2, 3], the authors show that Wave-
Digital filters can be used to create a digital model of nonlinear
stateful systems. [4] and [5] construct a discrete-time state-space
model from circuit schematics, while [6] uses a Port-Hamiltonian
formalism to create gueranteed-passive systems. Another approach,
which in the recent years experienced an increase in popularity, is
to use artificial neural networks. In this work we are using so called
state-trajectory networks, which approximate the trajectory in the
state-space using a feedforward neural network.

Since nonlinear systems introduce harmonic frequency content
that can exceed the Nyquist frequency, all before-mentioned ap-
proaches can suffer from aliasing distortion. The most commonly
used technique to reduce this aliasing distortion is to oversample

Copyright: © 2023 Lasse Köper et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

the signal with a very high sampling rate. Obviously this increases
computational complexity and memory consumption. In order to
keep real-time capabilities as good as possible, we propose in this
work an antialiased neural network model, which uses only modest
oversampling.

This paper is organized as follows. In section 1.1 we give a
detailed problem statement, followed by a derivation of the pro-
posed method in section 2. Sections 3 and 4 discuss the neural
network structure and training data generation. In section 5 the
proposed method is applied to different example circuits, providing
the results for this work, followed by some concluding remarks in
section 6.

1.1. Problem statement

We consider an analog circuit which is described by an implicit
ordinary differential equation

g
(
ẋ(t),y(t),x(t),u(t)

)
= 0 (1)

where the state x(t), the input u(t), and the output y(t) may be
vector-valued. We assume an explicit solution

ẋ(t) = fx
(
x(t),u(t)

)
(2a)

y(t) = fy
(
x(t),u(t)

)
(2b)

exists, but does not have a closed form, i.e. may only be determined
numerically from (1) using an iterative approach. The system can
be transformed to discrete-time by various well-known methods
such as the trapezoidal rule, resulting in an implicit update rule of
the form

ḡ
(
x̄(n), ȳ(n), x̄(n−1), ū(n);T

)
= 0 (3)

where T denotes the sampling interval, ū(n) = u(nT) is the sampled
input signal and ȳ(n)≈ y(nT) approximates samples of the output
signal subject to the error introduced by the discretization scheme.
The states x̄(n) maintain a relationship to the continuous-time
states x(t), but do not necessarily correspond to samples thereof.

There are three problems associated with this approach:

1. Numerical solution of (3) is computationally expensive and
may prevent real-time operation. (Note that using an explicit
discretization scheme such as forward Euler will not help
here due to the implicit nature of (1)).

2. The discretization scheme introduces an error which may
become significant for high-frequency signals.

3. Even if the approximation error of the discretization scheme
is tolerable, samples of y(t) may not be the desired output:
The continuous-time output may contain high-frequency

DAFx.1

https://www.hsu-hh.de/ant/
mailto:lasse.koeper@hsu-hh.de
mailto:martin.holters@hsu-hh.de
http://creativecommons.org/licenses/by/4.0/

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

ū(n)
piecewise

linear
reconstr.

nonlinearity one T
averaging ȳ(n)

T

Figure 1: Underlying idea of antiderivative antialiasing.

content due to harmonics introduced by the nonlinearity of
the system which results in aliasing distortion when sampled.
Ideally, one would wish ȳ(n) to be samples of a band-limited
version of y(t).

Problems 2 and 3 can be mitigated by oversampling the system,
but this obviously aggravates problem 1. Problem 3 can also be
approached by antiderivative antialiasing [7, 8, 9], but only for
stateless and a very limited class of stateful systems [10, 11]. A
recent trend to tackle problem 1 is to approximate the solutions

x̄(n) = f̄x
(
x̄(n−1), ū(n)

)
(4a)

ȳ(n) = f̄y
(
x̄(n−1), ū(n)

)
(4b)

of (3)1 (which lack a closed form) with neural networks [12] which
are more efficient to evaluate than iterative numerical solution.

In this work, we explore the combination of the approximation
with neural networks with the idea underlying the development of
antiderivative antialiasing to attack all three problems simultane-
ously without imposing new restrictions on the considered systems.

2. ANTIALIASED NEURAL NETWORK APPROACH

Perfect aliasing suppression could be obtained by operating in
the continuous-time domain. That is, for the samples ū(n), the
continuous input signal u(t) could be formed by using an ideal
reconstruction lowpass filter. Then, the continuous-time non-linear
system of (2) could be applied to obtain y(t). Bandlimiting to
half the sampling-rate with an ideal lowpass filter before sampling
would then allow to obtain an aliasing-free output ȳ(n). While
theoretically perfect, this is clearly impractical.

However, by using non-ideal lowpass filters, one may actually
arrive at a practical system. In particular, consider linear interpola-
tion for the reconstruction filter and averaging over one sampling
interval for bandlimiting as depicted in figure 1. When implement-
ing a digital system, the continuous signals obviously still pose a
problem. The key insight of antiderivative antialiasing is that for
a stateless nonlinearity, an equivalent system can be derived that
operates solely on the sampled signals, but requires the antideriva-
tive of the nonlinear mapping function—hence the method’s name
(see [7] for details.) Unfortunately, this only works for stateless
nonlinear systems and for a limited class of stateful systems after
some modification [10, 11].

But now consider a general stateful nonlinear system of the
form (1). Focusing on the time interval from (n−1)T to nT , we
first observe that given both the state x((n−1)T) at the beginning
of that interval and the input u(t) for the whole interval, the state

1Some modeling approaches yield an output equation dependent on x̄(n)
instead of x̄(n−1), i.e. of the form ȳ(n) = f̄ ∗y

(
x̄(n), ū(n)

)
. It may not always

be possible to express the solution of (3) like that, however. On the other
hand, it is always possible to rewrite from f̄ ∗y to f̄y via f̄y

(
x̄(n−1), ū(n)

)
=

f̄ ∗y
(

f̄x
(
x̄(n−1), ū(n)

)
, ū(n)

)
, so the case considered here is the more general

one.

ū(n)
↑ L with

linear
interp.

discretized
stateful

nonlinear
system

L sample
average ↓ L

↓ L

ȳ(n)

x̄(n)

Figure 2: Oversampled system to obtain training data for approxi-
mation with neural network.

trajectory x(t) and the output y(t) are fully determined during that
interval. Now if u(t) is assumed piecewise linear, i.e. linear in that
interval, it in turn is fully determined by its values at the beginning
and the end of the interval, namely its samples ū(n−1) and ū(n). So
from these input samples and the initial state x̄(n−1)= x((n−1)T),
the state trajectory x(t) and the output y(t) can be determined up
to the interval’s end nT . In particular, this allows to determine
the state x̄(n) = x(nT) at the end of the interval to be used as the
initial state for the subsequent time interval. Furthermore, we can
apply the averaging operation to the output to obtain the antialiased
output samples

ȳ(n) =
1
T

∫ nT

(n−1)T
y(t). (5)

So to summarize, we may conclude that input samples ū(n−1)
and ū(n) and initial state x̄(n− 1) are sufficient to determine the
next state x̄(n) and the antialiased output ȳ(n), or in other words,
that there exist functions

x̄(n) = f̄x
(
x̄(n−1), ū(n−1), ū(n)

)
(6a)

ȳ(n) = f̄y
(
x̄(n−1), ū(n−1), ū(n)

)
(6b)

that correspond to the approach from figure 1 applied to an arbitrary
stateful system. However, these functions lack a closed form and
in fact, evaluating them numerically requires a scheme like (3)
operating at a sampling rate high enough that discretization error
and aliasing distortion are sufficiently low. Thus, we are back
to oversampling, but with deliberately simple interpolation and
decimation filters.

At this point, the neural network comes into play. Given that (6)
describes a system with the desired properties except for the func-
tions being computationally rather costly, it suggests itself to ap-
proximate them using a neural network. We may therefore boil
down our approach to the following: Feed a suitable training stimu-
lus ū(n) to an oversampled, classical simulation approach to obtain
corresponding sequences of x̄(n) and ȳ(n) and use these as training
data for a neural network to approximate (6). But note that the
oversampling has to be of a particular form: Upsampling of the
input uses linear interpolation, downsampling of the output uses
averaging over one sampling interval. In contrast, downsampling of
the states uses no decimation filter at all, as these act like snapshots
of the oversampled system from which it could be restarted; i.e. it
must be possible to reconstruct the original state trajectory, which
would be impossible if the states were filtered. Thus, the system
for generating training data finally looks as depicted in figure 2.

The simple interpolation and decimation filters are required
to avoid additional states from appearing. Comparing (4) and (6),
only ū(n−1) needs to be newly introduced. It would be possible,
however, to utilize more sophisticated filters as long as more sam-
ples of ū are provided to fully cover the filters’ combined support.

DAFx.2

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

ū(n)

ū(n−1)

x̄(n−1)

lx,1 lx,n x̂(n)

Nx

(a)

ū(n)

ū(n−1)

x̄(n−1)

ly ŷ(n)

Ny

(b)

Figure 3: Network structure during training, (a) trained on down-
sampled states, (b) trained on downsampled and averaged output.

3. NEURAL NETWORK ARCHITECTURE

For approximating a stateful nonlinear system like (6), many suit-
able neural network modeling approaches can be found. To name
a few, Wright et al. [13] employ recurrent neural networks in a
black-box model approach, while in [14] time-varying effects are
modeled with neural grey box models. Wilczek et al. [15] approx-
imate the underlying nonlinear differential equation by a neural
network and combine it with a numerical solver.

However, given that the system is in state-space form, it is
preferable to apply the neural network directly in the state-space.
Therefore using state-trajectory networks [12] seems to be the
natural choice. Furthermore, this has the advantage that modeling
of states and output can be performed in two different networks.
This can be helpful to reduce stability issues during inference, since
one network can be trained to solely model the dynamics of the
system, whereas the other is only responsible for the nonlinear
mapping from states to output.

Figure 3 shows the two models during training. The amount
of hidden layers in the state predicting model can be adjusted to
the complexity of the modeled analog circuit. In this work it was
sufficient to use small networks with up to three hidden layers,
which is also beneficial in terms of realtime capability. For the
network predicting the output, it is even possible to use only one
layer. Regarding the hidden layer type, we opted for fully connected
layers followed by a hyperbolic tangent activation function. The last
layer is a fully connected layer with no bias and linear activation.

All trainings were performed using a mean-squared error loss
function and an NAdam optimizer following the hyperparameter
settings of [16]. Figure 4 shows the model during inference. The
networks Nx and Ny correspond to the two networks trained in
figure 3 respectively. The predicted state vector x̂(n) is then used in
the next time step as an input of Nx following the typical structure
of a state-trajectory network. Similarly, by using the current and
previous input sample, as well as the previously predicted state,
the network Ny can approximate the averaging and downsampling
operation from figure 2 employing a simple static mapping.

4. TRAINING DATA GENERATION

Generating suitable training data for the models is a crucial point in
this work, since the antialiasing operation is in great part performed
during training data generation. One of the first questions arising is
whether to use measurement or simulation data. In this work it is
obvious that we have to use simulation data, since the antialiasing
lowpass filters in measurement hardware are in general not in the

ū(n)

z−1

z−1 Nx Ny

ŷ(n)x̂(n)

Figure 4: Network structure during inference time.

particular form required for the presented approach. Therefore the
proposed antialiasing scheme could not be applied. The training
data is generated by simulation using the ACME framework2 in
Julia3. This simulation is based on a state-space modeling approach,
discretizing a continuous-time state-space system obtained from
circuit dynamics using the trapezoidal rule [5].

We now use a low sampling rate fs1 to create our input sig-
nal ū(n). This sampling rate should already be a reasonably high au-
dio sampling rate, because this scheme is most effective if combined
with modest oversampling. Therefore, we choose fs1 = 96kHz for
all examples in the following section. Afterwards the input signal
is upsampled to a sampling rate fs2 like we saw in figure 2. Unless
otherwise noted, we use fs2 = L · fs1 with L = 4, i.e. fs2 = 384kHz.
The simulation is now run using the high sampling rate. After
averaging the output, as well as downsampling states and output,
the data is ready to be used for training. In order to evaluate the
proposed method’s antialiasing capabilities, we also create a ref-
erence training signal. This signal is obtained by just running the
simulation at the low sampling rate fs1 with the signal ū(n) as its
input. The reference signal and the antialiased training data are the
basis for all comparisons in the following examples. That means we
compare the network structure from 3, trained with the antialiased
data, against a standard STN using only the current input sample
and trained with the reference signal.

As the training input stimulus, we use the exponential sine
sweep

ū(n) = Asin

(
Ωl (N −1)

log Ωh
Ωl

exp
(

n
N −1

log
Ωh

Ωl

)
−1

)
, (7)

where N is the signal length in samples, Ωl and Ωh are the lower
and upper normalized angular frequency Ω. = 2π

f.
fs

respectively
and A is the amplitude.

The signal length is chosen as N = 960000 and the lower and
upper frequency as fl = 20Hz and fu = 2000Hz, respectively. This
stimulus is then repeated for different amplitudes A from a range
differing between the examples as given in the next section.

5. APPLICATION

5.1. Example 1: 2nd Order Diode Clipper

As a first example we study the aliasing behavior of a second
order diode clipper. The schematic can be seen in figure 5 and
the corresponding component values are listed in table 1. For
the training, the model structure from figure 3 was used with two

2Analog Circuit Modeling and Emulation for Julia (v0.10.0):
https://github.com/HSU-ANT/ACME.jl

3The Julia Programming Language (v1.8.5): https://julialang.org/

DAFx.3

https://github.com/HSU-ANT/ACME.jl
https://github.com/HSU-ANT/ACME.jl
https://julialang.org/

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

R1
C1

u(n)

C2

y(n)

Figure 5: Second-Order Diode Clipper.

Table 1: Second-Order Diode Clipper - Component List.

Element Value
R1 2.2 kΩ

C1 470 nF
C2 10 nF

Diodes Is = 1pA, vt = 25mV, η = 1

5k 10k 15k 20k
−125

−100

−75

−50

−25

0

f in Hz

M
ag

ni
tu

de
in

dB

Figure 6: Second-order diode clipper - reference model without
antialiasing, crosses mark the desired harmonics.

hidden layers, each comprising 12 neurons and a hyperbolic tangent
activation function. The output model from figure 3 uses one hidden
layer with 8 neurons.

In order to train the model on a variety of signal amplitudes, the
sinesweep from (7) was evaluated for a set of different amplitudes
and combined afterwards to form the final training signal. With the
goal of achieving a high amount of aliasing to show the capabilities
of the proposed method, we opted for rather high amplitudes in
the training signal, ranging from 0.2 V to 12 V. The model was
trained over 40 epochs after which the loss did not decrease signifi-
cantly further. The batch size was set to 1024 samples. To test the
aliasing reduction of the proposed model, a single sinusoid with
an amplitude of 10 V and a frequency of 1244.5 Hz was applied to
the reference(no antialiasing) and the antialiased model. Figure 6
shows the frequency content of the test signal, after being applied
to the reference model. As expected we can observe a high amount
of aliasing distortion between the desired harmonics. In compar-
ison, the output of the proposed model in figure 7 shows a high
reduction of aliasing in the audio band. The aliasing components
for higher frequencies experience a much smaller reduction than
for the low frequencies. However, this is a well-known property
of the antiderivative antialiasing approach from [7] and was to be
expected, since the proposed method is based on it.

It should be noted that the diode clipper is simple enough so that
it could also be treated with the antialiasing approach of [10, 11].
Indeed, applying that approach yields very similar results. Further-
more, when based on a lookup table, it is more straight-forward to
design than training a neural network and computationally cheaper

5k 10k 15k 20k
−125

−100

−75

−50

−25

0

f in Hz

M
ag

ni
tu

de
in

dB

Figure 7: Second-order diode clipper - model with antialiasing
L=4, crosses mark the desired harmonics.

u(n)

R1

C1

R2

R3
C5

+9V

Q1

R4

R5 C3

P1 y(n)

Figure 8: Birdie Treble Booster.

at runtime. So the diode clipper serves as a proof-of-concept, but
does not exhibit the advantage of the present method. That will be
different for the following cases, where the method of [10, 11] is
no longer applicable.

5.2. Example 2: Birdie - Treble Booster

Our next case study is the guitar treble booster The Birdie. It is
sold as a DIY soldering kit by musikding 4 and is based on the
Electro-Harmonix Screaming Bird. Figure 8 shows the schematic
and table 2 the corresponding component values of the circuit. The
circuit itself is based on a common emitter amplifier, with a simple
highpass filter comprising R1, C1 and R2 at the input. Note that the
capacitor C5 is only used to stabilize the supply voltage. However,
we assume an ideal voltage source for the supply and can therefore
safely omit C5 from the simulation, reducing the circuit’s dynamics
to second order. We will also model the circuit at a fixed level of
the volume potentiometer P1 of 0.5.

Like in the previous example, we go for a model with two
fully connected hidden layers and 12 neurons each. The training
signal from (7) is adapted to a different set of amplitudes ranging
from 0.2 to 8 volts. The model was trained over 30 epochs with
a batch size of 1024 samples. As a test signal for inference, we
use again a single sinusoid with a frequency of 1244.5Hz but with
a slightly smaller amplitude of 8 volts. The frequency domain

4The Birdie: https://www.musikding.de/docs/musikding/birdie/
birdie_schalt.pdf

DAFx.4

https://www.musikding.de/docs/musikding/birdie/birdie_schalt.pdf
https://www.musikding.de/docs/musikding/birdie/birdie_schalt.pdf

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

Table 2: Birdie Treble Booster - Component List.

Element Value
R1 1 MΩ

R2 43 kΩ

R3 430 kΩ

R4 390 Ω

R5 10 kΩ

C1 2.2 nF
C3 2.2 nF
C5 100 µF
Q1 2N5088
P1 100 kΩ log

5k 10k 15k 20k
−125

−100

−75

−50

−25

0

f in Hz

M
ag

ni
tu

de
in

dB

Figure 9: Birdie - reference model without antialiasing, crosses
mark the desired harmonics.

5k 10k 15k 20k
−125

−100

−75

−50

−25

0

f in Hz

M
ag

ni
tu

de
in

dB

Figure 10: Birdie - model with antialiasing L=4, crosses mark the
desired harmonics.

output to this test signal can be seen in figure 9 (reference) and in
figure 10 (antialiased model). We can observe a similar behavior
as for the diode clipper. The reference shows a decent amount of
aliasing distortion between the desired harmonics of the output
signal, whereas the antialiased model shows only a small amount of
aliasing distortion. For low frequencies the aliasing components in
figure 10 are barely visible, but they increase for higher frequencies.

5.3. Example 3: Fuzzface

To conclude this section we show the effectiveness of the proposed
method on the Fuzzface guitar distortion effect. This circuit is a
useful addition to the previous examples, because in comparison
to the treble booster from the last section it provides a lot more

C1

u(n) Q1 Q2

R4 P1
C2

R3

R2

R1

-9V

C3

P2 y(n)

Figure 11: Fuzzface.

Table 3: Fuzzface - Component List.

Element Value
R1 33 kΩ

R2 470 Ω

R3 8.2 kΩ

R4 100 kΩ

C1 2.2 µF
C2 20 µF
C3 100 nF

Q1,Q2 AC128
P1 1 kΩ linear
P2 500 kΩ log

distortion to the output. Consequently it will produce more aliasing
distortion, due to the high amount of harmonic frequency content.

The schematic of the Fuzzface can be seen in figure figure 11
and the component values can be found in table 3. The circuit
basically consists of an input stage providing a high voltage gain,
an output stage and a feedback loop to stabilize the circuit. The
amount of distortion added to the input can be adjusted with the
potentiometer P1, which controls the amount of negative feedback
via R4. The output volume can be controlled with the remaining
potentiometer P2. For the sake of simplicity we train the models of
the system with fixed values of 0.5 for both potentiometers.

Since this circuit is more complex with respect to the number
of states and nonlinear behavior than the previous examples, it
is necessary to adjust the simple STN from figure 3 in order to
reduce exposure bias and ensure stability. For this reason the net-
work is split into three separate sub-networks, where each network
is trained to solely predict one of the three states. This allows a
more precise prediction of each state. During inference the three
networks are connected in parallel and each predicted state is fed
to each individual network as the next input sample. The output
network remains the same as in the previous examples. Note that
the modification of the network does not effect the proposed an-
tialiasing approach and is only necessary to obtain a stable model
during inference.

DAFx.5

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

5k 10k 15k 20k
−125

−100

−75

−50

−25

0

f in Hz

M
ag

ni
tu

de
in

dB

Figure 12: Fuzzface - reference model without antialiasing, crosses
mark the desired harmonics.

Regarding the model structure of each individual network, we
use two hidden layers with 12 neurons each. For this example, we
opted to normalize the states before training. This was necessary
because when using the capacitor’s voltages as states for the model,
they become very difficult to train. The reason for this is that the
bias voltage at the capacitors differ a lot from each other. Further-
more the amplitude around this bias values is fairly small. Training
the network with these physically meaningful states resulted into a
bad model performance. Consequently the states were normalized
to

xi,norm =
xi −µxi

max(xi −µxi)
, (8)

where xi are the individual states and µxi are the mean values for
each state.

The models for this circuit were trained over 40 epochs using
the same training sinesweep as before, but with adapted amplitudes
in the more reasonable range of 0.2 to 3 volts. Figure 12 shows
the frequency content of the reference model, when excited with
the signal u(n) = 2sin

(
2π ·1244.5 n

fs

)
. Between the desired har-

monics a lot of aliasing components are present. In comparison the
antialiased model in figure 13 can reduce these aliasing distortion by
a large margin using only an oversampling factor of L = 4. Using a
higher oversampling factor than L = 4 for this model does not result
into a significant increase in aliasing reduction. Figure 14 shows the
frequency content for L = 8. It can be seen that the improvement
in comparison to figure 13 is marginally small. However, since
the model uses the downsampled data there is no computational
overhead when running the model trained with L = 8 or higher.

6. CONCLUSION AND OUTLOOK

In this work, we presented an antialiasing approach for state-
trajectory networks. This approach uses the general idea of an-
tiderivative antialiasing [7, 8, 9, 10, 11] and applies an approxi-
mation of the method to the model’s training data. In contrast to
the original antiderivative antialiasing, the proposed method is not
limited to systems having only one nonlinearity with scalar input.
The necessary modification of the STN in order to incorporate
the method is straight-forward and easily implemented. Only one
additional input with the previous input sample has to be added.

The method was successfully applied to three different non-
linear circuits. In comparison to a reference model, which was
sampled with a sampling rate of 96 kHz, the antialiased model was

5k 10k 15k 20k
−125

−100

−75

−50

−25

0

f in Hz

M
ag

ni
tu

de
in

dB

Figure 13: Fuzzface - model with antialiasing L=4, crosses mark
the desired harmonics.

5k 10k 15k 20k
−125

−100

−75

−50

−25

0

f in Hz

M
ag

ni
tu

de
in

dB

Figure 14: Fuzzface - model with antialiasing L=8, crosses mark
the desired harmonics.

able to attenuate most of the aliasing distortion while using the
same sampling rate. Consequently the proposed method can reduce
aliasing with only the cost of one additional input. The aliasing
reduction works especially well for lower frequencies. Although
high frequency aliasing components receive a smaller attenuation it
is still an improvement compared to the reference model.

Generally speaking the proposed method is not only applica-
ble to STNs, but basically to all neural virtual analog modeling
approaches. The implementation should be straight-forward, since
most of the modifications happen during training data generation.
For the neural networks only minor adjustments should be neces-
sary.

Another possible extension is the use of more complex filters
for the up- and downsampling. E.g. one could replace the rectangu-
lar filter kernel of the decimation lowpass with a triangular one, just
as was also done in [7] and then add ū(n−2) as an additional input
to the neural networks. But it is also possible to use more complex
interpolation filters, which is problematic in antiderivative antialias-
ing. The only constraint is that the input samples provided to the
neural network have to cover the combined support of interpolation
and decimation filter. In practice, it may even be possible to violate
this constraint and provide fewer input samples than theoretically
needed.

In fact, preliminary simulations have shown that for many ap-
plications good results could be achieved by using only the current
input sample ū(n). This makes sense, because it basically reduces
the linear interpolation filter to a zero-order hold. This approxima-
tion is acceptable if the change in amplitude between two adjacent

DAFx.6

Proceedings of the 26th International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, 4 - 7 September 2023

input samples is sufficiently small. Exploring this design space is
left to future work.

7. REFERENCES

[1] K.J. Werner, Virtual Analog Modeling of Audio Circuits using
Wave Digital Filters, Ph.D. thesis, 2016.

[2] K.J. Werner, E.J. Tebout, S. Cluett, and E. Azelborn, “Model-
ing and extending the RCA Mark II sound effects filter,” in
Proc. 25th Int. Conf. on Digital Audio Effects (DAFx-20in22),
Vienna, Austria, 2022.

[3] D.T. Yeh and J.O. Smith, “Simulating guitar distortion circuits
using wave digital and nonlinear state-space formulations,”
in Proc. 11th Int. Conf. on Digital Audio Effects (DAFx-08),
Espoo, Finland, 2008.

[4] D.T. Yeh, J.S. Abel, and J.O. Smith, “Automated physical
modeling of nonlinear audio circuits for realtime audio effects
– part I: Theoretical development,” IEEE Trans. Audio, Speech
and Language Process., vol. 18, no. 4, pp. 728–237, 2010.

[5] M. Holters and U. Zölzer, “A generalized method for
the derivation of non-linear state-space models from circuit
schematics,” in Proc. European Signal Processing Conference
(EUSIPCO-15), 2015, pp. 1073–1077.

[6] M. Danish, S. Bilbao, and M. Ducceschi, “Applications of
port hamiltonian methods to non-iterative stable simulations
of the Korg35 and Moog 4-pole VCF,” in Proc. 24th Int.
Conf. on Digital Audio Effects (DAFx20in21), Vienna, Austria,
2021.

[7] J.D. Parker, V. Zavalishin, and E. Le Bivic, “Reducing the
aliasing of nonlinear waveshaping using continuous-time con-
volution,” in Proc. 19th Int. Conf. on Digital Audio Effects
(DAFx-16), Brno, Czech Republic, 2016, pp. 137–144.

[8] S. Bilbao, F. Esqueda, J.D. Parker, and V. Välimäki, “An-
tiderivative antialiasing for memoryless nonlinearities,” IEEE
Signal Process. Lett., vol. 24, no. 7, pp. 1049–1053, 2017.

[9] S. Bilbao, F. Esqueda, and V. Välimäki, “Antiderivative an-
tialiasing, lagrange interpolation and spectral flatness,” in
2017 IEEE Workshop on Appl. of Signal Process. to Audio
and Acoust. (WASPAA), New Paltz, NY, USA, 2017, pp. 141–
145.

[10] M. Holters, “Antiderivative antialiasing for stateful systems,”
in Proc. 22nd Int. Conf. on Digital Audio Effects (DAFx-19),
2019.

[11] M. Holters, “Antiderivative antialiasing for stateful systems,”
Appl. Sciences, vol. 10, no. 1, 2020.

[12] J.D. Parker, F. Esqueda, and A. Bergner, “Modelling of
nonlinear state-space systems using a deep neural network,”
in Proc. 22nd Int. Conf. on Digital Audio Effects (DAFx-19),
Birmingham, UK, 2019.

[13] A Wright, E.P. Damskägg, and V. Välimäki, “Real-time black-
box modelling with recurrent neural networks,” in Proc. 22nd
Int. Conf. on Digital Audio Effects (DAFx-19), Birmingham,
UK, 2019.

[14] A. Wright and V. Välimäki, “Neural modelling of periodically
modulated time-varying effects,” in Proc. 23rd Int. Conf. on
Digital Audio Effects (DAFx-20), Vienna, Austria, 2020.

[15] J. Wilczek, A. Wright, V. Välimäki, and E.A.P. Habets, “Vir-
tual analog modeling of distortion circuits using neural or-
dinary differential equations,” in Proc. 25th Int. Conf. on
Digital Audio Effects (DAFx20in22), Vienna, Austria, 2022.

[16] T. Dozat, “Incorporating Nesterov momentum into Adam,”
in Proc. 4th Int. Conf. Learn. Repres. (ICLR 2016), San Juan,
Puerto Rico, 2016.

DAFx.7

	1 Introduction
	1.1 Problem statement

	2 Antialiased neural network approach
	3 Neural Network Architecture
	4 Training Data Generation
	5 Application
	5.1 Example 1: 2nd Order Diode Clipper
	5.2 Example 2: Birdie - Treble Booster
	5.3 Example 3: Fuzzface

	6 Conclusion and Outlook
	7 References

