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ABSTRACT

We show a new sufficient criterion for time-varying digital filter
stability: that the matrix norm of the product of state matrices over
a certain finite number of time steps is bounded by 1. This extends
Laroche’s Criterion 1, which only considered one time step, while
hinting at extensions to two time steps. Further extending these
results, we also show that there is no intrinsic requirement that fil-
ter coefficients be frozen over any time scale, and extend to any
dimension a helpful theorem that allows us to avoid explicitly per-
forming eigen- or singular value decompositions in studying the
matrix norm. We give a number of case studies on filters known to
be time-varying stable, that cannot be proven time-varying stable
with the original criterion, where the new criterion succeeds.

1. INTRODUCTION

Stability is an essential aspect of filters. For linear time-invariant
(LTI) filters, stability is typically proven by looking at pole loca-
tions (all inside unit circle), eigenvalues of the state matrix (mag-
nitudes less than one), or via the Bounded-Input, Bounded-Output
(BIBO) concept (bounds on absolute value of impulse response).

Filters used in audio often must vary over time: Some exam-
ples are speech synthesis filters, musical filters used in synthesizers
(commonly swept), and the time-variation used to improve sound
quality of reverbs. Time-varying filters outside of audio include
adaptive filters used in medical, seismic, and communications sig-
nal processing. For all of these, LTI analysis techniques are not
sufficient to prove time-varying stability. For specific filter types,
time-varying stability constraints exist, e.g., allpass filters can be
stabilized by ensuring they are energy-preserving in time-varying
conditions [1, 2, 3]. However, for most filters (e.g., low-pass, high-
pass, band-pass), no such simple criteria exists. This motivates us
to study the time-varying BIBO stability of filter structures in gen-
eral, rather than just allpass filters.

Although it is well-known that specific filter realizations such
as power-normalized ladder filters [4, 5] remain stable under time-
varying coefficients, so long as each time step itself represents an
LTI stable filter, power-normalized ladder filters may be compu-
tationally expensive due to their large number of multipliers, in-
volve complex coefficient update equations, or simply have differ-
ent time-varying behavior than desired. This motivates us to study
the time-varying BIBO stability of general filter structures, rather
than restricting ourselves to power-normalized ladder filters.
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In this paper, we extend a classic result by Laroche [6], which
he calls Criterion 1, which shows that a sufficient but not nec-
essary condition for BIBO stability of a time-varying filter ex-
pressed in state-space form is a bound below unity of the state
transition matrix norm, plus any finite bound on the input, out-
put, and feedthrough matrices. Laroche also proposes a Criterion
2, which uses a similarity transform, and which has been useful
when Criterion 1 fails. Extending Criterion 2 is beyond the scope
of this paper, so we will not consider it further.

We extend Laroche’s Criterion 1 in a few ways: a) formalize
his results over multiple time steps, b) show that this doesn’t re-
quire frozen filter coefficients, c) formalize his lemma about the
trace and determinant for multiple time steps, and d) develop intu-
ition about when to use multiple time steps.

In the rest of this paper, we review Laroche’s result (§2), demon-
strate some limitations of this result (§3), present an extension to
multiple time steps (§4, our main result), give a theorem which in-
creases the usefulness of this result (§5), and provide several case
studies on known time-varying filter types (§6). §7 concludes.

2. REVIEW OF LAROCHE’S RESULTS

In filter design, it is often important to consider bounded-input,
bounded-output (BIBO) stability. For a time-varying filter with
an impulse response h[n, i], n being the time index and i being
the time index of the exciting impulse, a necessary and sufficient
condition for BIBO stability is [6]

BIBO Stable ⇐⇒ ∃G,∀n, h∞[n] =
∞∑

i=−∞

|h[n, i]| < G. (1)

A filter realization with inputs u ∈ RNin , states x ∈ RN , and
output y ∈ RNout can be written in discrete-time state-space form{

x[n+ 1] = A[n]x[n] +B[n]u[n]
y[n] = C[n]x[n] +D[n]u[n]

, (2)

where A[n] ∈ RN×N is the state matrix, B[n] ∈ RN×Nin is the
input matrix, C[n] ∈ RNout×N is the output matrix, and D[n] ∈
RNout×Nin is the feedthrough matrix. Sometimes it is helpful [7] to
study the four matrices together as a system matrix V = [A B

C D ].
We will assume a single-input, single-output (SISO) filter, one
with Nin = Nout = 1. Systems written in this form have a causal
impulse response, i.e.,

h∞[n] =
∞∑

i=−∞

|h[n, i]| =
n∑

i=−∞

|h[n, i]|. (3)

The impulse response is given by

h[n, i] =


0 , n < i

D[n] , n = i

C[n]
(∏n−1

ℓ=i+1 A[ℓ]
)
B[i] , n > i.

(4)
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When we refer to products of matrices indexed by time, time in-
creases from right to left. For instance, in the above equation,

n−1∏
ℓ=i+1

A[ℓ] = A[n− 1]A[n− 2] · · ·A[i+ 2]A[i+ 1]. (5)

Combining (1) and (4) gives a necessary and sufficient condition
for BIBO stability in terms of the impulse response.

Lemma 2.1. BIBO stability can be shown by any finite bound on
the sum of the closed-form expression for the impulse response:

BIBO Stable ⇐⇒ ∃G,∀n,

h∞[n] = |D[n]|+
−∞∑

i=n−1

∣∣∣∣∣C[n]

(
n−1∏

ℓ=i+1

A[ℓ]

)
B[i]

∣∣∣∣∣ < G.

Laroche gives a sufficient but not necessary condition [6], which
he call Criterion 1. We will call it Criterion 1(1).

Theorem 2.2 (Criterion 1(1)). Bounding ∥A[n]]∥ < GA < 1
along with any finite bounds on ∥B[n]∥, ∥C[n]∥, ∥D[n]∥ for all
n is a sufficient but not necessary proof of BIBO stability:

∃GA, 0 ≤ GA < 1, ∀n, ∥A[n]∥ ≤ GA

∃GB , 0 ≤ GB , ∀n, ∥B[n]∥ ≤ GB

∃GC , 0 ≤ GC , ∀n, ∥C[n]∥ ≤ GC

∃GD, 0 ≤ GD, ∀n, ∥D[n]∥ ≤ GD

 =⇒ BIBO
Stable

.

Proof. A proof is given in [6], and can be taken as a specific case
of the general proof given later on in our Theorem (4.1). ■

The last three are satisfied, so long as B, C, D never have any
infinite elements, while the first is trickier and will be the focus of
all effort in proving stability. Throughout this paper, ∥·∥ denotes
the matrix norm induced by the standard Euclidean vector norm
∥·∥, which can be thought of in several ways:

Lemma 2.3. The following three statements are equivalent.
a) ∥P∥ is equal to the largest singular value σ of P.
b) ∥P∥ is equal to the positive square root of the largest eigen-

value λ of PTP.
c) ∥P∥ is the maximum maximum amplification that matrix P

can bring to an unit-length vector, i.e,

∥P∥ = max
1≤i≤N

[σi] = max
1≤i≤N

[√
λi

]
= max

∥x∥=1
∥Px∥ . (6)

Showing any of these expressions is below unity proves ∥P∥ < 1.

In a case study, Laroche uses a modified first condition:

Theorem 2.4 (Criterion 1(2, frozen)). The bound
∥∥A[n]2

∥∥ <
GA < 1, along with any finite bounds on ∥B[n]∥, ∥C[n]∥, ∥D[n]∥
for all n is a sufficient but not necessary proof of BIBO stability,
for filters whose coefficients change no more often than every other
sample:

∃GA, 0 ≤ GA < 1, ∀n,
∥∥A[n]2

∥∥ ≤ GA

∃GB , 0 ≤ GB , ∀n, ∥B[n]∥ ≤ GB

∃GC , 0 ≤ GC , ∀n, ∥C[n]∥ ≤ GC

∃GD, 0 ≤ GD, ∀n, ∥D[n]∥ ≤ GD

 =⇒ BIBO
Stable

.

This theorem is hinted at but not proven in [6], and is a special
case of the main result of this paper, shown later on in Theorem
(2.4). The purpose of this paper is to prove the validity of and
expand upon this variant of Criterion 1(1).

δ1 δ1x[n] y[n]

(a) Length-2.
δ1 δ1 δ1x[n] y[n]

(b) Length-3.

δ1 δ1 δ1x[n] y[n]· · ·

×N

(c) length-N .

Figure 1: Delay lines of various lengths: 2, 3, and N .

3. LIMITATIONS OF LAROCHE’S METHOD

3.1. Limitation of Criterion 1(1)

Although Laroche gives some examples of where Criterion 1(1)
can be used to prove filter stability, there exists an infinitely large
class of time-varying filters which are BIBO stable but cannot be
proved BIBO stable using Criterion 1(1). Here we study the sim-
plest such filter: an FIR delay line of length two, as shown in
FIg. 1a, which hasA[n] =

[
0 0
1 0

]
, B[n] =

[
1
0

]
C[n] =

[
0 1

]
, D[n] =

[
0
]
.

(7)

This filter is obviously stable according to many criteria:
a) Conventional wisdom: it is an FIR filter with bounded co-

efficients, with impulse response h[n] = 0, 0, 1, 0, 0, . . .!
b) It is LTI and its eigenvalues have zero magnitude:∣∣∣∣[0 0

1 0

]
− λ

[
1 0
0 1

]∣∣∣∣ = ∣∣∣∣[−λ 0
1 −λ

]∣∣∣∣ = λ2 = 0 −→ λ = 0,
|λ| < 1

.

c) It satisfies the definition of BIBO stability since

∀n,
∑∞

i=−∞ |h[n, i]| = 1 < 1 + ϵ

where ϵ is any finite positive number.
d) The transfer function HFIR-2(z) = z−2/1 has no poles.
e) The filter is allpass and energy-preserving:√∑∞

n=−∞ |x[n]|2 =
√∑∞

n=−∞ |y[n]|2.

However, we have ∥A[n]∥ = 1, because the unit-length vector
x[n] =

[
1 0

]T gets an amplification of 1, i.e., ∥A[n]x[n]∥ =
∥x[n]∥. Equivalently, we can say that for

ATA =

[
0 1
0 0

] [
0 0
1 0

]
=

[
1 0
0 0

]
=

[
σ1 0
0 σ2

]
=

[
λ1 0
0 λ2

]
. (8)

Because ATA is diagonal, its eigenvalues λ (and hence the singu-
lar values σ of A) are its diagonal elements 1 and 0. The largest
eigenvalue is 1, hence ∥A∥ = 1 and Criterion 1(1) fails.

More generally, Laroche’s Criterion 1(1) fails for (obviously
stable) FIR delay lines of any length, or any filter, including IIR
filters, involving delay lines longer than one sample. It also fails
for many IIR filters that do not have a delay line longer than one
sample, including all power-normalized ladder filters with order
greater than 1, which are known to be stable even under time-
varying coefficients [4, 5]. An example of this is the 2nd-order
power-normalized ladder filter studied in [6]. In [6], when Crite-
rion 1(1) fails, recourse is made to Criterion 2 or Criterion 1(2,
frozen).

DAFx.2

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

102



Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

3.2. Limitation of Criterion 1(2, frozen)

Can we use Criterion 1(2, frozen) (Theorem (2.4)) to prove stabil-
ity in this case? The square of the state transition matrix is

A[n]2 =

[
0 0
1 0

] [
0 0
1 0

]
=

[
0 0
0 0

]
. (9)

and the positive semidefinite matrix derived from that product is

(A[n]2)TA[n]2 =

[
0 0
0 0

]
=

[
σ1 0
0 σ2

]
(10)

which has 0 eigenvalues, hence all singular values of A[n]2 are
0 < 1,

∥∥A[n]2
∥∥ = 0 < 1, and BIBO stability is proven.

So, is using this extension always the key to proving stability
when ∥A[n]∥ = 1? Unfortunately, it is not.

Consider the length-3 delay line shown in Fig. 1b which has
A[n] =

0 0 0
1 0 0
0 1 0

 , B[n] =

10
0


C[n] =

[
0 0 1

]
, D[n] =

[
0
]
.

(11)

As with the length-2 delay line, it is obviously stable. We have the
following bounds on the system matrices: ∥B∥ = 1, ∥C∥ = 1,
∥D∥ = 0. However, Criterion 1 fails because

ATA =

0 1 0
0 0 1
0 0 0

0 0 0
1 0 0
0 1 0

 =

1 0 0
0 1 0
0 0 0

 =

σ1 0 0
0 σ2 0
0 0 σ3

 , (12)

which has max eigenvalue 1, hence ∥A[n]∥ = 1 and Criterion 1(1)
fails. Considering Criterion 1(2, frozen), we have

M = A[n]2 =

0 0 0
1 0 0
0 1 0

0 0 0
1 0 0
0 1 0

 =

0 0 0
0 0 0
1 0 0

 (13)

and hence

MTM =

0 0 1
0 0 0
0 0 0

0 0 0
0 0 0
1 0 0

 =

1 0 0
0 0 0
0 0 0

 =

σ1 0 0
0 σ2 0
0 0 σ3

 , (14)

which again has max eigenvalue 1, hence
∥∥A[n]2

∥∥ = 1 and Cri-
terion 1(2, frozen) fails. This demonstrates that Criterion 1(2,
frozen) on its own does not unlock stability proofs for a partic-
ularly wide class of filters. We will return to our length-3 delay
line and an arbitrary-length delay line in our case studies.

4. MAIN RESULTS: MULTIPLE TIME STEP EXTENSION

Here we present Criterion 1(µ), a variation of Criterion 1(1) ap-
plied over µ time steps. The extension that Laroche used in his
case study is Criterion 1(2), although we will see in due time
that larger µ is possible and necessary for various filters. Our
extension bears some similarity to the proof of BIBO stability
of time-varying normalized ladder filters given by Phoong and
Vaidyanathan [5]. However, our proposed theorem can be used
to analyze digital filters with any topology or realization, where
their work only considers power-normalized ladder filters.

Theorem 4.1 (Criterion 1(µ)). Bounding the product of state tran-
sition matrices

∥∥∥∏µ
η=1 A[n+ η − 1]

∥∥∥ < Gµ < 1 along with any

finite bounds on ∥A[n]∥, ∥B[n]∥, ∥C[n]∥, ∥D[n]∥ for all n is a
sufficient proof of BIBO stability, for filters whose coefficients may
change every sample.

∃Gµ, 0 ≤ Gµ < 1, ∀n,

∥∥∥∥∥∥
µ∏

η=1

A[n+ η − 1]

∥∥∥∥∥∥ ≤ Gµ

∃GA, 0 ≤ GA, ∀n, ∥A[n]∥ ≤ GA

∃GB , 0 ≤ GB , ∀n, ∥B[n]∥ ≤ GB

∃GC , 0 ≤ GC , ∀n, ∥C[n]∥ ≤ GC

∃GD, 0 ≤ GD, ∀n, ∥D[n]∥ ≤ GD


=⇒ BIBO

Stable
.

Proof. Grouping terms in the product in Lemma (2.1) gives

n−1∏
ℓ=i+1

A[ℓ] =
n−i−1−µNi∏

ι=1

A[n− i− ι]︸ ︷︷ ︸
∥··· ∥<GE

Ni−1∏
β=0

µ−1∏
η=0

A[µβ + i+ η]

︸ ︷︷ ︸
∥··· ∥<Gµ<1

(15)

where Ni =
⌊

n−i−1
µ

⌋
and ⌊·⌋ is the floor function. Now, via

submultiplicativity of the matrix norm, we can write∥∥∥∥∥
n−1∏

ℓ=i+1

A[ℓ]

∥∥∥∥∥ ≤ GEG
Ni
µ , (16)

where each Gµ comes from one of the Ni right braced product
terms and GE represents the finite upper bound of the left braced
product terms, which must exist since they are a product of at most
µ − 1 terms, each of which is bounded by GA. The matrix norm
is submultiplicative, so we can return to Lemma (2.1) and, using
(16) and the bounds on B[n], C[n], D[n], write

h∞[n] ≤ GD +

n−1∑
i=−∞

GCGEG
Ni
µ GB . (17)

The term
∑n−1

i=−∞ GCGEG
Ni
µ GB in (17) can be rewritten as

GCGE

(
n−1∑

i=−∞

GNi
µ

)
GB = GCGE

(
∞∑
ι=0

G

⌊
ι
µ

⌋
µ

)
GB . (18)

The infinite sum term is the sum of µ geometric series.

∞∑
ι=0

G

⌊
ι
µ

⌋
µ = µ

∞∑
ι=0

G ι
µ =

µ

1−Gµ
, (19)

where each infinite series converge because Gµ < 1.
Now, since GD + µGBGCGE

1−Gµ
is finite, it can be bounded by

G, so we can rewrite (17) as

∃G, ∀n, h∞[n] = GD + µ
GBGCGE

1−Gµ
< G, (20)

proving BIBO stability. ■

Corollary 4.1.1. Criterion 1(1) is proven as a special cases of
Theorem (4.1), where µ = 1.

Corollary 4.1.2. Criterion 1(2, frozen) is proven as a special cases
of Theorem (4.1), where µ = 2 and “frozen” coefficients are con-
sidered a special case of freely varying coefficients.
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5. A HELPFUL THEOREM

With large matrices, it can be very difficult or inconvenient to find
the eigenvalues of MTM. Here we present a Lemma that can be
used to avoid this hassle. This Lemma allows us to prove that all
eigenvalues of MTM are less than 1 by looking only at the deter-
minant det

[
MTM

]
and trace tr

[
MTM

]
. The trace especially is

simple to calculate: it is the sum of the diagonal entries of a matrix.
We define a sum Σ and product Π of the N singular values

σ1, σ2, · · · , σN ∈ R+ of a square matrix M ∈ RN×N

σ1 + σ2 + · · ·+ σN = Σ, σ1σ2 · · ·σN = Π, (21)

These relate to the trace and determinant [8] of MTM by

Σ = tr
[
MTM

]
, Π = det

[
MTM

]
. (22)

Lemma 5.1. Given N real, non-negative numbers, if their product
is less than 1 and their sum is less that 1 plus their product, then
all of the numbers are < 1.

Π < 1
Σ < 1 + Π

}
=⇒ σk < 1, k ∈ {1, 2, · · · , N}.

Proof. Assume without loss of generality that σ1 ≤ σ2 · · · ≤ σN .
If σN < 1, then all σk < 1 and the conclusion holds.

However, assuming 1 ≤ σN leads to a contradiction. By our
hypothesis,

∑
k≤N−1 σk + σN < 1 +

∏
k≤N σk. Using our hy-

pothesis that Π < 1, this implies
∑

k≤N−1 σk + σN < 2. Us-
ing our assumption that 1 ≤ σN , we have

∑
k≤N−1 σk < 1,

which implies σk < 1 for all k ≤ N − 1 since each summand
must be less than or equal to the sum when all summands are
non-negative. From this we see

∏
k≤N−1 σk ≤ σj for all j ≤

N − 1, which holds for non-negative numbers less than 1. Thus,∏
k≤N−1 σk ≤

∑
k≤N−1 σk, again since each summand must be

less than or equal to the sum. Combining this with our hypothesis
that Σ < 1+Π, we see

∑
k≤N−1 σk+σN < 1+σN

∑
k≤n−1 σk.

Rearranging, we have 0 < (σN − 1)(
∑

k≤n−1 σk − 1). By our
assumption 1 ≤ σN , we know the first term is non-negative, which
implies the second term is non-negative. But this contradicts the
fact that

∑
k≤N−1 σk < 1, so we must have σN < 1. ■

Theorem 5.2. Given a square matrix M ∈ RN×N represent-
ing the product of many state transition matrices over time, if
det(M) < 1 and tr(M) < 1 + det(M), then the time-varying
system represented by M is BIBO stable.

Proof. By Lemma (5.1), all of the eigenvalues of MTM are < 1.
Therefore, by Lemma (2.3), all of the singular values of M are
< 1 and ∥M∥ < 1. By Theorem (4.1), this means that the time-
varying filter is BIBO stable. ■

6. CASE STUDIES

6.1. Delay Lines

6.1.1. Length-3 Delay Line

First we return to the length-3 delay line, which could not be
proven stable using either Criterion 1(1) or Criterion 1(2, frozen).
Here we show that using Criterion 1(µ), 3 ≤ µ, we can now prove
it stable. We also emphasize that we will do no “freezing” of

the filter coefficicents, although that hardly matters for this par-
ticular filter. Considering µ time steps, i.e., M = A[n]A[n −
1] · · ·A[n− µ+ 1], we have

M =


[
0µ×(3−µ) 0µ

I3−µ 0(3−µ)×µ

]
, µ < 3

[
03×3

]
, 3 ≤ µ

(23)

MTM =


[

I3−µ 0(3−µ)×µ

0µ×(3−µ) 0µ

]
, µ < 3

[
03

]
, 3 ≤ µ

(24)

where 0a×b is the a× b zero matrix, 0a is the square, a× a zero
matrix, and Ia is the square a × a identity matrix. From this,
we can see that the eigenvalues of MTM are 1 with multiplicity
max (3− µ, 0) and 0 with multiplicity min (µ, 3). Therefore, we
need 3 ≤ µ to prove BIBO stability using Criterion 1(µ). To
reduce the effort, the lowest value of µ = 3 should be used.

6.1.2. Length-N Delay Line

If instead we consider a length-N delay line, shown in Fig. 1c,
then our system matrices areA =

[
01×(N−1) 0
IN−1 0(N−1)×1

]
, B =

[
1

0(N−1)×1

]
C =

[
0(N−1)×1 1

]
, D =

[
0
]
.

(25)

As with the length-2 delay line, A[n] for N ≥ 2 fails Criterion
1(1). Considering M = A[n]A[n− 1], we have

M =

[
02×(N−2) 02

IN−2 0(N−2)×2

]
, (26)

MTM =

[
IN−2 0(N−2)×2

02×(N−2) 02

]
. (27)

where the eigenvalues of MTM (and hence the singular values
of A[n]A[n − 1]) are 0 (multiplicity of 2) and 1 (multiplicity of
N − 2), and hence whose matrix norm is ∥A[n]A[n− 1]∥ = 1.
So, BIBO stability cannot be proven with Criterion 1(2).

Now we will consider the product over µ timesteps, i.e., M =
A[n]A[n− 1] · · ·A[n− µ+ 1]. This gives us

M =


[
0µ×(N−µ) 0µ

IN−µ 0(N−µ)×µ

]
, µ < N

[
0N

]
, N ≤ µ

(28)

MTM =


[

IN−µ 0(N−µ)×µ

0µ×(N−µ) 0µ

]
, µ < N

[
0N

]
, N ≤ µ

(29)

This shows us that the singular values of M are 0 (with multiplicity
µ for µ < N and N otherwise) and 1 (with multiplicity N −µ for
µ < N and 0 otherwise). So, we have

∥M∥ =

{
1 , µ < N

0 , N ≤ µ
. (30)
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+ δ1 δ1 δ1

γ[n]

x[n] y[n]· · ·

×N

Figure 2: A simple feedback delay network (FDN) with a length-N
delay line and feedback gain γ[n].

So, Criterion 1(N−1) and below will fail, whereas using Criterion
1(N) and above can be used to show BIBO stability.

For the length-N delay line, this result can be explained qual-
itatively. An impulse in any state will eventually pass through the
delay line. The impulse that takes the longest to disappear is the
one entering the beginning of the delay line. Watching how it trav-
els down the line and affects the norm of the state vector, we see:

n x[n+ 1] =
(∏n

η=1 A[η]
)
x[0] ∥x[n]∥

0
[
1 0 0 · · · 0 0

]T
1

1
[
0 1 0 · · · 0 0

]T
1

...
...

...
N − 1

[
0 0 0 · · · 0 1

]T
1

N
[
0 0 0 · · · 0 0

]T︸ ︷︷ ︸
N

0

The length of x[n] remains at 1 until step N , when it drops to 0.
This can give us some intuition about the number of time steps that
need to be considered in a proof for a particular filter.

6.2. One-Channel Feedback Delay Networks (FDNs)

Now we consider an IIR filter, a length-N delay line that feeds
back into itself with a gain γ[n]. This simple Feedback Delay
Network (FDN) [9] is shown in Fig. 2. Its system matrices areA =

[
01×(N−1) γ[n]
IN−1 0(N−1)×1

]
, B =

[
1

0(N−1)×1

]
C =

[
0(N−1)×1 1

]
, D =

[
0
]
.

(31)

Now we will consider the product over µ timesteps, i.e., M =
A[n]A[n− 1] · · ·A[n− µ+ 1]. This gives us

M =

[
01×(N−1) 1
IN−1 0(N−1)×1

]µ Γµ,N−1 · · · 0
...

. . .
...

0 · · · Γµ,0

 (32)

where

Γµ,ρ =

⌈(µ−ρ−1)/N⌉∏
η=0

γ[n− ρ− ηN ] (33)

and ⌈·⌉ is the ceiling function. We then have

MTM =

Γ
2
µ,N−1 · · · 0

...
. . .

...
0 · · · Γ2

µ,0

 =

σ1 · · · 0
...

. . .
...

0 · · · σN

 (34)

from which we can see the eigenvalues are Γ2
µ,0, · · · ,Γ2

µ,N−1. So,
it is clear from the definition of Γµ,ρ that

∥M∥ = max
ν∈[0,N−1]

|Γµ,ν | (35)

+

+

+

+

+δ1

δ1

1−2R[n]g[n]−g[n]2

∆

2g[n]
∆

−2g[n]
∆

1+2R[n]g[n]−g[n]2

∆

2g[n]2

∆[n]

2g[n]
∆[n]

−chp−g[n]cbp+2R[n]g[n]clp
∆[n](

−(2R[n]+g[n])chp[n]+

cbp[n]+g[n]clp[n]

)
∆[n]

chp[n]+cbp[n]g[n]+clp[n]g[n]2

∆[n]

x[n] y[n]

A[n]

B[n] C[n]

D[n]

Figure 3: A two-pole State-Variable Filter (SVF): an IIR filter
which cannot be proven stable with Laroche’s Criterion 1(1),
which can be proven stable with Criterion 1(2).

and that we will get ∥M∥ < 1 when N ≤ µ, so long as |γ[n]| < 1,
∀n. We emphasize that there is no condition that the filter coeffi-
cients be “frozen” for any span of time.

We have the following bounds on the other system matrices:
∥A∥ = 1, ∥B∥ = 1, ∥C∥ = 1, ∥D∥ = 0. So, with those and the
bound on ∥M∥, we can prove BIBO stability using Criterion 1(µ).

Similar to the length-N delay line, this result can be explained
qualitatively. An impulse in any state will eventually circulate
around the delay line and be contracted by γ. The impulse that
takes the longest to get contracted is the one entering the begin-
ning of the delay line. Watching how it travels down the line and
affects the norm of the state vector, we see:

n x[n+ 1] =
(∏n

η=1 A[η]
)
x[0] ∥x[n]∥

0
[
1 0 0 · · · 0 0

]T
1

1
[
0 1 0 · · · 0 0

]T
1

...
...

...
N − 1

[
0 0 0 · · · 0 1

]T
1

N
[
γ[N − 1] 0 0 · · · 0 0

]T︸ ︷︷ ︸
N

|γ[N − 1]|

On a more complex level, this idea was used in [3] to conjecture
that the number of timesteps needed for a unitary FDN is the length
of the longest delay line. To put it more generally and precisely, in
any time-varying digital filter, the lower bound on number of time
steps needed is length of longest delay line.

6.3. Two-pole State Variable Filter (SVF)

An important time-varying filter for musical applications is the
two-pole State Variable Filter (SVF) discretized using Trapezoidal
Transposed Direct Form II integrators, as described in [10] and
shown in Fig. 3. This structure conveniently implements common
filter types such as low-pass and high-pass filters, and retains sta-
bility even when coefficients are varied each sample. The filter is
parameterized by five potentially time-varying coefficients: γ[n],
R[n], chp[n], cbp[n], and clp[n]. Only γ[n], R[n] appear in A so
as long as chp[n], cbp[n], and clp[n] are bounded they cannot con-
tribute to instability. Its state-space description is
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+

+

δ1

γ1[n] −γ1[n]

√
1 − γ1[n]2

√
1 − γ1[n]2

x[n]

y[n]

(a) 1st order.

+

+

+

+

δ1 δ1

γ2[n]
γ1[n]

−γ2[n] −γ1[n]

√
1 − γ2[n]2

√
1 − γ1[n]2

√
1 − γ2[n]2

√
1 − γ1[n]2

x[n]

y[n]

(b) 2nd order.

+

+

+

+

δ1 δ1

γN [n] γ1[n]−γN [n] −γ1[n]

√
1 − γN [n]2

√
1 − γ1[n]2

√
1 − γN [n]2

√
1 − γ1[n]2

x[n]

y[n]

· · ·

· · ·

(c) N th order.

Figure 4: Various power-normalized ladder filters, of order 1, 2, and N , in allpass output configuration.


A[n] =

[
1−2Rg−g2

∆
−2g
∆

2g
∆

1+2Rg−g2

∆

]
, B[n] =

[
2g
∆

2g2

∆

]
C[n] =

[
−chp(2R+g)+cbp+clpg

∆

−chp−cbpg+clp(2Rg+1)

∆

]
D[n] =

[
chp+cbpg+clpg

2

∆

]
.

(36)

where ∆ = 1 + 2R[n]g[n] + g[n]2. The time index [n] on all
quantities has been suppressed for compactness. [10] showed this
filter to be stable under time-varying γ and R, under the condition

γ[n] > 0, R[n] > 0, ∀n. (37)

Here we provide a different proof of stability using Theorem
(5.2). We use two time steps to define M = A[n]A[n − 1]. To
satisfy the hypotheses of (5.2), we must show that Π < 1 and
Σ < 1 +Π where Π and Σ represent respectively the determinant
and trace of MTM = A[n − 1]TA[n]TA[n]A[n − 1]. Through
algebraic manipulation, we can see that Σ < 1 + Π is true when

64R[n−1]R[n]γ[n−1]γ[n]

(
γ2
[n−1] + 2γ[n−1]γ[n] + γ2

[n]

)
> 0 (38)

and Π < 1 is true when

32R2
[n−1]R[n]γ

2
[n−1]γ

3
[n] + 32R2

[n−1]R[n]γ
2
[n−1]γ[n]

+ 32R[n−1]R
2
[n]γ

3
[n−1]γ

2
[n] + 32R[n−1]R

2
[n]γ[n−1]γ

2
[n]

+ 8R[n−1]γ
3
[n−1]γ

4
[n] + 16R[n−1]γ

3
[n−1]γ

2
[n]

+ 8R[n−1]γ
3
[n−1] + 8R[n−1]γ[n−1]γ

4
[n]

+ 16R[n−1]γ[n−1]γ
2
[n] + 8R[n−1]γ[n−1] + 8R[n]γ

4
[n−1]γ

3
[n]

+ 8R[n]γ
4
[n−1]γ[n] + 16R[n]γ

2
[n−1]γ

3
[n] + 16R[n]γ

2
[n−1]γ[n]

+ 8R[n]γ
3
[n] + 8R[n]γ[n] > 0 (39)

Both (38) and (39) are always satisfied under the condition (37)
since both are inequalities on polynomial expressions of γ[n], γ[n−
1], R[n], R[n−1] with positive coefficients on each term. This re-
sult was checked using the SymPy [11] computer algebra system.

6.4. Power-normalized ladder

Here we consider power-normalized ladder filters of order 1, 2,
and 0 < N . This type of filter has been known to be L2 stable with
time-varying coefficients since its introduction in [4], and its BIBO
stability with time-varying coefficients was first proved in [5]. Sta-
bility of these structures can also be proven via a physical analogy,
as in digital waveguide modeling [12]. We will demonstrate that
Laroche’s techniques fail to prove BIBO stability for ladders with

more than two stages whereas our proposed Theorem can prove
stability for larger structures. We consider the allpass output for
simplicity, but the proofs would be very similar for other ladder
filters without zero “tap” coefficients.

6.4.1. 1st-order

For 1st-order, shown in Fig. 4a, the state-space description is{
A[n] =

[
−γ[n]

]
, B[n] =

[
κ[n]

]
C[n] =

[
κ[n]

]
, D[n] =

[
γ[n]

]
.

(40)

where κ[n] =
√

1− γ[n]2. γ[n] is bounded to −1 < γ[n] < 1,
∀n. So, we have the bounds ∥B[n]∥ , ∥C[n]∥ , ∥D[n]∥ < 1, ∀n.
So it only remains to study the matrix norm of A[n]. We can
immediately calculate

MTM = A[n]TA[n] =
[
γ[n]2

]
(41)

which yields

Σ = tr[MTM] = γ[n]2, Π = det[MTM] = γ[n]2. (42)

These obviously satisfy Π < 1 and Σ < 1 + Π, therefore this
structure is BIBO stable according to Laroche’s Criterion 1.

6.4.2. 2nd-order

For 2nd-order, shown in Fig. 4b, the state-space description isA =

[
−γ1[n] −γ2[n]κ1[n]
κ1[n] −γ1[n]γ2[n]

]
, B =

[
κ1[n]κ2[n]
κ2[n]γ1[n]

]
C =

[
0 κ2[n]

]
, D =

[
γ2[n]

]
.

(43)

where κi[n] =
√

1− γi[n]2. We have −1 < γi[n], κi[n] <
+1, ∀i, n. This leads to the bounds ∥B[n]∥ , ∥C[n]∥ , ∥D[n]∥ <
1, ∀n. However ∥A[n]∥ = 1, so Criterion 1(1) cannot be used
directly.

Laroche studied A[n]2 = A[n]A[n], showing
∥∥A[n]2

∥∥ < 1,
and claiming that this means a 2nd-order ladder filter with coeffi-
cients frozen over two time steps is guaranteed stable [6]. We can
show, for this filter, that we do not need to restrict the coefficients
to be frozen across the two time steps. We will study

M = A[n]A[n− 1] =

[
−γ1 −γ2κ1

κ1 −γ1γ2

] [
−γ′

1 −γ′
2κ

′
1

κ′
1 −γ′

1γ
′
2

]
(44)

=

[
γ1γ

′
1 + γ2κ1κ

′
1 γ1γ

′
2κ

′
1 + γ2κ1γ

′
1γ

′
2

−κ1γ
′
1 − γ1γ2κ

′
1 −κ1γ

′
2κ

′
1 + γ1γ2γ

′
1γ

′
2

]
, (45)

where no time index compactly indicates [n] and ′ indicates [n−1].

DAFx.6

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

106



Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

V =

[
A B
C D

]
=



−γ1 −κ1γ2 −κ1κ2γ3 · · · −κ1 · · ·κN−2γN−1 −κ1 · · ·κN−1γN κ1 · · ·κN

κ1 −γ1γ2 −γ1κ2γ3 · · · −γ1κ2 · · ·κN−2γN−1 −γ1κ2 · · ·κN−1γN γ1κ2 · · ·κN

0 κ2 −γ2γ3 · · · −γ2κ3 · · ·κN−2γN−1 −γ2κ3 · · ·κN−1γN γ2κ3 · · ·κN

...
...

...
. . .

...
...

...
0 0 0 · · · −γN−2γN−1 −γN−2κN−1γN γN−2κN−1κN

0 0 0 · · · κN−1 γN−1γN −γN−1κN

0 0 0 · · · 0 κN γN


Figure 5: System matrix for N th-order power-normalized ladder filter, where every term’s time index [n] is suppressed for compactness.

From here we can define Σ and Π to be the trace resp. deter-
minant of MTM. Through algebraic manipulation we find

Σ = (γ′
1)

2 ((γ′
2)

2γ2
2 − (γ′

2)
2 − γ2

2 + 1
)
+ (γ′

2)
2 + γ2

2 (46)

Π = γ2[n− 1]2γ2[n]
2. (47)

To use (5.2) to show this filter is stable, we must show Σ <
1 + Π and Π < 1 are true. Through algebraic manipulation we
can see that Σ < 1 + Π is true when(

γ′
1 − 1

) (
γ′
1 + 1

) (
γ′
2 − 1

) (
γ′
2 + 1

)
(γ2 − 1) (γ2 + 1) < 0.

(48)
Likewise we can see that Π < 1 holds when

γ2[n− 1]2γ2[n]
2 < 1 (49)

Since we have −1 < γ1[n] < 1,−1 < γ2[n] < 1, ∀n, we can see
that (48) always holds, since the left side is a product of 3 negative
and 3 positive terms, yielding a negative number. (49) also always
holds, since both terms of the product are positive (< 1).

6.4.3. N th-order

Here we study an N th-order power-normalized ladder filter, shown
in Fig. 4c, whose system matrix is shown in Fig. 5.

For this particular type of filter, notice that the system matrix
V ∈ R(N+1)×(N+1) can be factored as [13]

V[n] = F1[n] · · ·FN [n], (50)

which lets us find the state matrix as

A[n] =
[
IN 0N×1

]︸ ︷︷ ︸
only term that can contract!

F1[n] · · ·FN [n]

[
IN

01×N

]
∈ RN×N (51)

where, for i ∈ {1, · · · , N},

Fi[n] =

Ii−1 0 0 0
0 γi[n] κi[n] 0
0 κi[n] −γi[n] 0
0 0 0 IN−i

 ∈ U(N+1)×(N+1). (52)

Each Fi[n] is a reflection across angle θi = arccos (γi[n]/2) in
the dimensions i and i+1. Being reflections, each Fi[n] is unitary.
Because A[n] is the lower right partition of the product (51), we
can see that the product F1[n] · · ·FN [n] is unitary, so does not

affect the length of any vector, and that
[

IN
01×N

]
cannot contract

the norm of any vector. It’s only the first term [ IN 0N×1 ] that can
affect the norm of a vector, since it truncates the last dimension.

The class of vectors that would not be contracted when left-
multiplied by A[n] is all those that are zero in their last dimension,

X =
[
† · · · † 0

]T
, (53)

where † represents arbitrary values. Conversely, the complemen-
tary class of vectors that will be contracted when left-multiplied
by A[n] is those that are not zero in last dimension, i.e.,

X =
[
† · · · † R\0

]T
. (54)

X = ∅ for N = 1, but is not empty for 1 < N . For instance, for
1 < N we can always consider

xouter[n] =
[
0 · · · 0 1

]T ∈ X . (55)

which results in the vector

xouter[n+ 1] = A[n]xouter[n] (56)

which has the property ∥xouter[n+ 1]∥ < 1.
Because there exist state vectors, e.g. xouter, which are not con-

tracted for 1 < N , i.e, X ≠ ∅, that means that ∥M[n]∥ = 1 for
1 < N , and stability cannot be proven using Theorem (2.2).

Therefore, for 1 < N , we cannot use Criterion 1(1), and must
use Criterion 1(µ), for some 1 < µ. But, how many time steps
will we need, i.e., what is the smallest value of µ that will work?
For this particular class of filters, we can answer this question.

We want to find some µ such that for any non-zero vector x[n],
x[n] is contracted by M =

∏µ−1
η=0 A[n + η]. We know that x[n]

has a non-zero value in at least one position. We call the highest
index with a non-zero value m. If m = N , then x ∈ X , so
A will act as a contraction. We know for all η, ∥A[η]∥ = 1,
so multiplying by further A terms will not “recover” from this
contraction1 and x[n] will be contracted by M. On the other hand,
if m < N , multiplying by A[n] will always create a non-zero
value in position m + 1, so x[n + 1] will now have m + 1 as the
highest index with a non-zero value. Recalling that the restriction
|γi[n]| < 1 means that 0 < κi[n] ≤ 1, this is due to the structure
of the factorization shown in (51). When µ = N , we have N
terms in M =

∏N−1
η=0 A[n+ η], and each one will either contract

x or increase the highest non-zero index of x by 1, so as x passes
through these steps, for at least one η < N , x[n+η] ∈ X , thus M
will contract x[n], and since x[n] is arbitrary, we have ∥M∥ < 1.

Similar to the delay line, we can illustrate this by considering
the “worst-case” unit impulse, the one entering the “innermost”
delay in the structure (on the right side of Fig. 4c.

xinner =
[
1 0 · · · 0

]T ∈ X . (57)

1More formally, this is due to sub-multiplicativity of the norm:∥∥∥∏µ
η=0 A[n+ η]

∥∥∥ ≤ ∥A[n+ µ]∥
∥∥∥∏µ−1

η=0 A[n+ η]
∥∥∥ .
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BIBO Stability

∥A[n]∥ < 1
∥∥A[n]2

∥∥ < 1

∥M]∥ < 1

det
(
MTM

)
< 1 and tr

(
MTM

)
< 1 + det

(
MTM

)
Π < 1 and Σ < 1 + Π

Th. (2.2)

Th. (2.4)

Th. (4.1)

Corr. (4.1.1)
w/ µ = 1

+ frozen coeffs.
w/ µ = 2

Corr. (4.1.2)Th. (5.2)

Lem. (5.1)

Figure 6: Implication graph of the theorems used in this paper,
with the main theorem bolded.

At each time step, the index of the highest non-zero value of x[n+

1] =
(∏n

η=1 A[η]
)
xinner grows. That is, taking x[0] = xinner,

x[n] =
[[
∗
]
1×(n+1)

01×(N−n)

]T
∈ X , for 0 < n < N

(58)
where

[
∗
]
1×n

is some vector of unit norm (
∥∥[∗]∥∥ = 1). We can

see that after N − 1 time steps, we will have

x[N − 1] =
[
∗
]T
1×N

∈ X . (59)

That means that after one more multiplication, x[N ] = A[N ]x[N−
1], we finally have ∥x[N ]∥ < 1. So, the number of time steps
needed to guarantee contraction of the worst-case unit-length state
vector is µ = N , therefore we need to use Criterion 1(N ) for an
order-N power-normalized ladder filter. To visualize this:

n x[n+ 1] =
(∏n

η=1 A[η]
)
x[0] ∥x[n]∥

0
[
1 0 0 · · · 0 0

]T
1

1
[
−γ1[n] κ1[n] 0 · · · 0 0

]T
1

...
...

...
N − 1

[
∗ ∗ ∗ · · · ∗ ∗

]T
1

N
[
† † † · · · † †

]T︸ ︷︷ ︸
N

< 1

where again, † represents arbitrary values for a vector that do not
have a vector norm of 1, and ∗ represents a vectors that has a vector
norm of 1: vectors for which there is no space to print the full
expression but which are easily derived.

7. CONCLUSION

Fig 6 provides an implication graph of the Lemmas and Theorems
discussed in this paper.

For certain classes of filters, we have given proofs for the num-
ber of time steps we need to prove stability using Criterion 1(µ).
For filters involving length-N delay lines, we have N ≤ µ. This
holds with equality for certain filters, such as delay lines of length-
N and order-N power-normalized ladder filters. However, we
have also seen cases, such as the 2nd-order SVF, where N < µ;
this filter only has delay lines of length 1, yet requires the use of

Criterion 1(2). Future work should develop a rigorous way of pre-
dicting the minimum required µ (not only the lower bound on that
minimum) for the class of all time-varying digital filters.

Beyond proving stability of existing filter designs, an applica-
tion of our findings would be designing new stable time-varying
audio filters, e.g., by using our theorem to choose appropriate sim-
ilarity transforms or other ways of adjusting a filter realization.

Another avenue for future work would be to combine our in-
sights about the product of state matrices over multiple time steps
with a similarity transform, to extend Laroche’s Criterion 2.
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