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ABSTRACT

Fractional order filters have been studied since a long time,
along with their applications to many areas of physics and en-
gineering. In particular, several solutions have been proposed in
order to approximate their frequency response with that of an or-
dinary filter. In this paper, we tackle this problem with a new ap-
proach: we solve analytically a simplified version of the problem
and we find the optimal placement of poles and zeros, giving a
mathematical proof and an error estimate. This solution shows im-
proved performance compared to the current state of the art and is
suitable for real-time parametric control.

1. INTRODUCTION

Fractional calculus is a classical branch of mathematical analy-
sis that studies possible definitions and properties of derivatives of
non-integer order. The origin of fractional derivative dates back to
Leibniz [1] and a variety of different approaches have been pro-
posed, including the ones from Abel [2], Riemann-Liouville [3],
Riesz [4], Caputo [5] and Caputo-Fabrizio [6]. Apart from its theo-
retical importance, fractional calculus has been extensively studied
in view of its applications in several areas of physics and engineer-
ing, such as system identification [7] and filter design [8]; recently
it has also been applied to modeling of COVID-19 transmission
[9]. An overview of fractional calculus from the signal processing
point of view can be found in [10]: see references therein for more
examples of applications.

Linear filters exhibit a spectral rolloff that is an integer mul-
tiple of −20 dB/decade. Fractional order filters remove this con-
straint: their steepness can be any real number. In audio DSP,
they can be used to transform white noise into pink, blue or any
"fractional" noise [11], which in turn can be used for dithering al-
gorithms [12]. They have also been recently applied in physical
modeling of brass instruments [13].

Unfortunately, it is not possible to reproduce the exact be-
haviour of fractional order filters in both ordinary analog circuits
and DSP algorithms. Therefore, several attempts to approximate
them with ordinary filters have been made so far. One of the most
celebrated paper on this subject is [14], where the authors, for the
first time to our knowledge, use equally spaced poles and equally
spaced zeros on a log scale. The papers by Hélie [15, 16] and
Smith and Smith [17] are more specifically designed for audio ap-
plications and propose approximations based on different optimal-
ity criteria.
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Our work goes in the direction of [15]: its aim is approxi-
mating the amplitude response of a fractional order low-pass filter
with that of an integer order filter in the sense of least squares, on
a log-log scale. On the other hand, we use a different approach:
after simplifying the problem, we find a closed-form expression
for the best solution, give a mathematical proof of optimality and
show that the error decays quadratically with the order of the ap-
proximating filter. Our formulas for poles and zeros show low
computational cost, so they are also manageable in time-varying
applications. Finally, they can be easily extended in order to ob-
tain other filters (high-pass, band-pass, etc.) with arbitrary slopes.

The paper is organized as follows. Section 2 defines the pre-
cise setting of the problem, including the approximation used. Sec-
tion 3 is the heart of the paper and contains the optimality proof.
In Section 4 we evaluate our result and compare it to the current
state of the art approach. Finally, conclusions are drawn in Section
5, where we also suggest ideas for further research.

2. PROBLEM STATEMENT

A fractional order low-pass filter is a linear filter whose transfer
function is

H(s) =
1(

s
ωc

+ 1
)α , (1)

where α > 0 is the order of the filter and ωc > 0 is the angu-
lar cutoff frequency corresponding to a cutoff frequency fc = ωc

2π
.

According to our definition

|H(jωc)| =
1

2α/2
, (2)

hence the gain of the filter at the cutoff frequency fc is

|H(jωc)|dB = 20 log10 |H(jωc)| ≈ −3α dB. (3)

We aim to develop an approximation of such a filter by another
filter of order ≤ N whose transfer function is

Ĥ(s, ζ, ρ) =

(
s
ζ1

− 1
)(

s
ζ2

− 1
)
. . .

(
s

ζN
− 1

)(
s
ρ1

− 1
)(

s
ρ2

− 1
)
. . .

(
s

ρN
− 1

) , (4)

where ζ = (ζ1, . . . , ζN ) are the zeros of Ĥ and ρ = (ρ1, . . . , ρN )
are the poles. All zeros and poles are non-zero. In our case the
gain at dc is 1 and that is coherent with (1).

In this work we also assume that all zeros and poles are real,
hence to ensure BIBO stability it must be ρ1, . . . , ρN < 0. Finally,
the original filter can be seen as the series of two filters, one of
integer order and another of order between 0 and 1, so it is not
restrictive to assume α ∈ (0, 1).

Poles and zeros will be chosen so that Ĥ approximates H in
terms of magnitude response. In order to evaluate and minimize
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the error we choose to measure amplitudes in dB and to consider
frequencies on the logaritmic scale. Hence, evaluating the transfer
functions on the imaginary axis, i.e. substituting s = j2πf , and
remapping frequencies on the logarithmic scale by f = 10x, our
problem can be formally expressed as choosing ρi and ζi so that
the target magnitude response function

η(x) = 20 log10 |H(2πj · 10x)|

= −10α log10

((
2π

ωc
· 10x

)2

+ 1

) (5)

is best approximated by

η̂(x, ζ, ρ) =20 log10 |Ĥ(2πj · 10x, ζ, ρ)|

=10
N∑
i=1

(
log10

((
2π

ζi
· 10x

)2

+ 1

)

− log10

((
2π

ρi
· 10x

)2

+ 1

))
.

(6)

Here we notice that, for this purpose, the sign of ζi is irrele-
vant, so we assume ζi < 0 to obtain minimum phase approxima-
tions. Setting

x0 = log10

(
ωc

2π

)
, zi = log10

(
− ζi

2π

)
, pi = log10

(
− ρi

2π

)
,

(7)
the previous equations can be more conveniently expressed as

η(x) =− 10α log10(10
2(x−x0) + 1),

η̂(x, z, p) =10
N∑
i=1

(log10(10
2(x−zi) + 1)

− log10(10
2(x−pi) + 1)),

(8)

and the independent variables for the minimization procedure are
now z = (z1, ..., zN ) and p = (p1, ..., pN ).

2.1. Error metric

The least squares method can arguably be considered the preferred
choice for minimization problems such as ours. In this case the
error metric to minimize is

Eη(z, p) =

∫ xmax

xmin

(η(x)− η̂(x, z, p))2dx, (9)

for a given range of interest x ∈ [xmin, xmax].
Unluckily, we have not been able to minimize this quantity

analytically so far. Instead, we were successful after further ap-
proximating η and η̂. Observe that

log10(1 + 102β) ≈ 2βu(β), (10)

where u is the Heaviside function. This is the classical approxi-
mation we use to draw Bode diagrams and is already very accurate
for |β| > 1: we will call it Bode approximation from now on (see
Figure 1). Applying (10) to (8), we obtain the new functions

θ(x) = −20α(x− x0)u(x− x0),

θ̂(x, z, p) = 20
N∑
i=1

((x− zi)u(x− zi)− (x− pi)u(x− pi))

(11)

−3 −2 −1 0 1 2 3

0

2

4

6

β

log10(1 + 102β)

2βu(β)

Figure 1: The Bode approximation.

and the new error to minimize:

Eθ(z, p) =

∫ xmax

xmin

(θ(x)− θ̂(x, z, p))2dx. (12)

For minimization purposes we can safely consider xmin = x0
as the contribution to the error as expressed in (12) would be null
for x ∈ [x0, xmin], and conversely it would also be irrelevant if
x0 < xmin. Clearly, we can suppose that z1 ≤ · · · ≤ zN and
p1 ≤ · · · ≤ pN . We also observe that, if zi = pk for some
i, k ≤ N , the corresponding terms in the previous sum cancel, so
we obtain a filter of order lower than N .

Finally, we assume that

x0 ≤ p1 ≤ z1 ≤ · · · ≤ pN ≤ zN . (13)

It is intuitively clear that the optimal curve should satisfy this prop-
erty. Indeed, the slope of the amplitude response of a filter of order
α is −20α dB/decade. If the approximating filter satisfies (13), the
slope is alternatively 0 and −20 dB/decade; otherwise, the slope
will be less than −20 dB/decade or even positive in some regions.

2.2. Optimal solution

Theorem. The absolute minimum point of (12) in the domain
D ⊂ R2N defined by

x0 ≤ p1 ≤ z1 ≤ · · · ≤ pN ≤ zN ≤ xmax (14)

is
p̂i = x0 +

2i− 1− α

2N + 1− α
(xmax − x0),

ẑi = x0 +
2i− 1 + α

2N + 1− α
(xmax − x0),

(15)

and the minimum value is

Eθ(ẑ, p̂) =
400

3

(
α(1− α)

2N + 1− α

)2

(xmax − x0)
3. (16)

An example of this approximation is shown in Figure 2. Our pro-
posed filters are then obtained by plugging (15) into the original
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Figure 2: Optimal solution to the simplified problem (α = 0.3).
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Figure 3: Exact and approximated fractional order filters (x0 = 2,
α = 0.1, 0.2, . . . , 0.9 and N = 4).

approximated magnitude response η̂(x, z, p): Figure 3 shows the
result of the approximation for different values of α.

The optimal poles ρ̂i and zeros ζ̂i can be computed from (7)
as:

ρ̂i = −2πfc ·
(
fmax

fc

) 2i−1−α
2N+1−α

,

ζ̂i = −2πfc ·
(
fmax

fc

) 2i−1+α
2N+1−α

.

(17)

2.3. Other filter types

Once we have built a good approximation of fractional order low-
pass filters, it is easy to extend it to other types of fractional order
filters.

A fractional order high-pass filter is a linear filter whose trans-
fer function is

HHP (s) =

( s
ωc

s
ωc

+ 1

)α

. (18)

As before, evaluating the transfer function on the imaginary axis
and using a log-log scale, we obtain:

ηHP (x) = 20 log10 |HHP (2πj · 10x)|

= 10α log10

(
102(x−x0)

102(x−x0) + 1

) (19)

Now we notice that ηHP (x) can be obtained from η(x) in (8) via
the reflection x 7→ 2x0 − x. In order to get the analogous approx-
imation of the high-pass filter, we simply apply this reflection to
(15), obtaining:

p̂i = x0 −
2i− 1− α

2N + 1− α
(x0 − xmin),

ẑi = x0 −
2i− 1 + α

2N + 1− α
(x0 − xmin).

(20)

The corresponding poles and zeroes are therefore:

ρ̂i = −2πfc ·
(
fmin

fc

) 2i−1−α
2N+1−α

,

ζ̂i = −2πfc ·
(
fmin

fc

) 2i−1+α
2N+1−α

.

(21)

A fractional order band-pass filter can be defined as a series of
a fractional order low-pass and a fractional order high-pass filter,
possibly of different orders. Accordingly, it can be approximated
by the series of two filters of the form (4), where poles and zeroes
are given respectively by (17) and (21). Inverse fractional order
(low-pass and high-pass) filters are defined again by Equations (1)
and (18), with α < 0. It is clear that their integer order approxi-
mation can be constructed by simply swapping poles and zeroes in
(17) and (21).

Finally, other filter types (such as low and high shelving) can
be obtained as a combination of the filters above. However, our so-
lution does not contemplate the possibility of placing poles or ze-
ros on the imaginary axis and is bound to chosen frequency ranges
which cannot contain dc, therefore it is not suitable for full-range
approximations of fractional integrators and differentiators.
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3. PROOF

Now we are ready to prove the theorem in Section 2. According to
the discussion therein, θ̂ has the form:

θ̂(x, z, p) =


0 x ≤ p1

20(
∑i

k=1 pk −
∑i−1

k=1 zk − x) pi ≤ x ≤ zi

20
∑i

k=1(pk − zk) zi ≤ x ≤ pi+1

20
∑N

k=1(pk − zk) x ≥ zN
(22)

and we want to minimize (12) on the domain D. It is clear that the
absolute minimum is among the critical points of E(z, p) in the
interior of D, or on the boundary of D. We will prove that there
is a unique critical point of E in the interior of D and this is the
absolute minimum.

Let us assume, by induction, that this is true for (N − 1)-th
order filters. First, we observe that the interior of D is given by
points in R2N that satisfy (14) with strict inequalities, while the
boundary is given by points that satisfy (14) with some equality
sign. Therefore, the boundary of D is the union of the regions
defined by:

x0 = p1 ≤ z1 ≤ · · · ≤ pN ≤ zN ≤ b, (23)

x0 ≤ p1 ≤ z1 ≤ · · · ≤ pi = zi ≤ · · · ≤ pN ≤ zN ≤ xmax

(24)
for i = 1, . . . , N ,

x0 ≤ p1 ≤ z1 ≤ · · · ≤ zi = pi+1 ≤ · · · ≤ pN ≤ zN ≤ xmax

(25)
for i = 1, . . . , N − 1 and

x0 ≤ p1 ≤ z1 ≤ · · · ≤ pN ≤ zN = xmax. (26)

We notice that the central equations represent situations in which
a zero coincides with a pole, so the order of the filter becomes
N − 1. By induction, we already know the absolute minimum
on these regions of the boundary, so we are left with finding the
minimum in the regions (23) and (26). We observe that the last
region can be identified with the situation in which there are N
poles and N − 1 zeros, because the last zero is xmax and therefore
has no influence on the region where we want to approximate the
filter.

The regions (23) and (26) can be identified with domains of
R2N−1, so we have to understand again if the minimum is in the
interior or on the boundary. The boundary is given by points where
some inequalities hold with the equality sign. We observe that, if
some equality of the form pi = zi or zi = pi+1 holds, we are
again in a region of the form (24) or (25), where by induction we
already know the minimum. If instead one of the extreme inequal-
ities hold, we are in the region

x0 = p1 ≤ z1 ≤ · · · ≤ pN ≤ zN = xmax, (27)

where we have to study the problem again.
We will proceed in the following way. First, we study the

problem in the interior of (14), we find the critical point and we
evaluate the error (12). This error will depend on N , so to show
that it is smaller than the error in the regions (24) and (25) it suf-
fices to verify that it decreases withN . Finally, we find the critical
points in the regions (23), (26) and (27) and we compute the re-
spective errors: once we have verified that they are greater than
the error in the inner critical points, the proof is complete.

In the domain (14), Equation (12) assumes the form:

Eθ(z, p) =

∫ xmax

xmin

(θ(x)− θ̂(x, z, p))2dx

=400

{∫ p1

x0

α2(x− x0)
2dx+

N∑
i=1

∫ zi

pi

(
− α(x− x0)

+ x+

i−1∑
k=1

zk −
i∑

k=1

pk

)2

dx

+

N−1∑
i=1

∫ pi+1

zi

(
− α(x− x0) +

i∑
k=1

(zk − pk)

)2

dx

+

∫ xmax

zN

(
− α(x− x0) +

N∑
i=1

(zk − pk)

)2

dx

}

=400

{ N∑
i=1

∫ zi

pi

(
(1− α)x+ αx0 +

i−1∑
k=1

zk −
i∑

k=1

pk

)2

dx

+
N∑
i=0

∫ pi+1

zi

(
− α(x− x0) +

i∑
k=1

(zk − pk)

)2

dx

}
.

(28)
For simplicity, we have set z0 = x0 and pN+1 = xmax.

We notice that E is a C1 function, even if θ̂ is not; in fact,
it is a cubic polynomial in z and p. In order to compute partial
derivatives of E, we use Leibniz integral rule:

∂

∂xi

∫ µ(x)

λ(x)

ψ(x, t)dt = ψ(x, µ(x))
∂µ

∂xi

− ψ(x, λ(x))
∂λ

∂xi
+

∫ µ(x)

λ(x)

∂ψ

∂xi
(x, t)dt.

(29)
We have:

∂Eθ

∂zl
=400

{(
(1− α)zl + αx0 +

l−1∑
k=1

zk −
l∑

k=1

pk

)2

+
N∑

i=l+1

∫ zi

pi

2

(
(1− α)x+ αx0 +

i−1∑
k=1

zk −
i∑

k=1

pk

)
dx

−
(
α(zl − x0)−

l∑
k=1

(zk − pk)

)2

+
N∑
i=l

∫ pi+1

zi

2

(
− α(x− x0) +

i∑
k=1

(zk − pk)

)
dx

}

=800

{ N∑
i=l+1

∫ zi

pi

(
(1− α)x+ αx0 +

i−1∑
k=1

zk −
i∑

k=1

pk

)
dx

+
N∑
i=l

∫ pi+1

zi

(
− α(x− x0) +

i∑
k=1

(zk − pk)

)
dx

}
.

(30)
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Analogously, we get:

∂Eθ

∂pl
=− 800

N∑
i=l

{∫ zi

pi

(
(1− α)x+ αx0 +

i−1∑
k=1

zk

−
i∑

k=1

pk

)
dx+

∫ pi+1

zi

(
− α(x− x0)

+
i∑

k=1

(zk − pk)

)
dx

}
.

(31)

Now, if we set

Ai =

∫ zi

pi

(
(1− α)x+ αx0 +

i−1∑
k=1

zk −
i∑

k=1

pk

)
dx;

Bi =

∫ pi+1

zi

(
− α(x− x0) +

i∑
k=1

(zk − pk)

)
dx,

(32)

it is clear that ∇Eθ(z, p) = 0 if and only if

N∑
i=l+1

Ai +
N∑
i=l

Bi = 0;

N∑
i=l

Ai +
N∑
i=l

Bi = 0.

(33)

These equations are equivalent to

A1 = · · · = AN = B1 = · · · = BN = 0. (34)

Computing the integrals (32), we get:

1− α

2
(z2i − p2i ) +

(
αx0 +

i−1∑
k=1

zk −
i∑

k=1

pk

)
(zi − pi) = 0;

−α
2
(p2i+1 − z2i ) +

(
αx0 +

i∑
k=1

(zk − pk)

)
(pi+1 − zi) = 0.

(35)
We are searching for the critical points in the interior of D, so

pi < zi < pi+1. This means that we can divide the first equation
by zi − pi and find zi:

zi =
2

1− α

( i∑
k=1

pk −
i−1∑
k=1

zk − αx0

)
− pi. (36)

Analogously, we divide the second equation by pi+1 − zi and we
find pi+1:

pi+1 =
2

α

( i∑
k=1

(zk − pk) + αx0

)
− zi (37)

Now we prove by induction that

pi = x0 +
2i− 1− α

1− α
(p1 − x0) (38)

and
zi = x0 +

2i− 1 + α

1− α
(p1 − x0). (39)

For i = 1, (38) is obvious and (39) follows directly from (36).
Suppose then that 1 < i ≤ N + 1 and Equations (38) and (39)
hold for every index below i. Then:

pi =
2

α

( i−1∑
k=1

(zk − pk) + αx0

)
− zi−1

=
2

α

( i−1∑
k=1

2α

1− α
(p1 − x0) + αx0

)
− x0 −

2i− 3 + α

1− α
(p1 − x0)

=
4(i− 1)

1− α
(p1 − x0) + 2x0 − x0 −

2i− 3 + α

1− α
(p1 − x0)

=x0 +
2i− 1− α

1− α
(p1 − x0),

(40)
as desired. In the same way you can prove (39) for 1 ≤ i ≤ N .

Equation (38) for i = N + 1 becomes

xmax = x0 +
2N + 1− α

1− α
(p1 − x0), (41)

so
p1 − x0 =

1− α

2N + 1− α
(b− x0). (42)

Substituting this equation in (38) and (39) we get

pi = x0 +
2i− 1− α

2N + 1− α
(b− x0), (43)

zi = x0 +
2i− 1 + α

2N + 1− α
(b− x0). (44)

Let us denote these values by (ẑ, p̂) and compute the correspond-
ing error. We notice that formula (43) also holds for pN+1 =
xmax, while (44) does not hold for z0 = x0. So, setting p̂N+1 =
xmax, we obtain:

Eθ(ẑ, p̂) =400

{∫ p̂1

x0

(
− α(x− x0)

)2

dx

+
N∑
i=1

∫ ẑi

p̂i

(
(1− α)x+ αx0 +

i−1∑
k=1

ẑk −
i∑

k=1

p̂k

)2

dx

+
N∑
i=1

∫ p̂i+1

ẑi

(
− α(x− x0) +

i∑
k=1

(ẑk − p̂k)

)2

dx

}
.

(45)
The first integral is trivial:∫ p̂1

x0

(
− α(x− x0)

)2

dx =
α2

3

(
(1− α)(xmax − x0)

2N + 1− α

)3

.

(46)
We solve the second integral in (45) by the substitution

ξ = (1− α)x+ αx0 +

i−1∑
k=1

ẑk −
i∑

k=1

p̂k, (47)

and we get:∫ ẑi

p̂i

(
(1− α)x+ αx0 +

i−1∑
k=1

ẑk −
i∑

k=1

p̂k

)2

dx

=
2

3
(1− α)2

(
α(xmax − x0)

2N + 1− α

)3

.

(48)
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The third integral in (45) can be computed in the same way:∫ p̂i+1

ẑi

(
− α(x− x0) +

i∑
k=1

(ẑk − p̂k)

)2

dx

=
2

3
α2

(
(1− α)(xmax − x0)

2N + 1− α

)3

.

(49)

Finally,

Eθ(ẑ, p̂) =400

{
2N

3
(1− α)2

(
α(xmax − x0)

2N + 1− α

)3

+
2N + 1

3
α2

(
(1− α)(xmax − x0)

2N + 1− α

)3}
=
400

3

(
α(1− α)

2N + 1− α

)2

(xmax − x0)
3.

(50)

We observe that Eθ decreases with 1
N2 as desired, in particular it

goes to 0 for N → ∞.
Now we find the critical points in the regions (23), (26) and

(27) and the corresponding errors. The computation is formally
analogous to the one we performed for the interior of D, so we
only give the results. In the interior of (23), the only critical point
is

pi = x0 +
2(i− 1)− α

2N − α
(xmax − x0) i = 2, . . . , N,

zi = x0 +
2(i− 1) + α

2N − α
(xmax − x0) i = 1, . . . , N

(51)

and the corresponding error is

400

3

(
α(1− α)

2N − α

)2

(xmax − x0)
3. (52)

In the interior of (26) the only critical point is

pi = x0 +
2i− 1− α

2N − 1 + α
(xmax − x0) i = 1, . . . , N,

zi = x0 +
2i− 1 + α

2N − 1 + α
(xmax − x0) i = 1, . . . , N − 1

(53)

and the error is

400

3

(
α(1− α)

2N − 1 + α

)2

(xmax − x0)
3. (54)

Finally, in the interior of (27) the only critical point is

pi = x0 +
2(i− 1)− α

2(N − 1) + α
(xmax − x0) i = 2, . . . , N,

zi = x0 +
2(i− 1) + α

2(N − 1) + α
(xmax − x0) i = 1, . . . , N − 1

(55)
and the error is

400

3

(
α(1− α)

2(N − 1) + α

)2

(xmax − x0)
3. (56)

But 2N − α, 2N − 1 + α and 2(N − 1) + α are all smaller than
2N +1−α, so we conclude that (50) is the absolute minimum of
Eθ(z, p).

4. EVALUATION

Equation (17) gives explicit expressions for pole and zero place-
ment which are shown to minimize the approximated error (12).
Such expressions are relatively easy to compute, hence suitable
for real-time usage, and fully parametric: they depend on the orig-
inal fractional filter order α, the chosen approximating filter order
N , the maximum frequency in the range of interest fmax, and the
cutoff frequency fc, which can also be considered as the minimum
frequency in the range of interest as pointed out in Subsection 2.1.

Even when α approaches the limit values 0 and 1, we get the
correct result. For α = 0, the filter (1) reduces to an identity filter
(the output coincides with the input). If α goes to 0 in (15), we get
p̂i = ẑi for every i, so every pole coincides with the following zero
and we get the identity filter. For α = 1, the filter (1) becomes a
first-order filter. If α goes to 1 in (15), we get ẑi = p̂i+1 for
i = 1, . . . , N − 1, so all these zeros and poles cancel. Only the
first pole x0+ xmax−x0

2N−1
and the last zero xmax do not get canceled,

and the latter has no effect in the range [xmin, xmax]. The first pole
does not coincide with the pole x0 of the original filter, but it goes
to x0 as N goes to infinity.

4.1. Analytic and numerical solution

Equation (15) gives an analytic expression for the minimum of
(12), which approximates (9), but this result can be further im-
proved by means of numerical optimization. In this subsection,
we choose two instances of the problem and we compare, for each
of them, the frequency response of (1) with the ones obtained
by plugging both (15) and its numerical improvement in (4). In
both cases we run the optimization on the interval [xmin, xmax] =
[log10 2 − 2, log10 2 + 4], which corresponds to [fmin, fmax] =
[0.02 Hz, 20000 Hz]. This range is suitable if the cutoff frequency
varies in the whole spectrum 20 Hz-20 kHz of audible frequen-
cies: indeed, the passband is at least as wide as the stopband,
so the numerical result is reasonably accurate in both parts of the
spectrum. We stress that this choice is arbitrary, the most suitable
range depends on the application at hand. A GNU/Octave imple-
mentation using the leasqr function in the optim Octave Forge
package for the numerical optimization can be found at http:
//www.dangelo.audio/dafx2021-fracfilt.html.

The first instance we consider is x0 = 2, α = 0.3, N = 4.
In Table 1 we report the analytic and the numerical values for the
zi’s and the pi’s, while in Figure 4 we plot the error η̂(x) − η(x)
in the two cases.

Table 1: Values obtained for x0 = 2, α = 0.3, N = 4.

Analytic Numerical
z1 2.343832068317607 2.279616275567339
z2 2.872804481113924 2.881335053060714
z3 3.401776893910242 3.526431869946629
z4 3.930749306706559 4.244046225353371
p1 2.185140344478711 2.137606600592802
p2 2.714112757275029 2.691901860686028
p3 3.243085170071347 3.331052735238103
p4 3.772057582867664 4.004548535923683

We do the same for the second instance: x0 = 3, α = 0.8,
N = 5. Results are given in Table 2 and Figure 5.
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Figure 4: Frequency responses for x0 = 2, α = 0.3, N = 4.
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Figure 5: Frequency responses for x0 = 3, α = 0.8, N = 5.

Table 2: Values obtained for x0 = 3, α = 0.8, N = 5.

Analytic Numerical
z1 3.229593528646585 3.148247223022702
z2 3.484697449365012 3.439993019764529
z3 3.739801370083440 3.784192323454005
z4 3.994905290801868 4.176617234105366
z5 4.250009211520296 4.904210559694439
p1 3.025510392071843 3.011234625407794
p2 3.280614312790270 3.199230918296403
p3 3.535718233508698 3.506038645221784
p4 3.790822154227126 3.857245939142739
p5 4.045926074945553 4.269913348230429
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Figure 6: Comparison with [15].

From the plots we observe that the analytic solution is rather
accurate, except for the highest frequencies: in particular, in the
first example the error |η̂an(x)− η(x)| goes up to 1.5 dB. Indeed,
from Table 1 and 2 one can notice that the last zeros and poles
are sensibly higher in the numerical solution. To address this is-
sue, one can use Equation (15) with a higher value of xmax: this
will give a less accurate solution in the range [x0, xmax], but will
reduce the absolute error near xmax.

4.2. Current state of the art

Now we compare our solution (15) with that proposed in [15].
Firstly, we notice that our formulas are remarkably simpler and
easier to compute, which is especially desirable in real-time and
time-varying applications. Then, Hélie’s approximating filter (7)
in [15] does not exhibit unitary dc gain, so for this comparison we
added dc compensation. We compare Hélie’s filter of order 5 and
20 with our analytic and numerical solutions of order 5, for x0 = 3
and α = 0.8 (second example of Subsection 4.1) in Figure 6.

We notice that our approach leads to sensibly reduced error
when using 5 poles, while the solution in [15] needs 20 poles to
produce comparable results. This is probably due to the fact that
in [15] pole frequencies are chosen beforehand, while in our case
pole and zero frequencies are subject to optimization.
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5. CONCLUSIONS AND FUTURE WORK

This paper finds the best way to approximate a fractional order
low-pass filter with an ordinary filter, after a natural simplifica-
tion of the problem. Compared to the current state of the art, our
approach results in both remarkably simpler formulas, which fa-
cilitates real-time control in the time-varying case, and reduced
error at the same filter order, or equivalently a sensible reduction
of filter complexity to reach a given performance target. Apply-
ing numerical optimization to the pole and zero frequencies given
by our method further improves the accuracy of the approximating
filter.

Our results could be further improved by allowing the usage
of complex zeros and poles in the approximating filter or by study-
ing the problem without the Bode approximation (10). Finally, the
most general formulation of the problem should also take into ac-
count approximation of the phase response.
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