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ABSTRACT

Recent advancements in generative audio synthesis have al-
lowed for the development of creative tools for generation and
manipulation of audio. In this paper, a strategy is proposed for the
synthesis of drum sounds using generative adversarial networks
(GANs). The system is based on a conditional Wasserstein GAN,
which learns the underlying probability distribution of a dataset
compiled of labeled drum sounds. Labels are used to condition
the system on an integer value that can be used to generate audio
with the desired characteristics. Synthesis is controlled by an input
latent vector that enables continuous exploration and interpolation
of generated waveforms. Additionally we experiment with a train-
ing method that progressively learns to generate audio at different
temporal resolutions. We present our results and discuss the ben-
efits of generating audio with GANs along with sound examples
and demonstrations.

1. INTRODUCTION

Sample-based electronic music (EM) describes a variety of genres
that emerged through advancements in audio production and digi-
tal sampling technologies. EM is mainly created through the use of
digital audio workstation (DAW) software for arranging and ma-
nipulating short audio recordings, commonly referred to as sam-
ples. Early sampling technologies (e.g., Akai S950) were limited
by a small amount of memory; however, this constraint stimulated
creativity, artistic choices, and new genres of music. Considering
the abundance of free and affordable audio sample libraries avail-
able at present, there is the potential for an EM producer’s personal
collection of samples to become unwieldy and therefore difficult
to navigate and maintain.

Sample selection is an integral part of the EM production work-
flow and is one of the key skills harnessed by EM producers. The
selection of samples in this context is a meticulous retrieval task in-
volving careful listening for key subjective attributes (e.g., warmth,
boominess) of particular timbral features. Online sample libraries
such as Splice1 and Loopmasters2 have well-annotated databases
with high quality sounds; however, when a producer is searching
a collection for an exact sample or a sample with certain charac-
teristics (e.g., bass-heavy kick), the sound selection process can be
tedious and labor-intensive.

1https://splice.com/
2https://www.loopmasters.com/
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In this paper, a system is presented that allows EM producers
to interactively generate and fine tune novel audio sounds based on
their own personal collections. The system is based on a generative
adversarial network, which learns a mapping between a collection
(i.e., dataset) of labelled drum sounds and a low-dimensional latent
space that provides high-level control of the input data distribution.

1.1. Background

Advancements in generative modelling have allowed for the de-
velopment of novel tools for the generation and manipulation of
audio. Generative models learn the underlying probability distri-
bution of a given dataset and produce new data based on example
observations. Generative methodologies include generative adver-
sarial networks (GANs) [1], autoencoders [2] and autoregressive
networks [3]. Autoencoders map high-dimensional data distribu-
tions onto low-dimensional latent spaces and reconstruct the out-
put from this representation using a decoder. Several generative
models using autoencoders have been proposed for the task of gen-
eralised musical audio generation including autoregressive (AR)
models (e.g., [4, 5]) and non-AR models (e.g. [6, 7, 8]). AR mod-
els for raw audio synthesis have the capacity to generate high fi-
delity audio, yet this comes at the cost of slow generation and the
inability to learn compact latent space representations. An alter-
native solution is found in GANs, a subset of non-AR generative
models, which map low-dimensional latent spaces to complex data
distributions through an adversarial training strategy [1]. The gen-
erator learns to produce realistic synthesized data from a prior dis-
tribution, while the discriminator learns to correctly classify real
and synthetic data. GANs can be conditioned on additional infor-
mation (e.g., pitch, instrument class) enabling high-level control
over data generation [9]. Unlike AR models, GANs are capable
of parallelised training and generation. However, GANs require
much larger models to generate longer audio recordings, becom-
ing computationally expensive. Thus, GANs are well-suited for
the synthesis of short audio recordings such as drum sounds.

Donahue et al. [10] were the first apply adversarial learning
to musical audio using a modified deep convolutional GAN [11]
that operates on raw audio data. Alternatively, Engel et al. [12]
proposed GANSynth, an adversarial approach to audio synthesis
that utilised recent improvements in the training stability of GANs
[13, 14, 15]. Musical notes are conditioned with labels represent-
ing the pitch content and are modelled as log magnitude and in-
stantaneous frequency spectrograms, which are used to approxi-
mate the time-domain signal. More recently, Engel et al. [16]
achieved high resolution audio generation without the need for
large AR models or adversarial losses through a modular approach
to generative audio modeling that integrates digital signal process-
ing elements into a neural network.

Specific to the generation of drum sounds, Aouameur et al.
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[8] used a conditional Wasserstein autoencoder to generate audio
spectrograms that are inverted to audio through a multi-head CNN.
Ramires et al. [17] synthesized percussion sounds with high-level
control over timbral characteristics using Wave-u-net [18]. Tom-
czak et al. [19] proposed a method for joint synthesis and rhythm
transformation of drum sounds by combining the use of adversar-
ial autoencoders with a Wasserstein GAN adversarial framework.

1.2. Motivation

In this paper, a system for synthesising drum samples is presented,
which is suitable for generating novel drums sounds based on a
producers personal sample collection. The system is designed to
be lightweight, in that it can learn to generate high-quality audio
when trained using a small amount of data. High-level condition-
ing organises drum sounds into specific categories, while a com-
pact latent space with low dimensionality is used for intuitive syn-
thesis control to output a variety of different drum sounds. In addi-
tion, interpolating the compact latent space of a learned generative
model provides an intuitive way for EM producers to morph be-
tween generated drum samples when composing new grooves and
rhythms.

The system is realised through a conditional Wasserstein gen-
erative adversarial network trained with a small dataset of labelled
drums sounds. Conditioning is achieved with the three main per-
cussion instruments from the common drum kit—that is, kick drum,
snare drum, and cymbals—and it can generate a diverse range of
sounds when trained on a relatively small dataset of short audio
recordings.

By varying the input latent vector, large or subtle variations
can be made to the timbral characteristics of the output. In order
to reduce training time, a progressive growing training methodol-
ogy similar to [13] is considered, in which audio is incrementally
generated at increasingly higher temporal resolutions.

The remainder of this paper is structured as follows: Section
2 presents our proposed method for drum sound generation. Sec-
tion 3 presents our training procedure and dataset processing, and
Section 4 provides the results and discussion. Conclusions and
suggestions for future work are presented in Section 5.

2. METHOD

The proposed approach to drum synthesis builds upon the architec-
ture of WaveGAN [10] but is designed specifically for conditional
audio generation of a variety of different drum sounds. Figure 1
presents a general overview of the proposed system. Generator G
is trained to generate audio signals given a latent vector z and a
conditional variable y, and discriminator D is trained to estimate
the Wasserstein distance between the generated and observed dis-
tributions. Both networks are optimised simultaneously until G
can produce drum samples that are indistinguishable from the ob-
served training data.

The original GAN framework as proposed by [1] defines an
adversarial game between generator network G and discriminator
network D. G is used to learn mappings from a noise space Z to
drum data space X . Z = Rdz , where dz is a hyperparameter that
controls the dimensionality of Z. Latent variables z ∈ Z are sam-
pled from a known prior p(z), which is modelled with a simple
distribution (e.g., Gaussian, Uniform). X is the drum data space
that represents the input to D or output of G. As training data,
drum samples D are drawn from a real distribution pD(x). By

Figure 1: Overview of proposed system for drum synthesis: Gener-
ator G (left) is trained to generate audio given a latent vector z and
conditioning variable y. Discriminator D (right) is trained to min-
imise the Wasserstein distance between the generated distribution
and the observed distribution.

sampling from p(z), G can be used to output drums that represent
a synthetic distribution q(x). Following the more general formula-
tion introduced in [20], the GAN learning problem aims at finding
a min-max optimisation of objective V between the pair of G and
D (i.e., Nash equilibrium), of the value function defined as:

min
G

max
D

V (G,D) = Ex∼pD(x)[f(D(x))] +

Ez∼p(z)[f(−D(G(z)))], (1)

where E[·] denotes expectation, and f : R −→ R is a concave func-
tion. G is trained to output q(x) as close to pD(x) as possible. D
is trained to distinguish between real data PX and synthesised data
q(x). Convergence occurs when G can mislead D by generating
synthesized samples that are indistinguishable from real samples.

Training GANs correctly utilising the original formulation is
difficult and prone to mode collapse, resulting in reduced sample
variability. To help stabilise training, Arjovsky et al. [14] suggest
minimising the Wasserstein distance between the generated and
observed distributions.

D is modified to emit an unconstrained real number rather than
a probability value to recover the traditional GAN [1] formulation
f(x) = −log(1 + exp(−x)), where f is the logistic loss. This
convention slightly differs from the standard formulation in that
the discriminator outputs the real-valued logits and the loss func-
tion would implicitly scale this to a probability. The Wasserstein
GAN is achieved by taking f(x) = x. Within this formulation,
f has to be a 1-Lipschitz function and D is trained to assist in
computing the Wassertein distance, rather than to classify samples
as real or fake. To enforce the Lipschitz constraint, Arjovsky et al.
[14] suggest the application of a simple clipping function to restrict
the maximum weight value in f . To avoid subsequent difficulties
in optimisation (i.e., exploding or vanishing gradients), the authors

DAFx.2

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

168



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

in [15] utilised a gradient penalty parameterised by penalty coeffi-
cient λ to enforce the constraint.

In the conditional formulation of the GAN, the G and D net-
works use additional input layers with labels y. The updated ob-
jective function can be stated as:

min
G

max
D

V (G,D) = Ex,y∼pD(x,y)[f(D(x))] +

Ey∼p(y),z∼p(z)[f(−D(G(z, y), y))], (2)

where p(y) is the prior conditioning distribution. Conditioning the
system on labels allows for targeted generation of drum sounds
from a specific category. Methods for categorical conditioning
commonly involve encoding conditional labels as one-hot vectors
and concatenating them with the latent code [9]; however, this can
lead to undesirable behaviour such as cross-over between classes.
Following [21], an embedding space Y is used to condition the
model on external information, where Y = RdY , where dY is a
hyperparameter used to control the dimensionality of Y .

2.1. Model Details

In order to learn an instrument-specific encoding, conditioning
variable y is passed through an embedding layer with a dimen-
sionality w, such that each of the three drum classes are mapped
to a different w-element vector representation that is learned by G
(w = 50). The embedding layer and latent vector are then scaled
to the initial size of the network using a dense layer, then concate-
nated together and passed through a series of upsampling blocks to
output a generated waveform. Each upsampling block consists of
one-dimensional nearest neighbour upsampling with a stride of 4,
a one-dimensional convolutional layer with a kernel length of 25,
and a ReLU activation. Thus, at each block the number of audio
samples is increased by a factor of 4 with the output layer passed
through a tanh activation.

Discriminator network D mirrors the architecture in G. D
takes an audio signal and conditioning variable y. In D, y is passed
to an identical embedding layer to that in G and is scaled to the size
of the input waveform using a dense layer and reshaping. This
representation is then concatenated with the input waveform and
passed through a series of downsampling blocks. Each downsam-
pling block consists of a convolutional layer with a stride of 4 and
kernel length of 25, a leaky ReLU activation (α = 0.2). Thus, at
each stage of the discriminator the input waveform is decreased by
a factor of 4. The final layer of D is a dense layer with a linear
activation function that outputs the authenticity of the input audio
sample through the Wasserstein distance.

Upsampling in generator networks is known to cause peri-
odic checkerboard artifacts when synthesising images [22]. When
generating raw audio, checkerboard artifacts can be perceived as
pitched noise that degrades the overall audio quality. An optimi-
sation problem can occur when D learns to reject generated audio
with artifact frequencies that always occur at a particular phase.
Donahue et al. [10] introduced a phase shuffle module that ran-
domly perturbs the phase at each layer of D. Phase shuffle forces
D to become invariant to the phase of the input waveform and is
controlled by hyperparameter s that perturbs the phase of a layer’s
activations by -s to s samples (s = 2).

Figure 2: Progressive growing procedure, in which D and G be-
gin learning with low resolution audio resolution of 256 samples.
As training advances new layers are added to the models to incre-
mentally increase the number of samples by a multiple of 4 thus,
learning higher frequencies as training progresses.

3. TRAINING

3.1. Network training

In order to optimise Equation 2 we use alternating updates between
networks G and D. At each training iteration, the parameters of
network D are updated k times for each G parameter update (k =
5). The model is trained using the Adam optimiser [23] with a
learning rate 2e–4, β1 = 0.5, β2 = 0.99 for a 2000 epochs and
50000 iterations in total, where each iteration takes a mini-batch
of 64 examples. The model is trained using a gradient penalty
coefficient (λ = 10). n upsampling and downsampling blocks are
used to allow for the generation of T samples of audio. Following
[10], the latent dimensionality dz was initially set to 100 and a
second model is trained with a lower dimensionality (dz = 3) to
explore the tradeoff between dimensionality and audio quality.

3.2. Progressive Growing

To reduce the length of training time, a progressive growing pro-
cedure is adopted during training. Following [13], the model is
initially trained with downsampled input audio data, then learns
to generate output at samplerates of incrementally higher qual-
ity. Figure 2 depicts the progressive growing procedure for net-
works D and G, which are trained on low resolution audio un-
til stable. Additional layers are then added to support more au-
dio samples and thus higher samplerates can be used to sample
the audio. Higher frequencies are learned in successive epochs as
training progresses. As in [10], the output size of layers grows in
increments of 4 until the desired samplerate of is met. When train-
ing completes at its current resolution, networks are incrementally
grown by adding a new set of layers to increase the resolution each
time by a multiple of 4. Skip connections are used to connect the
new block to the input of D or output of G and the newly added
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Figure 3: Example waveform generations (left) and corresponding
Mel-scaled log frequency spectrograms (right) for kick drum (top),
snare drum (middle) and cymbal (bottom).

layers are linearly faded in to prevent shocks from the sudden ad-
dition of a larger layer. Fading between layers is controlled by
parameter r, which is linearly interpolated from 0 to 1. Learning
the earlier simple models first helps to stabilise training and pro-
gressively learn finer high frequency details. G and D both start
training with a short audio length of 256 samples. As training ad-
vances, we incrementally add layers to both G and D to increase
the number of samples used in the generated audio.

3.3. Dataset

For all experiments, both networks are trained using raw audio
waveforms. We compiled a dataset of drums sounds D selected
from a wide variety of sample libraries (including Loopmasters
and Splice). Sounds were categorised manually into p domains
comprising kick, snare and cymbal samples. Each domain contains
3000 individual samples resulting in a total dataset size of 9000
samples. All samples are mono 16-bit PCM audio files sampled at
44.1kHz. Prior to preprocessing, the mean sample length of each
audio file in the dataset was 18234 samples (i.e., 0.41s). In accor-
dance with the network architecture in [10], we choose the training
data input length to the nearest power of two (T = 16384) to sat-
isfy the symmetric structure of networks G and D. Each training
sample is trimmed or zero-padded to ensure a constant length of T
samples. All waveforms are normalised and a short linear fade of
samples is applied to the start and end of each waveform to ensure
that they consistently begin and end at 0 amplitude.

4. RESULTS

A system for generative audio synthesis of drum sounds has been
implemented as presented in Sections 2 and 3. We report on the
system’s capacity for generating coherent drum samples and pro-
vide an accompanying webpage3 for examples of individual gener-
ated audio samples, interpolation experiments, and example usage
within electronic music compositions. These examples allow for
subjective evaluation of audio generation quality and waveform
interpolation properties.

4.1. Generation Quality

Figure 3 presents examples of a kick drum, snare drum and cymbal
generated through the system output. Informal listening tests were
conducted to assess the generation quality of audio samples from
each class. Conditioning the system with labels improves overall
quality and omits overlap between classes. Generally, kick and
snare drums can be more easily modelled by the system and are
less prone to artifacts. As can be seen from the spectrograms in
Figure 3, some checkerboard artifacts remain; however, this does
not have a considerable effect on the overall perceived quality of
the drum sounds and in most cases could be removed with simple
post-processing (e.g., amplitude fading, equalisation). Inclusion of
the progressive growing procedure results in both reduced training
time and coherent audio generated at an earlier stage. Unfortu-
nately, this results in an increase in artifacts present, degrading the
perceived quality of the generations. Due to its fast training time,
the progressive growing model could be used as a tool to preview
drum samples from a large collection.

4.2. Latent Space Dimensionality

As the proposed system is intended to allow producers to interac-
tively navigate a compact representation of audio sounds, experi-
mentation was undertaken with a small latent dimensionality. The
dimensionality of the latent space and its relationship to generation
quality and diversity in GANs has yet to be thoroughly explored in
literature.

For comparison, we provide a selection of randomly generated
drum sounds from each domain using dz = 100 and dz = 3. Inter-
estingly, the size of the latent space had little effect on output audio
quality, following findings in other similar research [24]. Different
values for dz returned similar results, leading to our early con-
clusion that latent parameters up to rank three define the majority
of parameter variance within the set of 100 dimensions; however,
additional investigation is required to validate this.

4.3. Waveform Interpolation

The proposed system learns to map points in the latent space to the
generated waveforms. The structure of the latent space can be ex-
plored by interpolating between two random points. Experiments
with linear interpolation and spherical linear interpolation are pro-
vided on the accompanying webpage. The purpose of the spher-
ical linear interpolation experiment is to ensure that the curving
of the space is taken into account as linear interpolation assumes
that the latent space is a uniformly distributed hypercube. When
traversing the latent space, changes in audio quality are continuous

3https://jake-drysdale.github.io/blog/
adversarial-drum-synthesis/
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Figure 4: Interpolation in the latent space for kick drum genera-
tion. Kick drums are generated for each point along linear paths
through the latent space (left). Paths are colour coded and subse-
quent generated audio appears across rows (right).

and without abrupt variation. Figure 4 demonstrates the transition
between output kick drums when navigating linearly through the
latent space. Timbral modifications can be made to a generation
by making adjustments to latent variables Z. Larger steps in the
latent space are perceptually equivalent to smoothly mixing ampli-
tudes between distinct drum sounds whereas smaller adjustments
result in subtle variations of timbral characteristics. Subtle varia-
tions in timbre could be a useful for humanizing programmed drum
sequences to provide a more natural feel. While the effect each
dimension in d has on the output can not be anticipated, many ex-
amples demonstrate consistent variations in pitch, envelope shape
and the presence or omission of high and low frequencies. Spher-
ical interpolation seem to result in a more abrupt change of tim-
bral characteristics (e.g., alteration between different kick drum
sounds) than linear interpolation.

5. CONCLUSIONS AND FUTURE WORK

A method for generative audio synthesis of drum sounds using a
generative adversarial network has been presented. This system
provides a music production tool that encourages creative sound
experimentation. The results demonstrate the capacity of the con-
ditional model to generate a wide variety of different class-specific
drums sounds. High-level conditioning organises drum sounds
into specific categories, while a compact latent space allows for
intuitive synthesis control over output generations. The model is
lightweight and can be trained using a reasonably small dataset
to generate high-quality audio, further demonstrating the potential
of GAN-based systems for creative audio generation. The exper-
imental dataset could be replaced with an EM producers personal
collection of samples and custom tags could be defined for condi-
tioning. Future work will involve embedding the system into an
audio plug-in that can be evaluated by EM producers in efforts to
inform and improve the breadth of the design goals. The plug-in
will be designed to have various parameters that enable navigation
of the latent space.
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