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ABSTRACT

The paper presents a unified, flexible framework for the tasks
of audio inpainting, declipping, and dequantization. The concept is
further extended to cover analogous degradation models in a trans-
formed domain, e.g. quantization of the signal’s time-frequency
coefficients. The task of reconstructing an audio signal from de-
graded observations in two different domains is formulated as an
inverse problem, and several algorithmic solutions are developed.
The viability of the presented concept is demonstrated on an ex-
ample where audio reconstruction from partial and quantized ob-
servations of both the time-domain signal and its time-frequency
coefficients is carried out.

1. INTRODUCTION

Audio inpainting, audio declipping and audio dequantization are
reconstruction1 tasks that are usually studied separately in the lit-
erature. In audio inpainting, some of the time-domain signal sam-
ples are completely missing and they need to be recovered, while
in the cases of declipping and dequantization, the samples are not
lost fully and the samples to be recovered are known to lie in pre-
scribed numerical ranges, depending on the model of the degrada-
tion. The feasibility set is called consistent if any solution, when
exposed to the considered degradation model, produces exactly the
observed signal. For example, in the case of audio inpainting, this
shall be understood such that the reliable samples are kept intact.

A unification of different audio reconstruction tasks has par-
tially been discussed in [1], where the authors covered dequanti-
zation and declipping (possibly at the same time), and in [2, 3],
whose formulation allowed denoising and declipping (but not si-
multaneously). A flexible algorithmic framework is also presented
in [4], based on the non-negative matrix factorization (which is
shown to be suitable for simultaneous audio declipping and click
concealment). The present article shows how the three tasks can
be covered by a unified restoration framework, all of them possibly
taking effect at the same time. The greatest contrast to the earlier
attempts is, however, that this paper extends the range of degra-
dation models by additionally considering a transformed domain.
This is to say, the missing, clipped and quantized observations are
further allowed after (linearly) transforming the signal, e.g. by the
Short-time Fourier transform.

∗ Corresponding author.
1We choose the term reconstruction over restoration, as this reflects

well the task of rebuilding the signal from incomplete or degraded pieces.
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In Section 2, we introduce the three respective audio degra-
dation models in more detail, emphasize their common factors,
and build a set of feasible time-domain signals, which contains the
potential solutions to the recovery task. We then extend the degra-
dation to the transformed domain and present the synthesis and
analysis variants of the resulting feasible set.

Finding a solution to any of the described recovery tasks is
generally ill-posed. A regularizer is needed to pick favorable can-
didates from the feasibility set. The sparsity of time-frequency-
transformed audio signals has been shown to be a suitable reg-
ularizer for audio recovery problems [5, 6, 7, 8]. Thus, Section
3 presents a general optimization problem with a special empha-
sis on using the ℓ1 relaxation of true sparsity. The section also
presents a single, unified algorithm to find the numerical solution
in the case of a convex regularizer.

In Section 4, we present a proof-of-concept example of an au-
dio codec (i.e. coder and decoder). In the coder part, the original,
input audio signal is due to subsampling and quantization in both
the time and the time-frequency (TF) domains. The decoder at-
tempts to recover the signal from this partial information, based
on the assumption of sparsity of the (now unknown) original. To-
day’s audio codecs are built on the single-domain information, for
instance the classical MPEG model codes the TF coefficients only,
based on the global masking threshold estimate [9]. Recovery
from quantized transformed observations is also studied in [10]
in the context of compressed sensing. An interesting recent ap-
proach from [11], which is inspired in the image processing field,
subsamples and quantizes purely time-domain audio samples to
achieve compression. We show experimentally that in contrast to
that approach, splitting the available bit budget between the two
domains can be beneficial in some cases.

2. BUILDING THE FRAMEWORK

2.1. Time-frequency representations

In audio processing, TF operators are usually used to provide a suit-
able representation of a signal [12]. A signal x ∈ RP is repre-
sented as a superposition of time-localized oscillations, where the
localization is due to the so-called window function that moves
along the signal. Among such TF operators, the so-called tight
frames are usually preferred, since they provide effective handling
of both theoretical derivations and practical computations [12, 13,
14]. The Short-time Fourier (STFT, also known as the Gabor trans-
form) or the Modified Discrete Cosine (MDCT) transforms [5, 15]
are classical examples of such operators.

Throughout the paper, we use the following convention: To
obtain an expansion of a signal x ∈ RP to a series of TF coeffi-
cients, the analysis operator A : RP → CQ is applied, where we
assume Q ≥ P . Its adjoint, the synthesis operator A∗ : CQ → RP,
reproduces the time-domain signal from the coefficients.
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A tight frame with frame bound α can be characterized by the
property A∗A = αId, where Id is the identity operator, here on
the space RP . When the constant α = 1, the frame is said to be
Parseval tight.

2.2. Inpainting

Audio inpainting is a general term for recovering missing or highly
degraded samples of the audio signal [5]. Suppose y ∈ RP is the
original, non-degraded signal, and My is the partial observation
of y. The operator M : RP → RP keeps the reliable samples,
while putting zeros at the positions of missing or unreliable sam-
ples; these positions are assumed to be known. Thus, M can be
identified with a diagonal matrix M of size P × P , for which
mpp = 1 for a reliable sample yp, p = 1, . . . , P , and zero other-
wise. The solution of the inpainting problem is supposed to lie in
a naturally defined set Γinp

T =
{
x ∈ RP | Mx = My

}
, where

the subscript indicates that it is defined in the time domain.
Clearly, defining the feasible set alone is not sufficient to solve

the inpainting problem, since the inverse problem is ill-posed. Thus,
the path to a solution must start from a careful consideration of
additional assumptions about the signal. To name but a few, the
solution may be modeled as an autoregressive process [16, 17], as
a sum of sinusoidal components [18], or it is assumed to be sparse
with respect to a suitable TF transform [5, 7, 19].

For the purpose of further generalization, the time-domain set
Γinp
T may be equivalently defined entrywise as

x ∈ Γinp
T ⇔

{
xp ∈ [yp, yp] for reliable indexes p,
xp ∈ (−∞,+∞) otherwise.

(1)

2.3. Declipping

Audio declipping aims at recovering a signal damaged by clipping.
This negative effect is one of the common audio degradation types
and it can be described as a non-linear distortion causing a limi-
tation of a signal, such that all values of the signal exceeding the
allowed dynamic range defined by thresholds [−θ, θ] are strictly
limited by these thresholds. Because of the strict limitation of sig-
nal samples, the effect is also referred to as hard clipping. Not only
does the information contained in the peaks get lost, but clipping
also introduces a great number of higher harmonics, which leads
to a significant reduction in the perceived audio quality [20] and
also in the accuracy of automatic voice recognition [21].

Audio declipping is similar to audio inpainting, with the differ-
ence that in the case of audio declipping, the additional informa-
tion (lower or upper bounds) about the clipped samples is avail-
able. Simple inpainting methods are able to effectively perform
declipping, such as the Janssen method used in [5]. In general,
however, inpainting approaches to declipping do not guarantee the
consistency of the solution with the clipping constraints.

Similarly to the inpainting case, the set of feasible solutions,
Γdec
T , is defined entrywise, taking advantage of the information

that declipped samples need to exceed the clipping thresholds:

x ∈ Γdec
T ⇔


xp ∈ [yp, yp] for reliable samples yp,
xp ∈ (−∞,−θ] for observed samples −θ,

xp ∈ [θ,+∞) for observed samples θ.
(2)

2.4. Dequantization

The term dequantization refers to an inverse problem where a sig-
nal should be recovered based on the knowledge of its quantized
observation. In this subsection, the quantization acts in the time
domain, i.e. directly on the audio samples; the original sample is
substituted with the value of the nearest quantization level. The
unique quantization level is identified using a pair of the nearest
so-called decision levels [22].

More specifically, assume a series of quantization levels

· · · < q−1 < q0 < q1 < q2 < . . . , (3)

where this sequence can be theoretically infinite (but is always fi-
nite in practice). For a given p and an input sample yp there exists
a unique n such that it holds qn ≤ yp < qn+1. Based on the
decision level dn, for which qn < dn < qn+1, quantization maps
yp either to qn (when yp < dn) or to qn+1 (when yp ≥ dn). In
turn, if a quantized value yquant

p is observed, there exists a single
interval [dn, dn+1) to which yp belongs.

Therefore, for the purpose of formulating a general problem,
the set of feasible solutions is defined as the box-type set Γdeq

T ,

x ∈ Γdeq
T ⇔ xp ∈ [dn, dn+1), (4)

where dn and dn+1 (the closest lower and the closest upper deci-
sion levels to yp, respectively) change depending on p, which is
intentionally not reflected by the notation. Note also that in the
finite case, border cases can be treated by using ±∞ in place of
the lower or the upper bound in (4). In such a case, the half-open
interval should be replaced by an open interval.

2.5. General formulation

When working with digital signals, clipping can be seen as a spe-
cial kind of quantization. In such a case, the set of quantization
levels defined by Eq. (3) corresponds exactly to the set of all pos-
sible numerical values in the range [−θ, θ].

Looking at definitions (1), (2) and (4), one may observe that
it is straightforward to define a feasible set for simultaneous audio
inpainting, declipping and dequantization. Such a set is defined
entrywise as a multidimensional interval ΓT such that

x ∈ ΓT ⇔ xp ∈ [lTp, uTp], p = 1, 2, . . . , P, (5)

where the entries of the vector lower bound lT and the vector upper
bound uT depend on the type of degradation that occurs at the
index p, p = 1, . . . , P . One can think of ΓT as a box in the P -
dimensional space with its walls always parallel to an axis. The
bounds may formally be plus or minus infinity, and in such a case,
the box is infinitely wide in the respective directions.

It is straightforward to show that the set ΓT is convex. Fur-
thermore, solving an inverse problem with such a set of feasible
solutions is tractable since the projection onto this type of set is
available explicitly and entrywise by(

projΓT
(x)

)
p
= min {uTp,max {xp, lTp}} . (6)

2.6. Feasible set in a transformed domain

So far, only time-domain degradation has been considered, leading
to the set ΓT. Nevertheless, degradation as presented above can
also happen in a transformed domain. The aim of this section is to
generalize the above concept to both the time and the TF domains.
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Similarly to (5), we define a feasible set within the TF domain.
Such a domain is generally a subset of CQ. Any interval shall be
understood in such a way that the real and imaginary parts are
considered independently. As an example, for l, u ∈ C, we denote

z ∈ [l, u] ⇔ ℜ(z) ∈ [ℜ(l),ℜ(u)] ∧ ℑ(z) ∈ [ℑ(l),ℑ(u)]. (7)

With such a notation, we define the membership in ΓTF as

z ∈ ΓTF ⇔ zq ∈ [lTFq, uTFq], q = 1, 2, . . . , Q. (8)

The vector bounds lTF,uTF ∈ CQ determine for each coefficient
whether its clipped or quantized version is observed or whether the
coefficient is missing.

Combining the constraints in the two domains reduces the size
of the overall feasible set. In general, however, this is not enough,
and additional prior information is necessary.

2.7. Defining a prior

For the purpose of the general framework, assume some knowl-
edge about the TF coefficients invoked by minimizing a functional
S◦W . As a particular example, consider the (relaxed) sparse prior,
namely (S ◦W )(z) = S(Wz) = ∥Wz∥1, where W is a diagonal
operator assigning weights to the respective coefficients. The ℓ1
norm sums the magnitudes of the elements of its argument [23].

Combining the prior and the feasible sets ΓT and ΓTF pro-
vides us with the following general formulation:

arg min
u

S(WKu) subject to Lu ∈ ΓT, Ku ∈ ΓTF. (9)

The linear operators K and L play the role of either the synthesis
or the analysis operator of a suitable TF transform. In a typical
situation, one of them will be identity. Such a notation may look
redundant, but the reason for this shape of the formulation (9) is
that it covers both the synthesis variant (L = A∗, K = Id)

arg min
z

S(Wz) subject to A∗z ∈ ΓT, z ∈ ΓTF, (10)

and the analysis variant (L = Id, K = A):

arg min
x

S(WAx) subject to x ∈ ΓT, Ax ∈ ΓTF. (11)

Note that if a non-unitary transform A is used, the formulations
(10) and (11) are not equivalent. Also, the feasible sets in Eq. (10)
and (11) may differ, as in the case of a non-tight frame.

3. SOLVING THE TASK

The important observation about the sets ΓT and ΓTF defined by
(5) and (8), respectively, is that both are box-type (and thus con-
vex) sets. Furthermore, both the sets ΓL = {u | Lu ∈ ΓT} and
ΓK = {u | Ku ∈ ΓTF} are convex as well. The reason is that the
preimage of a convex set under a linear operator is a convex set,
which is straightforward to show. Finally, the intersection of two
convex sets is once again a convex set, therefore the set of feasible
solutions in the constrained formulation (9) is convex for arbitrary
linear operators L and K.

However, such an intersection is a rather complicated set. One
of the sets ΓL and ΓK is no longer a simple box-type set, hence
the intersection ΓL ∩ ΓK is generally a polyhedron either in the
time domain (for the analysis model) or in the TF domain (for the
synthesis model). Still, it remains a non-empty set, since it must
contain at least the original, non-degraded signal or coefficients.
Thus, the formulation (9) has a solution.

Algorithm 1: The CV algorithm for solving (13)
Input: The linear operators Lm, m = 1, . . . ,M , the proximal

operators proxhm
, m = 1, . . . ,M , proxg and the

gradient ∇f .
1 Choose the parameters τ, σ, ρ > 0.

2 Choose the initial estimates u(0),v
(0)
1 , . . . ,v

(0)
M .

3 for i = 0, 1, . . . do
4 for m = 1, . . . ,M do
5 ṽ

(i+1)
m = proxσh∗

m

(
v
(i)
m + σLmu(i)

)
6 v

(i+1)
m = ρṽ

(i+1)
m + (1− ρ)v

(i)
m

7 end
8 ũ(i+1) =

proxτg

(
u(i) − τ∇f

(
u(i)

)
− τ

∑
L∗
m

(
2ṽ

(i+1)
m − v

(i)
m

))
9 u(i+1) = ρũ(i+1) + (1− ρ)u(i)

10 end
Output: u(i+1)

3.1. Consistent convex approach, arbitrary linear operators

We focus on the case when the function S is convex, thus the whole
problem is convex. Convexity implies that the there exists a single
global minimum. The idea is to use a proximal splitting method
[24] to solve the formulation (9) numerically, which allows us to
focus separately on operations related to the function S, to the
constraint u ∈ ΓL and to the constraint u ∈ ΓK .

In the following, the notion of the proximal operator will be
needed. The proximal operator of a proper convex lower semi-
continuous function h : V → R is a mapping from V to V defined
at any point u ∈ V by the minimization problem proxh(u) =
arg minv

{
h(v) + 1

2
∥v − u∥2

}
. Here, V stands for the Hilbert

space RP or CQ.
To design a particular proximal algorithm, the formulation (9)

is first rewritten into the unconstrained form using the so-called
indicator function ιΓ of the set Γ. For u ∈ Γ, the function returns
0, and ∞ otherwise. The formulation (9) thus attains the form

arg min
u

{S(WKu) + ιΓT (Lu) + ιΓTF (Ku)} . (12)

The unconstrained form is suitable for the use of the generic proxi-
mal algorithm proposed independently by Condat [25] and Vũ [26]
(further referred to as the CV algorithm). It is tailored to solve
problems of the form

arg min
u

{
f(u) + g(u) +

M∑
m=1

hm(Lmu)

}
, (13)

where f, g, h1, . . . , hm are convex lower semi-continuous func-
tions, f is differentiable, and L1, . . . , Lm are bounded linear op-
erators. We will utilize the second of the two proposed variants
from [25], the general form of which is reproduced in Alg. 1.

Assuming a finite-dimensional problem together with f = 0,
the sequence (u(i))i∈N produced by the algorithm is guaranteed to
converge to the solution of problem (13) if

τσ∥
M∑

m=1

L∗
mLm∥ ≤ 1, 0 < ρ < 2. (14)
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Algorithm 2: The CV algorithm for solving the general
formulation (9)

Input: The linear operators W,K,L, the proximal operator
proxS and the projectors projΓT

, projΓTF
.

1 Choose the parameters τ, σ, ρ > 0 satisfying the conditions (14).

2 Choose the initial estimates u(0),v
(0)
1 ,v

(0)
2 ,v

(0)
3 .

3 for i = 0, 1, . . . do
/* update corresponding to h1 */

4 ṽ
(i+1)
1 =

v
(i)
1 + σWKu(i) − σproxS/σ

(
v
(i)
1 /σ +WKu(i)

)
5 v

(i+1)
1 = ρṽ

(i+1)
1 + (1− ρ)v

(i)
1

/* update corresponding to h2 */

6 ṽ
(i+1)
2 = v

(i)
2 + σLu(i) − σprojΓT

(
v
(i)
2 /σ + Lu(i)

)
7 v

(i+1)
2 = ρṽ

(i+1)
2 + (1− ρ)v

(i)
2

/* update corresponding to h3 */

8 ṽ
(i+1)
3 = v

(i)
3 +σKu(i)−σprojΓTF

(
v
(i)
3 /σ +Ku(i)

)
9 v

(i+1)
3 = ρṽ

(i+1)
3 + (1− ρ)v

(i)
3

/* update of u */

10 u(i+1) = u(i) − ρτK∗W ∗
(
2ṽ

(i+1)
1 − v

(i)
1

)
−

ρτL∗
(
2ṽ

(i+1)
2 − v

(i)
2

)
− ρτK∗

(
2ṽ

(i+1)
3 − v

(i)
3

)
11 end

Output: u(i+1)

To develop the case-specific form of Alg. 1, the functions from
the formulation (12) are assigned as follows:

h1 = S, h2 = ιΓT , h3 = ιΓTF , (15a)
L1 = WK, L2 = L, L3 = K, (15b)

and the functions f, g are both zero. Finally, we leverage the fol-
lowing general properties:

• Since g = 0, it holds proxτg = Id.
• To evaluate proxσh∗ , where h∗ is the Fenchel–Rockafellar

conjugate of h, we use the Moreau identity proxσh∗(u) =
u− σproxh/σ(u/σ) [27].

• The proximal operator of an indicator function ιΓ of a closed
convex set Γ is the projection onto the set, denoted projΓ.

Plugging these properties into Alg. 1 produces the algorithm for
the formulation (12), and thus for (9). The final algorithm is sum-
marized in Alg. 2. If the ℓ1 norm is used as the sparsity-inducing
regularizer S, then proxS/σ becomes the soft thresholding.

The strength of the algorithm is that both projections can be
performed explicitly and fast, entry by entry. For the time-domain
projection projΓT

, Eq. (6) is used. For the TF-domain projection
projΓTF

, the same equation can be adapted, since the projection
can be done not only entrywise but also separately for the real and
imaginary parts.

Note that the functions in formulation (12) were assigned to
the functions h1, h2, h3 such that Alg. 2 covers both the synthesis
and the analysis approaches (10) and (11), respectively. Had the
composition S ◦ (WK) been assigned to the function g instead,
the operator proxτg would be known only in the synthesis model.2

2The potential evaluation of proxτg = proxτS◦A in the analysis
model is complicated, because the formula for a proximal operator of such
a composition is known only when the operator A satisfies AA∗ = αId,
which is not possible in the setting of redundant TF transforms [28].

Algorithm 3: The CV algorithm for solving the general
formulation (9), assuming the use of a tight frame

Input: The linear operators W,K,L, the proximal operator
proxS and the projectors projΓT

, projΓTF
.

1 Choose the parameters τ, σ, ρ > 0 satisfying the conditions (14).

2 Choose the initial estimates u(0),v
(0)
1 ,v

(0)
2 .

3 for i = 0, 1, . . . do
/* update corresponding to h1 */

4 ṽ
(i+1)
1 =

v
(i)
1 + σWKu(i) − σproxS/σ

(
v
(i)
1 /σ +WKu(i)

)
5 v

(i+1)
1 = ρṽ

(i+1)
1 + (1− ρ)v

(i)
1

/* update corresponding to h2 */

6 ṽ
(i+1)
2 = v

(i)
2 +σKu(i)−σprojΓTF

(
v
(i)
2 /σ +Ku(i)

)
7 v

(i+1)
2 = ρṽ

(i+1)
2 + (1− ρ)v

(i)
2

/* notation for better readibility */

8 w = u(i) − τK∗W ∗
(
2ṽ

(i+1)
1 − v

(i)
1

)
−

τK∗
(
2ṽ

(i+1)
2 − v

(i)
2

)
/* update of u */

9 ũ(i+1) = w + L∗
(
projΓT

(Lw)− Lw
)

10 u(i+1) = ρũ(i+1) + (1− ρ)u(i)

11 end
Output: u(i+1)

3.2. Consistent convex approach, tight frame case

Alternatively, we can make the assignment such that the function g
is used. In [25], it is suggested that employing the function g may
result in a faster convergence of the algorithm. Such an assignment
is not possible in the case of the formulation (12), unless the linear
operators represent the analysis or synthesis of a tight frame. In
such a special case, we may assign

g = ιΓT ◦ L, h1 = S, h2 = ιΓTF , (16a)
L1 = WK, L2 = K. (16b)

This is justified by the observation that in the case of a tight frame,
L is either the synthesis (in the synthesis model), or identity (in
the analysis model). In both cases, it satisfies LL∗ = αId for
a positive constant α, allowing us to compute the proximal opera-
tor proxιΓT

◦L using the explicit formula [24, 28]

proxιΓT
◦L(u) = u+ α−1L∗ (projΓT

(Lu)− Lu
)
. (17)

Put in words, the formula states that instead of computing the com-
plicated projection on the left-hand side, one may use the simple
projection onto ΓT on the right-hand side, together with the appli-
cation of the linear operator and its adjoint.

The resulting algorithm is summarized by Alg. 3, where, for
simplicity, α = 1 is assumed (i.e. the frame is Parseval tight).
Compared to Alg. 2, this algorithm has a major benefit: since it
uses only two functions h1, h2 and thus only two corresponding
linear operators, it follows from Eq. (14) that a wider range of the
parameters τ, σ is allowed, creating the possibility for faster con-
vergence.
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signal ∈ RP

coefs ∈ CQ

subsampled
signal ∈ RpT·P

subsampled
coefs ∈ CpTF·Q

pT ·P ·bT bits

pTF ·Q·bTF bits

subs. quant.

DGT hard
thresh. quant.

Figure 1: Scheme of the degradation considered in the experiment.
The abbreviation DGT stands for the discrete Gabor transform in
place of the analysis operator A.

3.3. Inconsistent convex approach

So far, the solutions to all of the reconstruction tasks have been as-
sumed to be consistent with the observations (either time-domain
samples or TF coefficients, or even both). However, this assump-
tion may be too strong, for example in the case of noisy data. In
such a case, instead of strictly forcing the signal to lie in ΓT and
the coefficients to lie in ΓTF, we minimize the distances to these
sets. The formulation (12) would cover also this case, had we used
the distance from ΓT and ΓTF instead of the indicator functions
(which force the respective distance to be zero).

Since the proximal operator of a distance function of a closed
convex set is available [24], the inconsistent problem could be
solved by the CV algorithm, similarly to the consistent one in
Sec. 3.1 or 3.2.

4. EXPERIMENT

We perform an experiment that serves as the proof of concept of
the presented recovery formulation. On top of that, the results
suggest interesting implications that could lead to new develop-
ments in audio coding; we show that a simultaneous utilization of
the time and time-frequency information could lead to better com-
pression in some cases, compared to conventional, single-domain
approaches.

4.1. Design of the experiment

The task is to reconstruct a signal where some samples are miss-
ing; moreover, the retained samples are quantized. At the same
time, a partial and quantized observation of the TF coefficients of
the original (non-distorted) signal is provided. The goal is to il-
lustrate that it is beneficial to utilize the double-domain approach,
compared to the reconstruction using only information in the time
domain (abbreviated to T domain in some of the figures). The re-
laxed sparse prior, i.e. the ℓ1 norm, is used, hence we can apply
the consistent convex approach from Sec. 3.2.

The percentage of available samples/coefficients varies from
10% up to 90%. It is denoted by pT and pTF, respectively. In
the time domain, the reliable samples are distributed (uniformly)
randomly. In the TF domain, the coefficients that are the largest in
magnitude are kept (Sec. 4.1.1 gives additional comments on the
choice of the coefficients). The quantization is uniform and it is
done by limiting the number of bits per sample (bT) or per coef-
ficient (bTF). For a given bit depth b (i.e. the number of bits used
for representing each number), ∆ = 2−b+1 denotes the distance
of two consecutive quantization levels. The quantized observation
uquant of a real value u, −1 ≤ u ≤ 1 is obtained using the so-

called mid-riser uniform quantizer [22] as

uquant = sgn+(u)

(⌊
|u|
∆

⌋
+

1

2

)
, (18)

where sgn+(u) returns 1 for u ≥ 0 and −1 for u < 0. The bit
depths bT and bTF are chosen as the powers of two and they are
equal, bT = bTF ∈ {2, 4, 8, 16, 32}. The samples or coefficients
considered lost are the only exception, they are simply set to zero.

As the TF transform, the discrete Gabor transform (DGT) is
used, with the sine window of 2048 samples in length, 50 % over-
lap and 2048 frequency channels. Such a transform produces a
twice-redundant tight frame, which is then normalized to obtain
a Parseval tight frame. As the prior, we use S = ∥ · ∥1 with no
weighting, i.e. W = Id.

For an illustrative scheme of the degradation, see Fig. 1. Fig. 2
then shows an example of the degraded signal and coefficients.

In order to evaluate the results, the PEMO-Q ODG score [29]
and the SDR are measured, the latter being defined as

SDR(y, ŷ) = 10 log10
∥y∥2

∥y − ŷ∥2 , (19)

where y is the original (non-distorted) time-domain signal and ŷ is
the reconstruction. The result is expressed in decibels. Unlike the
SDR, PEMO-Q is a perceptually motivated measure whose ODG
output score ranges from −4 (very annoying distortion, poor qual-
ity) to 0 (imperceptible distortion, excellent quality).

The experiment is run for a set of 10 audio signals (musi-
cal recordings) of varying complexity from the SQAM database
[30]. The signals are sampled at 44.1 kHz. To reduce the com-
putational time due to the enormous number of tested combina-
tions, the proof-of-concept experiment only uses one-second long
excerpts. A single reconstruction instance then takes ca. 5 s, de-
pending on the parameters of the computer. For the purpose of
quantization, these excerpts are also peak-normalized such that the
maximum absolute value of each signal equals one.

The CV algorithm 3 is executed setting τ = σ =
√
2/2,

ρ = 1, and it stops after 300 iterations. The choice of τ and σ
follows from (14) and (16b), since ∥

∑2
m=1 L

∗
mLm∥ = ∥K∗K +

K∗K∥ = 2∥K∗K∥ = 2 both in the synthesis case (K = Id) and
in the analysis case (K = A), assuming a Parseval tight frame and
W = Id.

4.1.1. On the choice and quantization of the TF coefficients

In the experiment, a tight Gabor frame is used to compute the TF
representation of a real signal. Coefficients obtained using such
a frame attain a specific complex-conjugate structure. In fact,
only a half of all the coefficients are needed; the other half may
be computed as a conjugate to the first half. Such a structure in-
troduces a kind of redundancy: A pair of coefficients, given they
are complex-conjugate, contribute to the total bit rate by the same
amount as a pair of real samples of the signal. This property is used
in the implementation when choosing the subset of the TF coeffi-
cients; it is ensured that for a given number of reliable samples or
coefficients, information from the TF domain yields the same bit
rate as information from the time domain.

Furthermore, recall that the quantization defined by Eq. (18) is
tailored for values from the interval [−1, 1]. To simulate the quan-
tization for the observed TF coefficients c, the quantization step ∆
and all the quantization and decision levels in the TF domain are
scaled by a factor of max{max{|ℜ(c)|}, max{|ℑ(c)|}}.
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(a) piece of the subsampled and quantized signal (b) spectrogram of the original signal (c) spectrogram with kept quantized values

Figure 2: Data available to the decoder: (a) subsampled and quantized time-domain samples, and (c) subsampled and quantized TF
coefficients. Although the real and imaginary parts are treated separately in the TF domain, the magnitude spectrogram is depicted here.

4.2. Results

4.2.1. Comparison with fixed bit depth

All the results are visualized as mean values computed from the
10 audio signals. In the first visualization in Figure 3, the bit depth
is fixed. The result corresponding to the T-domain-only approach
(denoted by pTF = 0%) with a given fraction of reliable samples
in the time domain serves as a reference. These two parameters—
bit depth and fraction—define the bit rate of reliable information
used in the T-domain-only approach. This reference scenario is
compared to different distributions of the total amount of bits be-
tween the time and TF domains while using the previously fixed
bit depth. Note that only a limited number of options of how to
distribute the information between the time and the TF domains
was tested.

Both evaluation metrics (ODG and SDR) are depicted in Fig. 3.
For the bit depth bT = bTF = 4, we present the results using both
the analysis and the synthesis models (plots 3a, 3b, 3d, 3e). Since
no significant difference between the performance of the analy-
sis and the synthesis approaches is observed, only the analysis
model is used for further comparison with the performance using
bT = bTF = 16 (plots 3c and 3f).

For a fixed number of bits per sample or coefficient, it is in
general not beneficial to split the available information between the
two domains; see the decrease in both ODG and SDR in the plots
3a, 3b, 3d and 3e when the percentage of reliable TF coefficients
increases. Sampling in the TF domain (in our setup) is reasonable
only with a high bit depth—compare, for example, plots 3e and 3f,
where the difference is less significant.

4.2.2. Comparison with variable bit depth

In the visualization in Fig. 4, the number of bits per sample or co-
efficient varies. Two ways of displaying the results are combined
in the figure.

The T-domain-only approach is represented by the colored
equibital lines3. The line color represents the restoration quality,
according to the side colorbar. The line width represents the bit
depth and the position represents the bit rate (in this case, only
time-domain information is used).

3i.e. lines connecting points with the same total bit rate

The double-domain approach is represented by the colored
points. Once again, the color indicates the restoration quality. The
point size represents the bit depth bT = bTF. Finally, the posi-
tion represents the distribution of reliable information between the
domains.

Both in the case of lines and in the case of points, the follow-
ing rule is applied: If more realizations with the same bit distribu-
tion appear, only the best of them is plotted. Such a situation oc-
curs when we decrease the number of reliable samples/coefficients
while we increase the bit depth.

The scatter plots in Figure 4 show that there is a number of
cases where it is useful to decrease the precision of the reliable
time-domain samples and assign a part of the bit budget to the TF
domain. This conclusion can be deduced from points which lie
on an equibital line. Using the TF-domain information is advanta-
geous when such a point reports a higher ODG/SDR compared to
the line it lies on.

The evaluation is concluded by Fig. 5, which provides a differ-
ent perspective to Fig. 4. The figure considers only the best perfor-
mance in terms of ODG (Fig. 5a) or SDR (Fig. 5b) as a function of
available total bit rate. In other words, it does not consider results
in a situation when a higher bit rate does not lead to a better perfor-
mance (cf. Fig. 4a, the 5th and the 6th equibital from the top). The
plots show that there are cases where the double-domain approach
outperforms the T-domain-only approach, however, the difference
is only minor. Significant gain is observed only for the highest bit
rates, i.e. a low level of compression.

For the sake of completeness, the TF-domain-only reconstruc-
tion is included in Fig. 5 as well. In this case, the reconstruction
is carried out based solely on partially observed and quantized TF
coefficients. We consider two options: Either we follow the frame-
work where the observation induces the set ΓTF, and Alg. 3 pro-
vides the reconstruction, or the quantized, partially observed co-
efficients are directly synthesized with A∗. Interestingly, both the
T-domain-only and the double-domain approaches remain superior
in great number cases; in particular regarding the SDR.

4.3. Software and reproducible research

The experiment was run in MATLAB R2019b, using LTFAT [31]
version 2.3.1. All MATLAB codes, together with supplemental
material, are provided in the repository at https://github.
com/ondrejmokry/AudioRestorationFramework/.
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(a) ODG, synthesis model, 4 bits (b) ODG, analysis model, 4 bits (c) ODG, analysis model, 16 bits

(d) SDR, synthesis model, 4 bits (e) SDR, analysis model, 4 bits (f) SDR, analysis model, 16 bits

Figure 3: Comparison with fixed bit depth. The legend shown in the first plot is common to all the plots; pTF denotes the percentage of
reliable TF coefficients. Here, reliable coefficient means that it is observed (i.e. not missing), although it is quantized.

(a) ODG, analysis model (b) SDR, analysis model

Figure 4: Comparison with variable bit depth. The bit rate is the quantity of bits per a second of audio.

(a) ODG, analysis model (b) SDR, analysis model

Figure 5: Comparison of the best performance of different approaches, given the limit of available total bit rate.

DAFx.7

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

123



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

5. CONCLUSION

The paper provides a general flexible formulation not only cove-
ring multiple audio reconstruction tasks, but also allowing several
degradation types to take place simultaneously. Another novelty
is that the restoration can possibly take into account constraints in
the time-frequency domain. The concept can be easily extended
such that the reliable information is distributed among more than
two different transform domains. In Sec. 3.3, it is proposed how to
develop the framework such that it handles noise-distorted data.

The aim of the experiment was not to outperform the state-of-
the-art methods in the field of audio reconstruction, but to show
an application of the general formulation in a meaningful audio
compression scenario. The framework was shown to be flexible
enough to cover a model of signal distortion which included both
drop-outs and quantization of both the samples in the time domain
and of the time-frequency coefficients. Although only a single sce-
nario was considered, we observed promising results. It remains
for the future work to find an optimal distribution of the bit budget
between the time and the time-frequency domains.
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