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ABSTRACT

The virtual exploration of the domain of mechano-acoustically pro-

duced sound and music is a long-held aspiration of physical mod-

elling. A physics-based algorithm developed for this purpose com-

bined with an interface can be referred to as a virtual-acoustic

instrument; its design, formulation, implementation, and control

are subject to a mix of technical and aesthetic criteria, including

sonic complexity, versatility, modal accuracy, and computational

efficiency. This paper reports on the development of one such

system, based on simulating the vibrations of a string and a plate

coupled via a (nonlinear) bridge element. Attention is given to

formulating and implementing the numerical algorithm such that

any of its parameters can be adjusted in real-time, thus facilitating

musician-friendly exploration of the parameter space and offering

novel possibilities regarding gestural control. Simulation results

are presented exemplifying the sonic potential of the string-bridge-

plate model (including bridge rattling and buzzing), and details re-

garding efficiency, real-time implementation and control interface

development are discussed.

1. INTRODUCTION

Physical modelling studies often focus on the simulation and vir-

tualisation of a specific musical instrument or class thereof [1].

Progress in this field has, however, also been driven by the prospect

of new variations of virtual-acoustic instruments. Going beyond

the aim of faithful imitation, the challenge then shifts towards de-

sign and control, seeking physical model configurations, imple-

mentations, and user interfaces that facilitate creative exploration

of the domain of mechanically/acoustically plausible sounds. No-

table past efforts in this area include several early physical mod-

elling software environments such as CORDIS [2], MOSAIC [3],

and TAO [4]. These systems and more recent variations of the

same concept (see, e.g. [5, 6, 7, 8]) facilitate the construction of

new instruments by connecting either elementary masses or dis-

tributed objects (e.g. strings, membranes), usually via spring ele-

ments.

Beyond such modularity, the user invariably faces the task of

learning to navigate the parameter space of the specified config-

uration. Even though the parameters are physical and therefore

intuitive, this tends to be a formidable exercise for all but the sim-

plest systems, especially so if it has to be performed off-line. A

principal motivation behind the present study is to devise virtual-

acoustic instruments that facilitate this learning and exploration

process. This is pursued here by developing a specific physical

configuration (hence de-emphasising modularity) that allows the

user to perform design and control tasks via on-line tuning of any

of the model parameters with instant aural feedback.

The first challenge that arises from this objective is one of de-

sign, i.e. determining what kind of physical model configuration

is appropriate as a testbed. Drawing inspiration from several rele-

vant DAFx studies [9, 5, 8, 10] and partly building on earlier ideas

[11, 12], the proposed model takes the form of a string and a plate

connected by a parameterised bridge element, with a local damper

fitted on the string (see Fig. 1). The bridge can be parametrically

configured to simulate different types of linear and nonlinear cou-

pling, including mass-like behaviour, spring stiffening and contact

phenomena (i.e. rattling and buzzing).

Figure 1: Geometry of the string-bridge-plate model. The red

cylinder represents the bridge mass, and the green disk indicates

where the string damper is located.

The second, more technical challenge - the addressing of which

the bulk of this paper is devoted to - consists in the derivation of

a computationally robust and sufficiently efficient numerical for-

mulation that supports on-line parameter adjustment, and can be

scaled to common hardware for real-time operation. The approach

taken to address this can be summarised as follows. The system

equations of the string-bridge-plate model are set out in § 2. An

unconditionally stable and modally exact numerical formulation

is then developed in § 3. This avoids complications and restric-

tions regarding on-line variation of some of the model parame-

ters that would arise with more general spatio-temporal discretisa-

tion. Similar to the Port-Hamiltonian approach [13], discretisation

is performed over a first-order form, which in the presence of non-

smooth forces can help avoid spurious oscillations [14]. The pro-

posed model is computationally robust due to (a) its provable sta-

bility, (b) the provable uniqueness and demonstrable convergence

of the solution to the nonlinear equation that has to be found it-

eratively at each discrete-time instant, and (c) the empirically set

constraints on each of the tunable parameters. The latter is needed
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to limit the number of required nonlinear solver iterations. The

model’s sonic potential is exemplified with numerical experiments

in § 4, which also reports on real-time implementation aspects and

on preliminary findings with the initial control configuration. Fi-

nally, § 5 offers concluding remarks and future perspectives.

2. STRING-BRIDGE-PLATE MODEL

2.1. System Equations

Consider transverse vibrations (u) of a stiff string and a thin rect-

angular plate, both under simply supported boundary conditions,

coupled via a bridge element of a mass mb with parameterised

spring elements, and with local damping applied at z = zd along

the string axis (see Fig. 1). The string is characterised by its length

Ls, mass density ρs, cross-sectional area As, Young’s modulus

Es, moment of inertia Is, and damping factor γs of yet to be de-

termined wave-number dependency. The plate is of dimensions

Lx×Ly ×hp, mass density ρp, and experiences damping accord-

ing to γp. Two of its material properties are encapsulated in the

parameter Gp = (Eph
3
p)/(12(1 − ν2p)), where νp is the Poisson

ratio. The dynamics of the coupled system are governed by

ρsAs
∂2us

∂t2
= Ts

∂2us

∂z2
− EsIs

∂4us

∂z4
− γs

∂us

∂t

+ ψc(z)F1(t) + ψx(z)Fx(t) + ψd(z)Fd(t), (1)

mb
∂2ub

∂t2
= −rb

∂ub

∂t
− F1(t) + F2(t) + Fb(t), (2)

ρphp
∂2up

∂t2
= −Gp∇

4up − γp
∂up

∂t
−Ψc(x, y)F2(t), (3)

where, for κ = c, x, d, ψκ(z) = δ(z − zκ) and Ψ(x, y) =
δ(x− xc, y − yc) are single-point spatial distributions, and ∇4 =
(∂4/∂x4 + ∂4/∂y4) is a biharmonic operator. It is readily seen

that (1) models a beam rather than a string when Ts ≪ EsIs.
The system is brought into vibration by Fx(t), which excites

the string, and/orFb(t) which drives the bridge mass; bridge damp-

ing is controlled with rb. The damper force - which allows sup-

pression of string oscillations on either side of the connection point

- is Fd(t) = −rd
∂ud

∂t
, where ud(t) = us(zd, t). The spring con-

nection forces F1 and F2 are functions of the inter-object distances

u1(t) = ub(t) − us(zc, t) and u2(t) = up(xc, yc, t) − ub(t) as

follows (ℓ = 1, 2):

Fℓ(t) = kLuℓ(t) + k+ℓ ⌊uℓ(t)⌋
α − k−ℓ ⌊−uℓ(t)⌋

α, (4)

where ⌊u⌋ =
∧

max(0, u), kL, k+ℓ , and k−ℓ are stiffness coefficients,

and α ≥ 1 is a power law exponent. The specific form of (4) in-

cludes various types of linear and nonlinear restoring-force based

connections, allowing to parametrically remove or add the push-

ing or pulling force of each of the springs through adjusting k+ℓ ,

and k−ℓ , respectively; Fig. 2 shows a few example force-distance

curves. Modelling of the bridge in this manner facilitates the simu-

lation of a variety of connection configurations, four example cases

of which are shown in Fig. 3. Note that while the bridge mass can-

not be set to zero in our model, it can nonetheless be made negli-

gible by making it very small compared with the string mass. For

audio ouput, we define the plate momentum at K pickup positions

(xa,k, ya,k):

pa,k(t) = ρphp
∂

∂t
up(xa,k, ya,k, t). (5)
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Figure 2: Examples of spring force-distance curves. (a): linear

spring [kL = 105, k±ℓ = 0]. (b): stiffening spring [kL = 6×104,

k+ℓ = k−ℓ = 4 × 1014, α = 3]. (c) one-sided spring [kL = 0,

k+ℓ = 0, k−ℓ = 1×108, α = 1.5] (d): asymmetric spring [kL = 0,

k+ℓ = 1× 108, k+ℓ = 2× 107, α = 1.5].

Figure 3: Bridge configuration examples. (a): massless bridge

[mb ≪ ρsAsLs, k
±

1 = k±2 ]. (b): mass-spring bridge [k±1 = k±2 ].

(c): ‘flat’ bridge [kL = 0, k+1 , k
+
2 , k

−

2 > 0, k−1 = 0]. (d): rattling

bridge [kL = 0, k+1 , k
+
2 > 0, k−1 = k−2 = 0].

2.2. Modal Expansion

The displacement of each of the two distributed linear sub-systems

can be written as a modal expansion:

us(z, t) =

Ms
∑

i=1

vs,i(z) ūs,i(t), (6)

up(x, y, t) =

Mx
∑

i=1

My
∑

j=1

vp,i,j(x, y) ūp,i,j(t), (7)

where

vs,i = sin(βix), vp,i,j(x, y) = sin(βx,ix) sin(βy,jy), (8)

are the respective mode shape functions under simply supported

boundary conditions. The wave numbers are βi = iπ/Ls for the

string/beam and βx,i = iπ/Lx, βy,j = jπ/Ly for the plate (the

overall wave number defined as βi,j =
√

β2
x,i + β2

y,i). For both

the string (κ = s) and the plate (κ = p), the modal displacements

(ūκ) in (6) and (7) are governed by second-order differential equa-

tions of the form

mκ
∂2ūκ,l

∂t2
= −kκ,lūκ,l(t)− rκ,i

∂ūκ,l

∂t
+ F̄κ,l(t), (9)

where we have introduced a new modal index l, which maps as

l = i for the string and as l = (My − 1)i + j for the plate, and

where the respective modal parameters are

ms =
ρsAsLs

2
, ks,l=

Ls

2

(

EsIsβ
4
l + Tsβ

2
l

)

, rs,l=
Ls

2
γs(βl),

(10)

mp =
ρphpLxLy

4
, kp,l =

LxLyGp

4
β4
l , rp,l =

LxLy

4
γp(βl),

(11)
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The modal frequencies are ωκ,l =
√

kκ,l/mκ − ζ2κ,l, and the

modal attenuation rates are parameterised here in the convenient

low-parameter frequency-dependent form

ζκ,ℓ =
rκ
2mκ

= σκ,0 + σκ,1βℓ + σκ,3β
3
ℓ , (12)

which retrospectively defines the damping parameters γs and γp
in equations (1) and (3) as wave-number dependent. For the two

sub-systems, the modal force term in (9) is

F̄s,l(t)=

∫ Ls

0

vs,l(z)
[

ψc(z)F1(t) + ψx(z)Fx(t) + ψd(z)Fd(t)
]

dz

= gs,lF1(t) + gx,lFx(t) + gd,lFd(t), (13)

F̄p,l(t)=−

∫ Lx

0

∫ Ly

0

vp,l(x, y)ψ(x, y)F2(t)dydx

= −gp,lF2(t), (14)

where (for κ = e, d)

gs,l = vs,l(zc), gκ,l = vs,l(zκ), gp,l = vp,l(xc, yc). (15)

For audio output, the plate momenta are modally expanded as

pa,k = ρphp

Mp
∑

l=1

ga,k,l
∂ūp,l

∂t
, (16)

where ga,k,l = vp,l(xa,k, ya,k) and Mp =MxMy .

3. NUMERICAL FORMULATION

3.1. Discretisation in Time

The differential equations (9) and (2) are first re-written in first-

order form:

∂ūs,l

∂t
=
p̄s,l
ms

,
∂p̄s,l
∂t

= −ks,lūs,l − rs,l
∂ūs,l

∂t

+ gs,lF1 + gx,lFx + gd,lFd, (17)

∂ub

∂t
=

pb
mb

,
∂pb
∂t

= −rb
∂ub

∂t
− F1 + F2 + Fb, (18)

∂ūp,l

∂t
=
p̄p,l
mp

,
∂p̄p,l
∂t

= −kp,lūp,l − rp,l
∂ūp,l

∂t
− gp,lF2, (19)

where pκ denotes momentum. Gridding time as un =
∧

u(n∆t), the

following sum and difference operators

µu = un+1 + un, δu = un+1 − un, (20)

are then employed to discretise these equations at t = (n+1
2
)∆t,

which (with F
n+1

2
x = 1

2
µFx, F

n+1
2

b = 1
2
µFb) yields

δūs,l

∆t

=
µp̄s,l
2ms

,
δp̄s,l
∆t

= −k∗s,l
µūs,l

2
− r∗s,l

δūs,l

∆t

+ g∗s,lF
n+1

2
1 + g∗x,lF

n+1
2

x + g∗d,lF
n+1

2

d ,
(21)

δub

∆t

=
µpb
2mb

,
δpb
∆t

= −rb
δub

∆t

− F
n+1

2
1 + F

n+1
2

2 + F
n+1

2

b ,

(22)

δūp,l

∆t

=
µp̄p,l
2mp

,
δp̄p,l
∆t

= −k∗p,l
µūp,l

2
− r∗p,l

δūp,l

∆t

− g∗p,lF
n+1

2
2 .

(23)

The damper and spring connection forces (ℓ = 1, 2) are discretised

as

F
n+1

2

d = −rd
δud

∆t

, F
n+1

2

ℓ = kL
µuℓ

2
+
δVℓ

δuℓ

, (24)

the latter utilising the nonlinear spring element potentials

Vℓ(uℓ) =

(

k+ℓ
α+ 1

)

⌊uℓ⌋
α+1 +

(

k−ℓ
α+ 1

)

⌊−uℓ⌋
α+1. (25)

Note that in (21) and (23) the modal elasticity and damping con-

stants of the string and plate have been substituted as follows:

kκ,l → k∗κ,l =
4mκa

∗
κ,l

∆2
t

, rκ,l → r∗κ,l =
2mκb

∗
κ,l

∆t

. (26)

where, with Rκ,l = exp(−ζκ,l∆t) and Ωκ,l = cos(ωκ,l∆t),

a∗κ,l =
1− 2Rκ,lΩκ,l +R2

κ,l

1 + 2Rκ,lΩκ,l +R2
κ,l

, b∗κ,l =
2
(

1−R2
κ,l

)

1 + 2Rκ,lΩκ,l +R2
κ,l

.

(27)

As explained in previous work [12], this eliminates numerical dis-

persion and attenuation at the sub-system resonance frequencies.

In addition, each modal weight gκ,l (κ = x, s, p) has been substi-

tuted in (21-23) with g∗κ,l =Wr(
1
2
ωκ,l/π) gκ,l, where

Wr(f) =







1 : f < fr
(fn − f)/(fn − fr) : fr ≤ f < fn

0 : f ≥ fn

(28)

is a frequency window in which fn = 1
2
∆−1

t is the Nyquist fre-

quency and fr < fn is the highest mode frequency to be rendered

in full amplitude. This allows variation of system parameters over

time without mode aliasing and - control rate permitting - without

causing significant discontinuities in the output sigal. For audio

rates of 44.1 kHz or higher, a sensible choice is to set fr = 20
kHz.

3.2. A Vector-Matrix Update Form

Stacking all modal states of the string and plate in column vectors

(ūn
s , q̄n

s ) and (ūn
p , q̄n

p ), the system modal state vectors can be

defined as

ū
n = [(ūn

s )
T, ub, (ū

n
p)

T]T, q̄
n = [(q̄n

s )
T, qb, (q̄

n
p)

T]T, (29)

where q̄κ,l = (∆t/(2mκ))p̄κ,l is a convenient change of variable.

The complete discrete-time system can then be written

δū = µq̄, (30)

δq̄ = − (Aµ+Bδ) ū+Ξ

(

GcF
n+1

2 +GeF
n+1

2
e +GdF

n+1
2

d

)

,

(31)

where Fn+1
2 = [F

n+1
2

1 F
n+1

2
2 ]T and F

n+1
2

e = [F
n+1

2
x F

n+1
2

b ]T are

force vectors and where the matrices

A =





As 0s 0sp

0 0 0
0ps 0p Ap



 , B =





Bs 0s 0sp

0 bb 0
0ps 0p Bp



 ,

(32)

contain submatrices Aκ and Bκ that are Mκ ×Mκ diagonal ma-

trices with diagonal elements Aκ,l,l = a∗κ,l and Bκ,l,l = b∗κ,l,
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respectively, and with bb = (rb∆t)/(2mb). The other matrices

in (31) are

Gc =





gs 0s

−1 1
0p −gp



 , Ge =





gx 0s

0 1
0p 0p



 ,

Gd =





gd

0
0p



 , Ξ =





ξsIs 0s 0sp

0 ξb 0
0ps 0p ξpIp



 , (33)

where matrices Gc,e,d feature modal column vectors gκ which

have Mκ elements defined by (15), ξκ = ∆2
t/(2mκ), and where

Iκ are Mκ ×Mκ identity matrices. By setting s̄ = δū = µq̄ from

(30), equation (31) can be reworked into

s̄ = ē+HcF
n+1

2 +HdF
n+1

2

d , (34)

where

ē = 2C (q̄n −Aū
n) +HeF

n+1
2

e , (35)

and

Hc =





hs 0s

−ξb ξb
0p −hp



 , He =





hx 0s

0 ξb
0p 0p



 ,

Hd =





hd

0
0p



 , C =





Cs 0s 0sp

0 (1 + bb)
−1 0

0ps 0p Cp



 , (36)

with, for κ = s, p, we have Cκ = (Iκ +Aκ +Bκ)
−1

, and

hs=ξsCsgs, hp=ξpCpgp, hd=ξsCsgd, hx=ξsCsgx,
(37)

Once known, the step vector s̄ is employed to update the modal

states with

ū
n+1 = s̄+ ū

n, q̄
n+1 = s̄− q̄

n, (38)

after which the audio output signal vector can be computed as

p
n
a = Waq

n
p , (39)

where Wa = (2mp)∆
−1
t [ga,1,ga,2, · · ·ga,K ]T and where ga,k

is the plate modal column vector for the pickup position (xa,k, ya,k).

Note that all of the M ×M matrices (A,B, C and Ξ) featured

above , with M = Ms +Mp + 1, are diagonal, and as such can

be replaced with M × 1 vectors, with the calculation in (35) being

achieved using elementwise vector multiplication.

3.3. Solving for the Step Vector

To find a way to compute the step vector s̄, we first eliminate the

damper force from the system. From (24), one may write

F
n+1

2

d = −rd∆
−1
t sd, (40)

where sd = δud, which (from multiplying (34) with GT

d) also

equals

sd = G
T

d

(

ē+HcF
n+1

2

)

+G
T

dHdF
n+1

2

d . (41)

Eliminating both sd and F
n+1

2

d then allows re-writing (34) as

s̄ = w̄ +ΦcF
n+1

2 , (42)

where w̄ = ē − θdHdG
T

dē and Φc = Hc − θdHdG
T

dHc, with

θd = rd/(rdG
T

dHd + ∆t). Next, the modal coordinate equa-

tion (42) is transformed into an equation in the spring connection

coordinates by pre-multiplying (42) with −GT

c , which gives

MF
n+1

2 = w − s, (43)

where w = −GT

cw̄, s = δu (with un = [un
1 , u

n
2 ]

T), and

M = G
T

cΦc =

[

(ξb + φs) −ξb
−ξb (ξb + φp)

]

, (44)

with φs = gTshs−θdg
T

shdg
T

dhs and φp = gTphp. From the second

equation in (24), one may write

F
n+1

2 = λ(s) + kL

(

1

2
s+ u

n

)

, (45)

where λ(s) = [λ1(s1), λ2(s2)]
T with, for ℓ = 1, 2

λℓ(sℓ) =
Vℓ(sℓ + un

ℓ )− Vℓ(u
n
ℓ )

sℓ
. (46)

After substituting (45) into (43), a system of two coupled nonlinear

simultaneous equations is obtained:

Mλ(s) +

(

I+
1

2
kLM

)

s+ ι = 0, (47)

where ι = kLMun − w. These can be solved iteratively using

Newton’s method. Once s is solved, the spring forces are updated

from (43), after which the step vector s̄ is calculated with (42).

Besides updating the states with (38) and the output with (39), it

is also required that the connection displacement vector is updated

as un+1 = s+ un.

3.4. Uniqueness and Convergence

Defining λ′
ℓ = ∂λℓ

∂sℓ
≥ 0, the Jacobian to be used for solving (47)

is

J =





1+
(

ξb+φs

)(

λ′
1+

kL

2

)

−ξb
(

λ′
2 +

kL

2

)

−ξbλ
′
1 +

(

kL

2

)

1+
(

ξb+φp

)(

λ′
2+

kL

2

)





(48)

which is clearly positive definite for any positive bridge mass (mean-

ing ξb is finite), hence (47) has a unique root s∗. J is also a so-

called M-matrix, which is a condition for global convergence [15].

From the fact that λℓ(sℓ) has a single inflection point (i.e. con-

cave for sℓ < 0 and convex for sℓ > 0), it then follows that there

is guaranteed monotic convergence from any s for which each of

the elements sℓ has the same sign as the corresponding element

of the actual root and satisfies |sℓ| ≥ |s∗ℓ | (see [15], p. 112-113).

Empirically observing that the solver generally reaches this condi-

tion from any starting position then suggests global convergence.

Such robustness indeed appears to hold, as extensive testing with

randomised starting points has indicated that the solver generally

converges (no cases of non-convergence observed for the tested

parameters sets).

What is, however, not guaranteed without any further condi-

tions is that the iterative solver converges within a fixed number of

iterations. The iteration count in fact depends not only on the ini-

tial guess, but also on the driving signal amplitude and all system

parameters. A practical way to try and keep the iteration count un-

der control is by empirically setting constraints on the parameters

(see Table 1) and applying a limiter on the input signal.
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3.5. Stability

The system energy at time instant t = n∆t is the sum of the modal

energies of the string and plate plus the kinetic energy of the bridge

mass and the potential energies in the linear and nonlinear spring

elements:

Hn =

Ms
∑

l=1

[

(p̄ns,l)
2

2ms
+
k∗s,l(ū

n
s,l)

2

2

]

+

Mp
∑

l=1

[

(p̄ns,l)
2

2mp
+
k∗p,l(ū

n
s,l)

2

2

]

+
(p̄nb)

2

2mb
+
kL
2

(

u2
1 + u2

2

)

+ V1(u
n
1 ) + V2(u

n
2 ). (49)

Given that all the individual terms in (49) are non-negative, it fol-

lows that Hn ≥ 0. In vector-matrix form, Hn can be written

Hn = (q̄n)TΞ
−1
q̄
n+(ūn)TΞ

−1
Aū

n+
kL
2
‖un‖2+‖V(un)‖1.

(50)

A numerical power balance that holds under time-invariant param-

eters is obtained by first pre-multiplying (31) with Ξ
−1

and, sub-

squently, the left-hand side with (µq)T and the right-hand side by

(δu)T, which yields

δH

∆t

=
Hn+1 −Hn

∆t

= Pn+1
2 −Qn+1

2 , (51)

where Pn+1
2 = 1

2
∆−1

t GT

e δū F
n+1

2
e is the input power and

Qn+1
2 =

(δū)TΞ
−1
Bδū

∆t

+ rb
(δu)Tδu

∆2
t

+ rd
(δud)

2

∆2
t

≥ 0 (52)

is the dissipated power. Hence in the absence of input power, the

system energy cannot grow. The fact that all terms in (50) are

non-negative and either quadratic or monotone functions of one of

the variables implies bounds on un and qn, confirming numeri-

cal stability with no further conditions on the temporal step ∆t.

The above power balance does not hold under time variation of

the system parameters. Hence under continuous parameter update,

energy growth can potentially occur if the power injected by such

variation outstrips the dissipation; our observations in off-line ex-

periments are that this occurs only when parameters are varied at

rates much higher than required for parametric control. A more

thorny issue potentially arises when, during real-time operation,

the iteration count spikes due to fast parameter sweeps. This may

lead to (47) not being solved to high accuracy for a number of time

instants, which in turn can cause violations of the power balance.

The associated instability risk is currently managed in ad-hoc fash-

ion by empirically constraining the rate at which parameters are

varied (employing low-pass filtering at control rate of all the pa-

rameter signals).

4. PARAMETER SPACE EXPLORATION

4.1. Control Parameters

Exposing the user to the full set of parameters featuring in (1-3)

makes it unnecessarily difficult to learn navigating the parameter

space because of parameter redundancy. Without loss of general-

ity, the parameter set is therefore reduced here by constraining the

length parameters to Ls = LxLy = 1 and fixing the string mass

per unity length at ρsAs = 0.001kg/m. The following parameters

Table 1: Tunable parameters, the constraints imposed upon them

for real-time operation, and example values.

Fig. 4 Fig. 5 Fig. 6

STRING

fundam. freq. [Hz] 0 < f̃s < π
∆t

100 47.3 80

inharmonicity coeff. 0 ≤ Bs 10
−5

10
−5

10
−5

damping [s−1] 0 ≤ σs,0 1 2 0.5

damping [m/s] 0 ≤ σs,1 10
−3

4·10−4
10

−2

damping [m3/s] 0 ≤ σs,3 10
−5

4·10−6
10

−4

damper [s−1] 0 ≤ σd 500 0 0

connection position 0 < z′c < 1 0.87 0.93 0.98
damper position 0 < z′d < 1 0.99 0.99 0.99
excitation position 0 < z′x < 1 0.07 0.5 0.5

BRIDGE

modal mass ratio 10
−4 < Rbs 6

∣

∣0.6 10
−4

1

damping [s−1] 0 ≤ ζb 1 2 10
−2

stiffness 0 ≤ kb ≤ 10
6

10
5

10
5

10
6

nonlinearity 0 ≤ η ≤ 1 0 0
∣

∣1 1

nonlinear exponent 1 ≤ α ≤ 3 1 3 1.1

gravity [m/s2] |gb| ≤ 10 0 0 −0.5

spring push level 0 ≤ G+
1 ≤ 1 1 1 1

spring pull level 0 ≤ G−

1 ≤ 1 1 1 0

spring push level 0 ≤ G+
2 ≤ 1 1 1 1

spring pull level 0 ≤ G−

2 ≤ 1 1 1 0

PLATE

fundam. freq. [Hz] 0 < f̃p < π
∆t

17.7 50 30

dimensional ratio 0 < Rxy 0.89 0.98 0.77
modal mass ratio 0 < Rps 10 1 10

damping [s−1] 0 ≤ σp,0 20 2 4

damping [m/s] 0 ≤ σp,1 10
−4

4·10−4
10

−2

damping [m3/s] 0 ≤ σp,3 10
−6

4·10−6
10

−4

connection position 0 < x′
c < 1 0.61 0.17 0.61

connection position 0 < y′c < 1 0.50 0.11 0.43
pickup position 0 < x′

a,k < 1 0.13 0.13 0.13

pickup position 0 < y′a,k < 1 0.93 0.93 0.93

are then introduced with the aim of enabling intuitive control of

the string, bridge, and plate characteristics:

f̃s = fs,1 =
1

2

√

(

EsIs
ρsAs

)

π2 +

(

Ts

ρsAs

)

, (53)

Bs = π2EsIs
Ts

, ζd =
rd
2ms

, z′κ = zκ (κ = x, c, d), (54)

Rbs =
mb

ms
, ζb =

rb
2mb

, Rps =
mp

ms
, Rxy =

Lx

Ly

, (55)

f̃p = fp,1,1 =
1

2

√

Gpπ2

ρphp

(

L−2
x + L−2

y

)

, (56)

x′c =
xc
Lx

, y′c =
yc
Ly

, x′a,k =
xa,k
Lx

, y′a,k =
ya,k
Ly

. (57)

Furthermore, the connection spring stiffness constants in (4) are

parameterised as follows:

kL = (1− η)kb, k±ℓ = η kbG
±

ℓ · 104(α−1), (58)

where kb is an overall bridge stiffness parameter, 0 ≤ G±

ℓ ≤ 1 set

the relative push and pulling levels of the spring and 0 ≤ η ≤ 1
gives control over the level of nonlinear behaviour. The formula-

tion in (58) helps ensuring, in combination with the constraints im-

posed on the parameters, that the overall stiffness does not exceed
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Figure 4: Example of linear coupling between the string, bridge

and plate (see Table 1 for the model parameters). (a): large bridge

mass (Rbs = 6). (b): small bridge mass (Rbs = 0.6). (c): cor-

responding magnitude spectra. The upper curve (Rbs = 0.6) is

offset by 50dB for clarity. The vertical dotted lines indicate the

positions of the string mode frequencies.

certain levels which would cause an excessive amount of iterations

to be completed by the iterative solver. Finally, the external bridge

force is recast here as a gravitational force Fb(t) = gbmb, where

gb is a gravitational acceleration value that can be varied at control

rate by the user. A full list of tunable parameters is shown in Table

1, including the applied value constraints.

4.2. Numerical Experiments

The simplest configuration of the bridge is to use strictly linear

spring connections (i.e. η = 0). The plots in Fig. 4 show signals

and magnitude spectra of such a case when driving the string with

a short smooth pulse. With a relative large bridge mass (setting

Rbs = 6), strong standing waves develop in the string, and the

transfer of energy is largely uni-directional, i.e. from the string to

the plate, much in the way conventional string instruments oper-

ate. As can be seen in the corresponding spectrum (lower curve

in Fig. 4(c)), the output also exhibits plate modes, which are more

damped than the string resonances. Setting the bridge mass to a

smaller value (Rbs = 0.6) leads to increased coupling between

the plate and the string, and the system energy is then dissipated

more quickly (see Fig. 4(b)), yielding an output in which the string

modes are less dominant over the plate modes (see upper curve of

Fig. 4(c)).

The notion of effecting strong string-plate coupling can be

taken to its extreme by setting Rbs to a negligibly small value and

Rps to unity, while using similar damping values for the plate and

string. The coupling is now very much bi-directional, and any

standing waves on the string no longer correspond to the string

eigenmodes. Although different than that of the modelled plate,

the distribution of system modes across the frequency axis is nev-

ertheless similar to that of a plate, so the perceived sound output

is plate-like. Hence in this configuration, the string is effectively

merely a mechanical interface to a plate-like instrument. An in-

teresting feature to explore with this type of connection is to intro-

duce nonlinear behaviour by varying the η parameter. Fig. 5 shows

the spectrograms resulting for η = 0 (linear springs) and η = 1

Figure 5: Example of plate-like sounds via strong string-plate cou-

pling (see Table 1 for the model parameters). Left: plate momen-

tum spectrogram for η = 0. Right: plate momentum spectrogram

for η = 1.
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Figure 6: Example of a rattling bridge (see Table 1 for the model

parameters). Top: string excitation force signal. Middle: plate

momentum monitored at the pick-up position. Bottom: displace-

ment at the connection point of the string, plate, and bridge mass.

(fully nonlinear springs), with α = 3. As can be seen, the second

case exhibits quick growth of densely spaced high-frequency par-

tials, indicating strong nonlinear inter-mode coupling, and yielding

a somewhat cymbal-like sound output.

An altogether different type of nonlinear behaviour is explored

when imparting asymmetries in either or both of the spring con-

nections, which introduces rattling effects. For example, setting

G−

1 = G−

2 = 0 and G+
1 = G+

2 = 1 amounts to a bridge that

is in contact with the plate and the string at equilibrium but that

- in the absence of forces that pull it back to either object when

it moves away from them - is free to rattle during vibration. Spe-

cial effects are obtained when letting the string vibrate at a low

frequency, as such enabling the generation of slowly evolving rat-

tling patterns which partly play out at sub-sonic rates. An example

case is demonstrated in Fig. 6, with the lower plot showing the

complex motion of the bridge mass and its impactive interaction
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// initialise output value with zero

pa = 0;

// loop over plate modes, index starts at Ms+1

for (int i = 0; i < Mp; i++) {

pa += *(wa + i) * *(q_modes + Ms + 1 + i);

}

Figure 7: C++ code for implementing (39) for a single output.

// initialise __mm256 block with zeros

block = _mm256_set_pd(0, 0, 0, 0);

// loop over plate modes, sum blocks of four

for (int i = 0; i < Mp; i += 4) {

block = _mm256_fmadd_pd(_mm256_load_pd(&wa[i]),

_mm256_load_pd(&q_modes[Ms+1+i]), block);

}

// store final block results and sum over them

temp = _mm256_store_pd(block);

pa = temp[0] + temp[1] + temp[2] + temp[3];

Figure 8: AVX code for implementing (39) for a single output.

with the string and plate, in response to a short windowed 40 Hz

sine wave. For the chosen parameters (including gravity), the re-

sulting sound is somewhat reminiscent of a snare drum roll. More

generally, this type of configuration produces rattling and buzzing

patterns of a semi-chaotic nature. Sound examples of all three of

the above cases are available on the companion website1 alongside

various further explorative sounds and supporting material.

4.3. Real-Time Implementation

For real-time rendering, the system was built in Audio Unit plug-

in architecture, coding in C++ within the JUCE framework [16].

JUCE yields executable code within a standard plug-in API pro-

vided by Core Audio, and supports a host of plugin formats. In

order to increase the number of modes that can be run in real-time,

a second version of the code uses Advanced Vector Extensions

(AVX) for the parts of the code that loop over Ms string modes

or Mp plate modes. This allows performing arithmetic operations

over multiple variables simultaneously; for double precision on

standard processors, most of which currently use 256 bit registers,

this means the code can operate on four modes at a time. To ex-

emplify the coding difference, Figs. 7 and 8 show the instructions

used in C++ and in AVX, respectively, for implementing the ma-

trix operation in (39) when running the system with a single audio

output. The iterative solver, which does not permit similar paral-

lelisation, takes upto about 5% of the computation when the exit

condition chosen as ||sj+1 − sj || < 10−15, where j indicates the

iteration.

The run-time computations also include re-calculation of sys-

tem coefficients, such as the non-zero elements of A, C, hc, and

hx, according to parameter changes made by the user at regular in-

tervals. The shorter the audio buffer size, the faster the parameters

can be varied by the user without significant artefacts, but the more

this adds to the overall load. Table 2 lists the results of testing the

number of modes that each code version can render in real-time

without underflow when fixing the ratio between the number of

string and plate modes as Mp ≈ 4Ms, for different buffer sizes.

Both codes were compiled with optimisation level -O3 and using

AVX2. The first row shows the maximum number of modes when

not performing any parameter updates during runtime. Similar to

1http://www.socasites.qub.ac.uk/mvanwalstijn/

dafx17a/

Table 2: Maximum number of system modes (M =Mp+Ms+1)

for the plugin running at 44.1 kHz when choosing Mp ≈ 4Ms.

audio buffer length
C++ C++ with AVX

(samples)

no updates 3207 7037

512 2930 6505

256 2637 5925

128 2476 5253

64 2171 4571

the findings by Webb and Bilbao [8] for a finite difference based

system, the AVX instructions accelerate the computations by about

a factor two for double-precision floating point. The viability of

single-precision AVX acceleration (which can be expected to pro-

vide a 4 times speed up, but may introduce round-off noise) is

currently being investigated. Note that for both the C++ and the

C++ with AVX code, the parameter updates were written entirely

in C++. Further investigation could establish whether this part of

the code can also be optimised by replacing C++ code with AVX

instructions.

A relatively large number of string modes is chosen here be-

cause this enables interesting coupling phenomena. Experiments

have indicated that a total of 5000 system modes is sufficient to

generate a musically appropriate range of plate and string sizes

(indeed, each of the sound examples available on the companion

webpage were generated with this number of system modes). For

a 44.1 kHz sample rate, this means that the mode series of larger

plates is truncated before Nyquist, but - as reported in [11] - the re-

sulting loss of high-frequency detail is not necessarily perceptually

significant.

4.4. Control Interface

To facilitate ergonomic real-time control, each of the parameters

is knob-controlled using a Knobbee board [17], which supports

OSC messages at 10 bit resolution. Besides navigating the param-

eter space in search of interesting sounds, the user can employ the

board to make gestures via parameter changes, many of which are

not possible or difficult to achieve with a real-world counterpart

of the model. The string can be excited either using a pre-stored

signal or more interactively, using a silent string controller object

based on the design proposed in [18]. Elsewhere [19] we report

preliminary findings regarding the artistic use of these control in-

terfaces with an earlier, simpler, bridge-less version of the model.

5. CONCLUSIONS AND PERSPECTIVES

The string-bridge-plate model does not enable faithful emulation

of any existing musical instrument; instead, it offers synthesis of

a range of sounds of an inherently mechano-acoustic nature. The

novelty resides mainly in the design of the bridge, which incor-

porates parametrically detachable nonlinear spring connections on

either side of the bridge mass; this is modelled numerically in a

way that allows real-time simulation of the complex, semi-chaotic

rattling and buzzing that entails when reconfiguring these connec-

tions on the fly. The realisation of this design extends on what ex-

isting real-time physical model implementations and environments

currently offer in terms of contact dynamics. Further versatility

derives from the ability to generate sounds with harmonic (string-
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like) as well as inharmonic (plate- or beam-like) spectra and from

the control over the level of inter-object coupling through adjusting

the modal mass values.

The tunability of the parameters indirectly relies on the modal

expansion approach, which - as explained in § 3.1 - enables elim-

inating the dispersion and attenutation errors inherent to the un-

conditionally stable numerical scheme. The modal form has fur-

ther beneficial features, in that (a) it facilitates direct control of

frequency-dependent damping, (b) the algorithmic efficiency is

greatly helped by the sparsity of the matrices Gκ and Hκ and

the diagonality of matrices A and C, which is systematically ex-

ploited in our implementations of the system, and (c) the number

of degrees of freedom (in the present model, the number of modes)

can be reduced without affecting the audio bandwidth or introduc-

ing numerical dispersion, making the model’s computational load

easily scalable to the available processing power (though high-

frequency detail is lost for larger strings and plates).

There are, however, also limitations to consider. Firstly, a rel-

ative large number of system coefficients needs to be regularly up-

dated (compared to, e.g., finite difference schemes). Secondly, the

parameter update remains simple and efficient only for objects for

which the modal expansion is available in closed-form (e.g. a can-

tilever beam or a circular membrane), hence extending to more

complex and varied boundary conditions is not straightforward.

Thirdly, inputs, outputs, and connections are relatively expensive

within a modal framework, due to the dot products required to

translate between modal and spatial coordinates. The latter is of

particular relevance if the generalised form of eqs. (30, 31) were

to be taken as the basis for a modular environment.

It is also worthwhile briefly reflecting on the use of a New-

ton solver in simulating a system featuring multiple nonlinearities,

which can present significant challenges, especially when non-

smooth forces are involved. As discussed in § 3.4, the form of

the nonlinear equation arising in the proposed model has the ben-

efit of global convergence to a unique solution, while placing con-

straints on the system parameters provides an empirical handle on

the iteration count; a useful addition would be to establish a theo-

retical iteration bound. Altogether this approach goes a long way

towards ensuring computational robustness, which is paramount

in a real-time synthesis context. Even better robustness would re-

quire either an explicit scheme, which - as far as the authors are

aware - does not exist in provably stable form for the problem at

hand, or an analytically solvable implicit form. The latter does not

seem forthcoming either, but does exist for certain simplifications

of (4). Further variations, possibly in combination with different

discretisation choices, may offer different trade-offs than the ones

made in the present study (e.g. sacrificing full tunablity for higher

efficiency), and as such are very much worth exploring.

The properties of the string-bridge-plate model are well aligned

with design and control tasks, both of which can be performed

through navigation of a continuous parameter space in real-time.

As such, it offers new opportunities for creative application and

control, with potential use in music performance and live impro-

visation. Hence a natural way forward with research on this topic

is to investigate possible extensions, improvements, and variations

of the model and its implementation in tandem with developing

(and experimenting with) dedicated control interfaces, conducted

in close collaboration with performers. The first live performance

featuring the string-bridge-plate instrument took place at NIME

2017 [20].
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