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ABSTRACT

This paper proposes an image-guided HRTF selection procedure

that exploits the relation between features of the pinna shape and

HRTF notches. Using a 2D image of a subject’s pinna, the pro-

cedure selects from a database the HRTF set that best fits the an-

thropometry of that subject. The proposed procedure is designed

to be quickly applied and easy to use for a user without previ-

ous knowledge on binaural audio technologies. The entire pro-

cess is evaluated by means of an auditory model for sound lo-

calization in the mid-sagittal plane available from previous liter-

ature. Using virtual subjects from a HRTF database, a virtual ex-

periment is implemented to assess the vertical localization perfor-

mance of the database subjects when they are provided with HRTF

sets selected by the proposed procedure. Results report a statisti-

cally significant improvement in predictions of localization perfor-

mance for selected HRTFs compared to KEMAR HRTF which is

a commercial standard in many binaural audio solutions; more-

over, the proposed analysis provides useful indications to refine

the perceptually-motivated metrics that guides the selection.

1. INTRODUCTION

Our auditory system continuously captures everyday acoustic sce-

nes and acquires spatial information by processing temporal and

spectral features of sound sources related to both the environment

and the listener himself. Knowledge of such a complex process is

needed in order to develop accurate and realistic artificial sound

spatialization in several application domains, including music lis-

tening, entertainment (e.g. gaming), immersive virtual reality, sen-

sory substitution devices (e.g. for visually-impaired users), tele-

operation, tele-conferencing, and so on [1].

Many of the above mentioned scenarios require spatial sound

to be delivered through headphones. This usually involves the use

of binaural room impulse responses (BRIRs), which are the com-

bination of two components: the room impulse response (RIR),

and the head-related impulse response (HRIR), which accounts

for the acoustic transformations produced by the listener’s head,

pinna, torso and shoulders. Having a set of HRIRs (or Head-

Related Transfers Functions - HRTFs, their Laplace transforms)

measured over a discrete set of spatial locations allows to spatially

render a dry sound by convolving it with the desired HRIR pair.

Moving sound sources can also be rendered by suitably interpolat-

ing spatially neighboring HRIRs.

The ability to localize sound sources is important in several

everyday activities. Accordingly, localization accuracy is a rele-

vant auditory quality even in Virtual Auditory Displays (VADs) [2].

This paper deals in particular with elevation localization cues, which

are mainly provided by monaural spectral features of the HRTF.

Specifically, the scattering of acoustic waves in the proximity of

the pinna creates a complex and individual topography of pressure

nodes which is not completely understood [3, 4], and results in

elevation- and listener-dependent peaks and notches that appear in

the HRTF spectrum in the range [3, 16] kHz. This monaural infor-

mation complements binaural cues such as interaural time differ-

ence (ITD) and interaural level difference (ILD), which are mainly

related to localization in the horizontal plane and are almost con-

stants with varying elevations.

Individual anthropometric features of the human body have a

key role in shaping individual HRTFs (see the discussion in Sec. 2

below). This paper proposes an image-guided HRTF selection

technique that builds on previous work on the relation between

features of the pinna shape and HRTF notches [5]. Using a 2D

image of a subject’s pinna, the procedure selects from a database

the HRTF set that best fits the anthropometry of that subject. One

of the challenging issues with this approach is the trade off be-

tween handiness of pinna feature acquisition and localization per-

formance in elevation; since the procedure in [5] relied on ex-

pert operators for the extraction of anthropometric information,

this work provides an easy to use tool for a user without previous

knowledge on pinna acoustics and spatial hearing.

Auditory localization performance with HRTF sets is usually

assessed through psychoacustic experiments with human subjects.

However, an attractive alternative approach consists in using com-

putational auditory models able to simulate the human auditory

system. If the auditory model is well calibrated to the reality, a

perceptual metric can be developed to predict the perceptual per-

formance of a VAD. The proposed HRTF selection procedure is

here validated on subjects from the CIPIC subjects [6] for whom

HRTFs and side-pictures of the pinna are available. The appli-

cability of the proposed notch distance metric are also discussed

in terms of individual HRTF identification from images. Perfor-

mances in elevation perception are evaluated by means of an au-

ditory model for sound localization in the mid-sagittal plane [7]

(i.e., the vertical plane dividing the listener’s head in left and right

halves) provided by the Auditory Modeling Toolbox1. Using vir-

tual subjects from the CIPIC database, we present a virtual exper-

iment that assesses the vertical localization performance of CIPIC

subjects when they are provided with HRTF sets selected by the

proposed procedure.

2. RELATED WORKS

One of the main limitations of binaural audio technologies for

commercial use is the hard work behind the creation of the in-

1http://amtoolbox.sourceforge.net/
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dividual HRTFs that capture all of the physical effects creating a

personal perception of immersive audio. The measurement of a lis-

tener’s own HRTFs in all directions requires a special measuring

apparatus and a long measurement time, often a too heavy task to

perform for each subject involved in every-day application. That

is the main reason why alternative ways are preferred to provide

HRTFs giving to listeners a personalized, but not individually cre-

ated, HRTF set: a trade off between quality and cost of the acoustic

data for audio rendering [8, 9].

2.1. Individual / Own HRTFs

The standard setup for individual HRTF measurement is in an ane-

choic chamber with a set of loudspeakers mounted on a geodesic

sphere (with a radius of at least one meter in order to avoid near-

field effects) at fixed intervals in azimuth and elevation. The lis-

tener, seated in the center of the sphere, has microphones in his/her

ears. After subject preparation, HRIRs are measured playing ana-

lytic signals and recording responses collected at the ears for each

loudspeaker position in space (see [9] for a systematic review on

this topic).

The main goal is to extract the set of HRTFs for every listener

thus providing him/her the individual/own transfer function. In ad-

dition to the above mentioned high demanding requirements (time

and equipment), there are some other critical aspects in HRTF

measurements; listener’s pose is usually limited to a few posi-

tions (standing or sitting), relatively few specific locations around

his/her body, and own intrinsic characterization without consider-

ing that pinna shape is one of the human body part that always

grows during lifetime [10]. Moreover, repeatability of HRTF mea-

surements are still a delicate issue [11].

2.2. Personalized / Generalized HRTFs

The personalized HRTFs are chosen among available HRTFs of a

dataset instead of doing individual measurements. This procedure

is based on a match between external subjects (the one without

individual HRTFs) and internal, i.e. belonging to a database, sub-

jects with already stored information (both acoustics and anthro-

pometry) . The most interesting and important part, is the method

of how is selected a specific set of HRTFs to an external subject.

Researchers are finding different ways to deal with this issue and

there are a variety of alternatives using common hardware and/or

software tools. The main benefit of this approach is that a user

can be guided to a self selection of their best HRTF set without

needing a special equipment or knowledge. It has to be noted that

the personalized HRTF can not guarantee the same performance as

their own HRTF but they usually provide better performance than

the generic dummy-head HRTFs such those of Knowles Electronic

Manikin for Acoustic Research (KEMAR) [12].

In the following, we summarize three main approaches to HRTF

selection.

• DOMISO[13]2

In this technique, subjects can choose their most suitable

HRTFs from among many, taken from a database follow-

ing tournament-style listening tests. The database (corpus)

is built using different subjects, storing 120 sets of HRTFs,

one set per listener.

2DOMISO: Determination method of OptimuM Impulse-response by
Sound Orientation

Performances of this technique were evaluated by Yukio

Iwaya that proved that the personalized DOMISO HRTFs

results were similar to individualized HRTFs ones but very

different from the away condition (totally random HRTF,

that could not win the tournament).

• Two steps selection[14, 15]

This is a technique based on two different steps. Usually

the first step selects one subset from a complete initial pool

of HRTF sets, removing worse HRTFs from a perceptual

point of view. The second step refines the selection in or-

der to obtain the best match among generic HRTFs of a

dataset which is reduced in size compared to the complete

database.

• Matching anthropometric ear parameters[16, 17]

This method is based on finding the best match HRTF in the

anthropometric domain, matching the external ear shape of

a subject using anthropometric measurements available in

the database.3

3. IMAGE-GUIDED HRTF SELECTION

Another approach to HRTF selection problem consists in mapping

anthropometric features into the HRTF domain, following a ray-

tracing modeling of pinna acoustics [18, 19]. The main idea is to

draw pinna contours on a image. Distances from the ear canal

entrance define reflections on pinna borders generating spectral

notches in the HRTF. Accordingly, one can use such anthropomet-

ric distances and corresponding notch parameters to choose the

best match among a pool of available HRTFs [5].

3.1. Notch distance metrics

The extraction of HRTFs using reflections and contours is based on

an approximate description of the acoustical effects or the pinna on

incoming sounds. In particular, the distance dc between a reflec-

tion point on the pinna and the entrance of the ear canal (the “focus

point” hereafter) is given by:

dc(φ) =
ctd(φ)

2
, (1)

where td(φ) is elevation-dependent temporal delay between the

direct and the reflected wave and c is the speed of sound.

The corresponding notch frequency depends on the sign of the

reflection. Assuming the reflection coefficient to be positive, a

notch is created at all frequencies such that the phase difference

between the reflected and the direct wave is equal to π:

fn(φ) =
2n+ 1

2td(φ)
=

c(2n+ 1)

4dc(φ)
, (2)

where n ∈ N. Thus, the first notch frequency is found when n =
0, giving the following result:

f0(φ) =
c

4dc(φ)
. (3)

In fact, a previous study [19] on the CIPIC database [6] proved

that almost 80% of the subjects in the database exhibit a clear neg-

ative reflection in their HRIRs. Under this assumption, notches are

3see section 3.2 for further details.
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found at full-wavelength delays, resulting in the following equa-

tion:

fn(φ) =
n+ 1

td(φ)
=

c(n+ 1)

2dc(φ)
, (4)

where n ∈ N and

f0(φ) =
c

2dc(φ)
. (5)

In particular it has been shown [5] that the first and most promi-

nent notch in the HRTF is typically associated to the most external

pinna contour on the helix border (the “C1” contour hereafter).

Now, assume that N estimates of the C1 contour and K esti-

mates of the focus point have been traces on a 2D picture of the

pinna of a subject (the meaning of N and K is explained later in

Sec. 3.2). We define the basic notch distance metric in the form of

a mismatch function between the corresponding notch frequencies,

and the notch frequencies of a HRTF:

m(k,n) =
1

Nϕ

∑

ϕ

|f
(k,n)
0 (ϕ)− F0(ϕ)|

F0(ϕ)
, (6)

where f
(k,n)
0 (ϕ) = c/[2d

(k,n)
c (ϕ)] are the frequencies extracted

from the image and contours of the subject, and F0 are the notch

frequencies extracted from the HRTF with ad-hoc algorithms such

as those developed in [18, 20, 17]; (k, n) with (0 ≤ k < K)
and (0 ≤ n < N) refers to a one particular pair of traced C1

contour and focus point; ϕ spans all the [−45◦,+45◦] elevation

angles for which the notch is present in the corresponding HRTF;

Nϕ is the number of elevation angles on which the summation is

performed. Extracted notches need to be grouped into a single

track evolving through elevation consistently, a labeling algorithm

(e.g. [19]) performed such computation along subsequent HRTFs.

If the notches extracted from the subject’s pinna image are to

be compared with a set of HRTFs taken from a database, various

notch distance metrics can be defined based on this mismatch func-

tion, to rank database HRTFs in order of similarity. In particular,

we define three metrics:

• Mismatch: each HRTF is assigned a similarity score that

corresponds exactly to increasing values of the mismatch

function calculated with Eq. (6) (for a single (k, n) pair).

• Ranked position: each HRTF is assigned a similarity score

that is an integer corresponding to its ranked position taken

from the previous mismatch values (for a single (k, n) pair).

• Top-M appearance: for a given integer M , for each HRTF,

a similarity score is assigned according to the number of

times (for all the (k, n) pairs) in which that HRTF ranks in

the first M positions.

3.2. A HRTF selection tool

Based on the concepts outlined above, we propose a tool for se-

lecting from a database a HRTF set that best fits the image of a

subject’s pinna. The C1 contour and the focus point are traced

manually on the pinna image by an operator, and then the HRTF

sets in the database are automatically ranked in order of similarity

with the subject. The tool is implemented in Matlab.

Graphical user interface. Figure 1 provides a screenshot of the

main GUI which is responsible for managing subjects and orga-

nizing them in a list (on the left of the screen). The list can be

Figure 1: A tool for HRTF selection: main Graphical User Inter-

face.

managed efficiently using the three buttons, “Add Subject”, “Up-

date Subject” and “Delete Subject”, as well as some text-fields

used to assign to each subject their own information. For each

subject stored in the list, an image of the left pinna can be assigned

with the button “Choose ear image”: the image will be shown in

the middle of the GUI when a name from the list is clicked.

After loading the pinna image of a subject, the main pinna

contour C1 and the focus point can be traced manually by click-

ing on the “Trace Ear” button. Two parameters N and K can be

specified, which are the number of estimates that the operator will

trace for the C1 contour and the focus point, respectively.

Two checkboxes under the “Trace Ear” button aid the usabil-

ity of the tracing task: the first one is the “Stored traced contours”

that shows the already drawn contours in the previous drawing ses-

sion. The second one, called “Current traced contours” is about

visualizing on pinna image the contours drawn in the current ses-

sion. 4

One last parameter to be set, M , refers to the top-M appear-

ance metrics discussed above. By clicking on the “Process Con-

tours”, the application returns the ranked positions of the database

HRTFs according to the three metrics.

Database of generic HRTFs and extracted F0. The public data-

base used for our purpose is the CIPIC [6]. The first release pro-

vided HRTFs for 43 subjects (plus two dummy-head KEMAR HRTF

sets with small and large pinnae, respectively) at 25 different az-

imuths and 50 different elevations, to a total of 1250 directions. In

addition, this database includes a set of pictures of external ears

and anthropometric measures for 37 subjects. Information of the

first prominent notch in each HRTF were extracted with the struc-

tural decomposition algorithm [20, 9] and F0 tracks were labeled

with the algorithm in [19] and then stored in a custom data struc-

ture;

Guidelines for contour tracing. In the trace-ear GUI, the user

has to draw by hand N estimates of the C1 contours on top of a

pinna image. After that, the user has to point K positions of the

4The default tracing procedure allows drawing a single contour/focus
point at a time, that visually disappears once traced; for every estimate, our
tool shows pinna images clean from traced information.
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Figure 2: Schematic view of the proposed validation procedure

with auditory model predictions.

ear canal entrance. The rationale behind this is that by averaging

over repeated attempts we aim at reducing errors due to operator’s

mistakes and inherent ambiguities of the tracing task (as an exam-

ple, the true location of the ear canal entrance is not known from

the 2D image and must be guessed). By working on the appli-

cation, we have derived some empirical guidelines for the tracing

task which will be very useful for future non-expert operators. In

particular, the most effective way to trace the C1 contour from the

image is to cover the area of C1 with N curves, starting from the

internal edge to the external edge of C1 and vice versa, while the

most effective way to trace the focus point is to guess the ear canal

entrance with K points in the most likely area. In other words,

the tracing procedure is a simplified version of the optimal focus

estimation procedure proposed in [19] where a minimization prob-

lem was solved by searching in a wide area near the pinna tragus

tracing several specific contours. On the other hand, real case ap-

plications with a physical human ear allow the operator to easily

localize where the ear canal is, reducing also uncertainty for the

estimation of external pinna contours.

4. VALIDATION

The main aim of the proposed validation procedure is to verify

the effectiveness of our HRTF selection tool in providing a subject

with a HRTF that is reasonably close to his/her individual HRTF,

by only using a picture of his/her external ear. Strengths and limits

of such an approach are discussed also with the support of an au-

ditory model to predict performance in elevation perception. Fig-

ure 2 depicts a schematic view of the entire validation process.

4.1. Data acquisition and analysis

Our experimental subjects were taken from the CIPIC database.

In particular, we selected the 22 CIPIC subjects for which a com-

plete set of data was available (HRTF, anthropometry and ear pic-

tures). We chose to draw N = 10 estimates of the C1 contour

and K = 10 estimates of the focus point, a good trade off that

guarantees enough accuracy and fast completion of the selection

procedure. The parameter M was set to 3. The entire procedure of

creating a subject, retrieving the picture and anthropometric mea-

sures, and drawing the contours and focus points, takes about 5
minutes for each subject. Data processing time is negligible. With

these settings each subject has N × K = 100 pairs of contours

and focus points ready to be processed.

The results of the computation are three rankings of 43 HRTF

sets (CIPIC’s dummy heads were excluded for homogeneity) de-

rived from our metrics:

• Average mismatch: CIPIC subjects are sorted according to

their mismatch values (averaged over the N×M estimates),

in increasing order of mismatch.

• Average rank: CIPIC subjects are sorted according to their

rank in the previous ranking (averaged over the N × M
estimates), in increasing order of rank.

• Top-M appearance: CIPIC subjects are sorted according

to the number of their occurrences of the in the top-3 posi-

tions for each (n, k) pair of estimates, in decreasing order

of occurrence count.

For each metrics, we defined three best fitting HRTFs by choos-

ing the HRTFs ranking first in each ranking: best average mis-

match (best m), best average rank (best r), and best top-3 rank

(best top3) selected HRTFs.

A preliminary analysis on data distributions of mismatch and

rank values showed that normality assumption was violated ac-

cording to a Shapiro-Wilk test; thus, two Kruskal Wallis nonpara-

metric one-way ANOVAs with three levels of feedback condition

(individual, dummy-head KEMAR, best m) and (individual, dummy-

head KEMAR, best r) were performed to assess the statistical sig-

nificance of mismatch and rank metrics, respectively, on all traced

pinna contours and ear-canal points. Pairwise post-hoc Wilcoxon

tests for paired samples with Holm-Bonferroni correction proce-

dures on p-values provided statistical significances in performance

between conditions.

4.2. Auditory model simulations

Using the predictions of an auditory model, we simulated a virtual

experiment where every CIPIC listener would be asked to provide

an absolute localization judgment about spatialized auditory stim-

ulus. We adopted a recent model [7], that follows a “template-

based” paradigm implementing a comparison between the inter-

nal representation of an incoming sound at the eardrum and a ref-

erence template. Spectral features from different HRTFs correlate

with the direction of arrival, leading to a spectro-to-spatial map-

ping and a perceptual metric for elevation performances.

The model is based on two processing phases. During periph-

eral processing, an internal representation of the incoming sound is

created and the target sound (e.g. a generic HRTF set) is converted

into a directional transfer function (DTF). In the second phase, the

new representation is compared with a template, i.e. individual

DTFs computed from individual HRTFs, thus simulating the lo-

calization process of the auditory system (see previous works [21]

for further details on this methodology).

For each target angle, the probability that the virtual listener

points to a specific angle defines the similarity index (SI). The in-

dex value results from the distance (in degrees) between the target

angle and the response angle which is the argument of a Gaussian
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distribution with zero-mean and standard deviation, called uncer-

tainty, U . The lower the U value, the higher the sensitivity of the

virtual listener in discriminating different spectral profiles result-

ing in a measure of probability rather than a deterministic value.

The virtual experiment was conducted simulating listeners with

all analyzed CIPIC HRTFs, using an uncertainty value U = 1.8
which is similar to average human sensitivity [7]. We predicted el-

evation performance for every virtual subject when listening with

his/her own individual HRTFs, with those of CIPIC subject 165
(the KEMAR), and the best m / best r / best top3 selected HRTFs.

The precision for the j-th elevation response close to the target

position is defined in the local polar RMS error (PE):

PEj =

√

∑

i∈L
(φi − ϕj)2pj [φi]
∑

i∈L
pj [φi]

,

where L = {i ∈ N : 1 ≤ i ≤ Nφ, |φi − ϕj |mod180◦ < 90◦}
defines local elevation responses within ±90◦ w.r.t. the local re-

sponse φi and the target position ϕj , and pj [φi] denotes the pre-

diction, i.e. probability mass vector.

The average PE was computed considering only elevation re-

sponses ϕj between [−45◦,+45◦], where inter-subject variabil-

ity in human spatial hearing emerges [22], thus providing a single

number that quantifies localization performance [21].5 In order to

verify statistically significant differences between predicted aver-

age PEs, paired t-tests were performed between pairs of localiza-

tion performances using different HRTFs.

5. RESULTS AND DISCUSSION

A preliminary analysis on data distribution of rank values derived

from mismatches between f
(k,n)
0 (ϕ) and individual HRTF’s F0(ϕ)

(22× 100 observations) was conducted in order to identify the ex-

istence of outliers for our metrics. Samples in the last quartile

of this distribution were considered cases of limited applicability

for the proposed notch distance metric, showing a rank position

greater than 27.25 of a total of 43.

Leaving aside for a moment the discussion on applicability of

our metrics, we considered the last quartile value as a threshold

for the average rank position of each individual HRTF in order to

discard CIPIC subjects which can not be classified according to

our criteria and for which no firm conclusions can be drawn. After

the application of such threshold, the same analysis was performed

on 17 × 100 observations, i.e. 5 subjects were removed; the 75%
of the observations had a rank position less than 18 which is in the

first half of the available positions. Moreover, the median value

for rank position is 8, which suggests data convergence to the first

rank positions.

Figure 3 depicts the three typical tracing scenarios: (a) a con-

sistent trace-notch correspondence, (b) a systematic lowering in

notch frequency of traces, and (c) an irregular notch detection. In

the first case, traced contours and individual HRTF notches are

in the same range resulting in the ideal condition of applicability

for the proposed metric. The latter situation occasionally occurred

5We focused on local polar error in the frontal median plane, where
individual elevation-dependent HRTF spectral features perceptually dom-
inate; on the contrary, front-back confusion rate (similar to quadrant error
rate QE in [7]) derives from several concurrent factors, such as dynamic
auditory cues, visual information, familiarity with sound sources and train-
ing [23], thus it was not considered in this study.

due to irregularities of HRTF measurements or erroneous track la-

bel assignment of F0(ϕ) evolving through elevation (in 2 of the

5 subjects which were previously removed). 6 On the other hand,

the case where a systematic lowering in notch frequency of traces

occurred (in 3 of the 5 subjects previously removed) deserves a

more careful consideration: from one of our previous studies [19],

we identified a 20% of CIPIC subjects for whom a positive re-

flection coefficient better models the acoustic contribution of the

pinna. Accordingly, it is reasonable to think that those three ex-

6Repeatability of HRTF measurements are still a delicate issue, sug-
gesting a high variability in spectral details [11].
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Figure 3: (a,c,e) Examples of traced C1/focus points for three

CIPIC subjects; (b,d,f) corresponding f
(k,n)
0 (ϕ) (light gray lines)

with F0(ϕ) values of individual HRTFs (black solid line), best se-

lection according to mismatch/rank metric (black dotted line), and

best selection according to Top-3 metric (black dash-dotted line).

In this examples, best HRTF selection according to mismatch and

rank metrics do not differ significantly.
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Figure 4: Global statistics (average + standard deviation) for met-

ric assessment on (a) mismatch, (b) rank, grouped by HRTF con-

dition. Asterisks and bars indicate, where present, a significant

difference (*: p < 0.05, **: p < 0.01 , ***: p < 0.001 at

post-hoc test).
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(b) Individual vs. generic

Figure 5: Global statistics (average + standard deviation) for local-

ization prediction in elevation on average PE for (a) metrics based

on notch distance mismatch, (b) individual vs. generic (KEMAR)

vs. personalized (best top3). Asterisks and bars indicate, where

present, a significant difference (*: p < 0.05, **: p < 0.01 , ***:

p < 0.001 at post-hoc test).

cluded subjects can be assigned to this special group. 7

Our metrics based on notch distance clearly distinguish the

three sets of HRTF, i.e. individual, KEMAR, and best selected,

in terms of mismatch and rank (Fig. 4 clearly shows this aspect);

Kruskal Wallis nonparametric one-way ANOVAs with three levels

of feedback condition (individual HRTF, KEMAR, best m) pro-

vided a statistically significant result for mismatch [χ2(2)=1141.8,

p ≪ 0.001]; Pairwise post-hoc Wilcoxon tests for paired sam-

ples with Holm-Bonferroni correction revealed statistical differ-

ences among all pairs of conditions (p ≪ 0.001). The same anal-

7Unfortunately, we were not able to directly compare our current study
with [19] because different CIPIC subjects were considered.

ysis with (individual HRTF, KEMAR, best r) as levels of feed-

back condition provided a statistically significant result for rank

[χ2(2)=2362.3, p ≪ 0.001] with statistical differences among

all pairs of conditions (p ≪ 0.001). At first glance, since we

were trying to select the individual HRTFs from pinna contours,

these results appear to be counter intuitive because we always se-

lected a generic HRTF which differed from the individual HRTF in

terms of both mismatch and rank. However, this evidence can not

be misleading because we already know from our previous study

in [5] that the notch associated to the pinna helix border is not

enough to describe elevation cues for all listeners. Moreover, bio-

metric recognition studies [24] show that the pinna concha wall is

also relevant in order to uniquely identify a person. Finally, multi-

ple contours tracing highly contributes to the uncertainty of notch

frequency matches, providing a good average rank anyway (11),

though preventing the individual HRTFs to be chosen as best se-

lection.

Surprisingly, localization predictions from auditory model sim-

ulations provided average local polar RMS error (average PE) which

has a statistically significant difference between best m and best

top3 metrics, t(16) = 2.134, p < 0.05 (see Fig. 5.a for a graphical

representation). This results suggest that best top3 yields better lo-

calization performances than best m, and with a similar compared

to best r (not proven to be statistically significant in this study).

Intuitively, best top3 metric is more robust to contour uncertainty

because of the M-constraint in its definition, that allowed us to fil-

ter out variability due to HRTF set with sparse appearances in our

rankings.

Finally, localization predictions were computed also for in-

dividual HRTFs and KEMAR virtual listening. Pairwise t-tests

reveal significant differences in average PEs between individual

listening condition and KEMAR (t(16) = −7.79, p ≪ 0.001),

and between individual listening condition and best top3 HRTF

(t(16) = −4.13, p < 0.01), reporting a better performance with

individual HRTFs. Moreover, pairwise t-test reports significant

differences in average PEs between best top3 HRTF and KEMAR

(t(16) = 5.590, p ≪ 0.001), with a better performance of the se-

lected HRTF compared to dummy-head listening condition. This

final result further confirms the gap between individual HRTF lis-

tening and the proposed HRTF selection based on pinna image;

on the other hand, best top 3 criteria selected generic HRTFs that

outperformed KEMAR listening condition.

6. CONCLUSIONS

The proposed distance metrics considering the C1 contour pro-

vides insufficient features in order to unambiguously identify an

individual HRTF from the corresponding side picture of the lis-

tener. Moreover, multiple tracing of C1 and of the focus point

adds further variability to the procedure resulting in extra uncer-

tainty for the validation. On the other hand, our final result con-

firms that our image-guide HRTF selection procedure provides a

useful tool in terms of:

• personalized dataset reduction: since individual HRTF

rank is on average the 12th position, one can compute a

personalized short list of ≈ 12 best candidate HRTFs for

a given pinna picture, in which finding with high probabil-

ity a generic HRTF reasonably close to the individual one.

Accordingly, a subsequent refinement of the HRTF selec-

tion procedure might be required through subjective selec-

tion procedures or additional data analysis on the reduced
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dataset.

• better performance than KEMAR: confirming our pre-

vious findings in psychoacoustic evaluation [5], auditory

model predictions reported a statistically significant improve-

ment in localization performance with generic HRTFs se-

lected based on top3 metric compared to KEMAR; this re-

sult has important practical implications for binaural audio

applications requiring HRTF personalization: our tool al-

lows a user without specific expertise to choose a generic

HRTF in a few minutes; this selection outperforms localiza-

tion performance with KEMAR HRTFs, which are usually

default solutions for commercial applications in VADs.

Further research is still needed in order to increase the appli-

cability of our notch distance metrics; CIPIC subjects can be also

analyzed applying Eqs. (2) and (3) (notches caused by positive re-

flections) to Eq. (6), and localization predictions with both reflec-

tion signs can be compared. Contours associated to antihelix and

concha reflections can be traced, and the mismatch definition can

be modified accordingly by combining the contributions of each

contour with different weights [5]. Furthermore, notch distance

metrics, i.e. mismatch, rank, and top-M metrics, can be hierar-

chically applied in the HRTF selection process in order to refine

the selection: as an example, starting from the top M metric one

can disambiguate similar HRTF sets looking at mismatch and rank

metrics. In particular, the influence of the M parameter on HRTF

appearance in the rank metric has to be investigated in more detail.

An alternative approach, which is currently being investigated,

amounts to estimating the first pinna notch directly via acoustic

measurements, through a so-called “acoustic selfie” which roughly

acquires individual HRTFs using a smartphone loudspeaker as sound

source and binaural microphones as receivers [25]. In this way, the

frequencies f
(k,n)
0 (ϕ) could be directly computed in the acoustic

domain, further reducing manual intervention.

Finally, it is indisputable that experimental validation with mas-

sive participation of human subjects will be highly relevant in terms

of reliability of any HRTF selection procedure. A new research

framework for binaural audio reproduction in web browsers is cur-

rently in development phase [26] with the goal of overcoming

common limitations in HRTF personalization studies, such as low

number of participants (e.g. [17]), coherence in simplifications of

localization experiment (e.g. [15]), and reliability of the predic-

tions with computational auditory models [27].
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