
Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

PERFORMANCE PORTABILITY FOR ROOM ACOUSTICS SIMULATIONS

Larisa Stoltzfus

School of Informatics

The University of Edinburgh

Edinburgh, UK

larisa.stoltzfus@ed.ac.uk

Alan Gray

EPCC

The University of Edinburgh,

Edinburgh, UK

a.gray@epcc.ed.ac.uk

Christophe Dubach

School of Informatics

The University of Edinburgh

Edinburgh, UK

christophe.dubach@ed.ac.uk

Stefan Bilbao

Acoustics and Audio Group,

The University of Edinburgh

Edinburgh, UK

s.bilbao@ed.ac.uk

ABSTRACT

Numerical modelling of the 3-D wave equation can result in very

accurate virtual auralisation, at the expense of computational cost.

Implementations targeting modern highly-parallel processors such

as NVIDIA GPUs (Graphics Processing Units) are known to be

very effective, but are tied to the specific hardware for which they

are developed. In this paper, we investigate extending the porta-

bility of these models to a wider range of architectures without

the loss of performance. We show that, through development of

portable frameworks, we can achieve acoustic simulation software

that can target other devices in addition to NVIDIA GPUs, such as

AMD GPUs, Intel Xeon Phi many-core CPUs and traditional Intel

multi-core CPUs. The memory bandwidth offered by each archi-

tecture is key to achievable performance, and as such we observe

high performance on AMD as well as NVIDIA GPUs (where high

performance is achievable even on consumer-class variants despite

their lower floating point capability), whilst retaining portability to

the other less-performant architectures.

1. INTRODUCTION

The finite difference time domain method (FDTD) is a well-known

numerical approach for acoustic modelling of the 3D wave equa-

tion [1]. Space is discretised into a three-dimensional grid of points,

with data values resident at each point representing the acoustic

field at that point. The state of the system evolves through time-

stepping: the value at each point is repeatedly updated using finite

differences of that point in time and space. The so-called stencil of

points involved in each update is determined by the choice of dis-

cretisation scheme for the partial differential operators in the wave

equation [2]. This numerical approach is relatively computation-

ally expensive, but amenable to parallelisation. In recent years,

there has been good progress in the development of techniques to

exploit modern parallel hardware. In particular, NVIDIA GPUs

have proven to be a very powerful platform for acoustic modelling

[3][4]. Most work in this area has involved writing code using the

NVIDIA specific CUDA language, which is tied to this platform.

Ideally, however, any software should be able to run in a portable

manner across different architectures, such that the performance

of alternatives can be explored, and different resources can be ex-

ploited both as and when they become available. It is non-trivial,

however, to develop portable application source code that can per-

form well across different architectures: this issue of performance

portability is currently of great interest in the general field of High

Performance Computing (HPC) [5].

In this paper, we explore the performance portability issue for

FDTD numerical modelling of the 3D wave equation. To enable

this study, we have developed different implementations of the

simulation, each performing the same task, including a CUDA im-

plementation that acts as a “baseline” for use on NVIDIA GPUs,

plus other more portable alternatives. This enables us to assess per-

formance across multiple different hardware solutions: NVIDIA

GPUs, AMD GPUs, Intel Xeon Phi many-core CPUs and tradi-

tional multi-core CPUs. The work also includes the development

of a simple, adjustable abstraction framework, where the flexibility

comes through the use of templates and macros (for outlining and

substituting code fragments) to facilitate different implementation

and optimisation choices for a room acoustics simulation. Both

basic and advanced versions of an FDTD algorithm that simulates

sound propagation in a room (i.e. a cuboid) are explored.

This paper is structured as follows: in Section 2, we give nec-

essary background information on the computational scheme, the

hardware architectures under study and the associated program-

ming models; in Section 3, we describe the development of a per-

formant, portable and productive room acoustics simulation frame-

work; in Section 4 we outline the experimental setup for investigat-

ing different programming approaches and assessing performance;

in Section 5 we present and analyse performance results; and fi-

nally we summarise and discuss future work in Section 6.

2. BACKGROUND

This paper is focused on assessing different software implemen-

tations of a room acoustics simulation across different types of

computing hardware. While this project focuses strictly on single

node development, the ideas in this work could easily be extended

for use across multi-node platforms by coupling with a message-

passing framework. In this section we give some necessary back-

ground details. We first describe the FDTD scheme used in this

study. We then give details on the hardware architectures that we

wish to assess and the native programming methods for these ar-

chitectures. Finally we describe some pre-existing parallel pro-

gramming frameworks that provide portability.

DAFX-367

http://pervasiveparallelism.inf.ed.ac.uk/
mailto:larisa.stoltzfus@ed.ac.uk
https://www.epcc.ed.ac.uk/
mailto:a.gray@epcc.ed.ac.uk
http://wcms.inf.ed.ac.uk/icsa/
mailto:christophe.dubach@ed.ac.uk
http://www.acoustics.ed.ac.uk
mailto:s.bilbao@ed.ac.uk

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

2.1. FDTD Room Acoustics Scheme

Wave-based numerical simulation techniques, such as FDTD, are

concerned with deriving algorithms for the numerical simulation

of the 3D wave equation:

∂2Ψ

∂t2
= c2∇2Ψ (1)

Here, Ψ(x, t) is the dependent variable to be solved for (repre-

senting an acoustic velocity potential, from which pressure and

velocity may be derived), as a function of spatial coordinate x ∈
D ∈ R

3 and time t ∈ R
+.

In standard finite difference time domain (FDTD) construc-

tions, the solution Ψ is approximated by a grid function Ψn
l,m,p,

representing an approximation to Ψ(x = (lh,mh, ph) , t = nk),
where l,m, p, n are integers, h is a grid spacing in metres, and k
is a time step in seconds. The FDTD scheme used for this work is

given in [6], and is the standard scheme with a seven-point Lapla-

cian stencil. According to this scheme, updates are calculated as

follows:

Ψn+1

l,m,p = (2− 6λ2)Ψn
l,m,p + λ2S −Ψn−1

l,m,p (2)

where

S = Ψn
l+1,m,p +Ψn

l−1,m,p +Ψn
l,m+1,p

+Ψn
l,m−1,p +Ψn

l,m,p+1 +Ψn
l,m,p−1,

(3)

The constant λ = ck/h is referred to as the Courant number and

must satisfy the stability condition λ ≤ 1/
√
3. It can be seen that

each grid value is updated based on a combination of two previous

values at the same location, and contributions from each of the six

neighbouring points in three dimensions (giving the six terms in S
- see Figure 1). The benchmarks used in this study are run over

Figure 1: Figure of a 7-point stencil on a three dimensional grid.

13–105 million grid points at a sample rate of 44.1kHz to produce

100ms of sound. The boundary conditions used are frequency-

independent impedance boundary conditions. We also include, to-

wards the end of the paper, some results for comparison where a

larger stencil is used, as described in [3][7].

2.2. Hardware and Native Programming Methods

The hardware architectures used in this work are multi-core CPU,

GPU, and many-core CPU (Intel Xeon Phi) platforms. CPUs have

traditionally been the main workhorses for scientific computing

and are still targeted for the majority of scientific applications.

GPUs have been gaining traction in the scientific computing land-

scape over the last decade, and can offer significant performance

improvements over traditional CPUs for certain algorithms includ-

ing wave-based ones like acoustic simulation. Xeon Phi chips are

essentially multi-core CPUs, but with a large number of cores each

with lower clock speeds and wider vector units. In this section, we

describe these architectures in more detail and discuss how they

are typically programmed.

2.2.1. Traditional Multi-Core CPUs

Computational simulations (like acoustic models) have historically

been run on CPU chips. However, these architectures were orig-

inally optimised for sequential codes, whereas scientific applica-

tions are typically highly parallel in nature. Since the early 2000s,

clock speeds of CPUs have stopped increasing due to physical

constraints. Instead, multi-core chips have dominated the market

meaning CPUs are now parallel architectures.

OpenMP [8] is one framework designed for running on shared

memory platforms like CPUs. It is a multi-threading parallel model

which uses compiler directives to determine how an algorithm is

split and assigned to different threads, where each thread can utilise

one of the multiple available cores. OpenMP emphasises ease of

use over control, however there are settings to determine how data

or algorithmic splits occur.

2.2.2. GPUs

GPUs were originally designed for accelerating computations for

graphics, but have increasingly been re-purposed to run other types

of codes [9]. As such, the architecture of GPUs has evolved to

be markedly different from CPUs. Instead of having a few cores,

they have hundreds or thousands of lightweight cores that oper-

ate in a data-parallel manner and can thus do many more oper-

ations per second than a traditional CPU. However most scien-

tific applications, including those in this paper, are more sensi-

tive to memory bandwidth: the rate at which data can be loaded

and stored from memory. GPUs offer significantly higher mem-

ory bandwidths over traditional CPUs because they use graphics

memory, though they are not used in isolation but as “accelera-

tors” in conjunction with “host” CPUs. Programming a GPU is

more complicated than a CPU as the programmer is responsible

for offloading computation to the GPU with a specific parallel de-

composition as well as managing the distinct memory spaces.

In this paper we investigate acoustic simulation algorithms us-

ing NVIDIA and AMD GPUs. NVIDIA GPUs are most com-

monly programmed using the vendor-specific CUDA model [10],

which extends C, C++ or Fortran. CUDA provides functionality

to decompose a problem into multiple “blocks” each with multi-

ple “CUDA threads”, with this hierarchical abstraction designed

to map efficiently onto the hardware which correspondingly com-

prises multiple “Streaming Multiprocessors” each containing mul-

tiple “CUDA cores”. CUDA also provides a comprehensive API to

allow memory management on the distinct CPU and GPU memory

spaces. CUDA is very powerful, but low level and non-portable.

AMD GPUs are similar in nature to NVIDIA GPUs, but since there

is no equivalent vendor-specific AMD programming model, the

most common programming method is to use the cross-platform

OpenCL, which we discuss in Section 2.3.1. For simplistic pur-

poses, we will use the same terminology to describe the OpenCL

framework as for CUDA.

DAFX-368

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

2.2.3. Intel Xeon Phi Many-core CPU

The Xeon Phi was developed by Intel as a high performance many-

core CPU for scientific computing [11]. One of the main benefits

of the Xeon Phi is that it uses the same instruction set (X86) as

the majority of other mainstream CPUs. This means that, theo-

retically, codes developed to run on CPUs could be more easily

ported to Xeon Phi chips. There are fewer cores on the Xeon Phi

than on a GPU, however data does not need to be transferred to

and from separate memory. There is also a wider vector instruc-

tion set on the Xeon Phi, which means that more instructions can

be run in parallel per core than on a CPU or GPU. Depending on

the algorithm, this can provide a boost in performance. The Xeon

Phi currently straddles both the architecture and the performance

of the CPU and GPU. The same languages and frameworks that

are used for programming CPUs can be used on Xeon Phis.

2.3. Existing Portable Programming Methods

In this section we review existing portable parallel frameworks and

APIs: OpenCL, a low-level API designed for use on heterogeneous

platforms; TargetDP, a lightweight framework that abstracts data-

parallel execution and memory management syntax in a perfor-

mance portable manner, and a range of other frameworks offering

higher levels of abstraction and programmability. These frame-

works and APIs are designed to allow computational codes (like

room acoustics) to be portable across different architectures, how-

ever they can be difficult to program in and they do not all account

for performance across hardware.

2.3.1. OpenCL

OpenCL [12] is a cross-platform API designed for programming

heterogeneous systems. It is similar in nature to CUDA, albeit

with differing syntax. Whereas CUDA acts as a language exten-

sion as well as an API, OpenCL only acts as the latter resulting

in the need for more boilerplate code and provides a more low-

level programming experience. OpenCL can, however, be used as

a portable alternative to CUDA, as it can be executed on NVIDIA,

AMD and other types of GPUs, as well as manycore CPUs such

as the Intel Xeon Phi. OpenCL is compatible with the C and C++

programming languages.

2.3.2. targetDP

The targetDP programming model [13] is designed to target data-

parallel hardware in a platform agnostic manner, by abstracting

the hierarchy of hardware parallelism and memory systems in a

way which can map on to either GPUs or multi/many-core CPUs

(including the Intel Xeon Phi) in a platform agnostic manner. At

the application level, targetDP syntax augments the base language

(currently C/C++), and this is mapped to either CUDA or OpenMP

threads (plus vectorisation in the latter case) depending on which

implementation is used to build the code. The mechanism used is a

combination of C-preprocessor macros and libraries. As described

in [13], the model was originally developed in tandem with the

complex fluid simulation package Ludwig, where it exploits par-

allelism resulting from the structured grid-based approach. The

lightweight design facilitates integration into complex legacy ap-

plications, but the resulting code remains somewhat low-level so it

lacks productivity and programmability.

2.3.3. Other Methods

Higher level approaches focus more on distinct layers of abstrac-

tion that are far removed from the original codes. These approaches

include: parallel algorithmic skeletons, code generators, DSLs (Do-

main Specific Languages), autotuners, combinations thereof and

others. Higher-level frameworks can also provide decoupling lay-

ers of functionality, which allows for more flexibility with different

implementations and architectures. As many of these frameworks

are still in early stages of development, there are limitations in us-

ing them with pre-existing code bases. Many of these higher-level

frameworks build on the work of skeleton frameworks, which fo-

cus on the idea that many parallel algorithms can be broken down

into pre-defined building blocks [14]. Thus, an existing code could

be embedded into a skeleton framework that already has an ab-

straction and API built for that algorithm type, such as the stencils

found in room acoustics models. These frameworks then simplify

the process of writing complex parallel code by providing an in-

terface which masks the low-level syntax and boilerplate. A code

generator can either be a type of compiler or more of a source to

source language translator. Other higher-level approaches include

functional DSLs with auto-tuning [15], rewrite rules [16], skele-

ton frameworks combined with auto-tuning [17] and many others

including the examples below. Liquid Metal is a project started

at IBM to develop a new programming language purpose built to

tailor to heterogeneous architectures [18]. Exastencils is a DSL

developed by a group at the University of Passau that aims to cre-

ate a layered framework that uses domain specific optimisations to

build performant portable stencil applications [19].

3. PORTABLE AND PRODUCTIVE FRAMEWORK

DEVELOPMENT

The room acoustics simulation codes used in this work were pre-

viously tied to a specific platform (NVIDIA GPUs) through their

CUDA implementation. In this study we compare the CUDA (pre-

existing), OpenCL, and targetDP frameworks (all with C as a base

language). In addition, we introduce the newly developed ab-

straction framework titled abstractCL (with C++ as a base lan-

guage). In this section we describe our approach in enhancing

performance portability and productivity through the development

of this new framework for investigating room acoustics simulation

codes. First, details about the implementation are discussed fol-

lowed by the benefits of creating such a framework for the field of

acoustics modelling.

3.1. Overview

abstractCL was created to make room simulation kernels on-the-

fly, depending on the type of run a user wants to do. The type of

variations can be between different data layouts of the grid passed

in to represent the room, hardware-specific optimisations or both.

This is done through swapping in and out relevant files that in-

clude overloaded functions and definitions in the main algorithm

itself. The data abstractions and optimisations investigated for this

project include: thread configuration settings, memory layouts and

memory optimisations. Algorithmic changes can be introduced by

adding new classes to the current template for more complicated

codes.

DAFX-369

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

3.2. Functionality

abstractCL works through the use of flags which determine what

version should be run. Certain functions must always be defined as

dictated by a parent class. However, those functions’ implemen-

tations can be pulled in from different sources and concatenated

together to create the simulation kernel before compilation. This

framework runs similarly to the other benchmark versions, apart

from that the kernel is created before the code is run (which cre-

ates more initial overhead). It was developed in C++ (due its built-

in functionality for classes, templates, inheritance and strings) as

well as OpenCL.

3.3. Advantages

One of the main benefits of creating an abstraction framework in

this manner is that room acoustics simulation codes would not

need to be rewritten to test out new optimisations. This makes

it easier to use than a normal OpenCL implementation. Optimisa-

tions can be swapped in and out from the same point, limiting the

room for error. Additionally, abstractions and performance can of-

ten be at war with each other when developing codes. abstractCL

provides the opportunity to explore this tension at the most basic

level for these simulations by allowing the data type represent-

ing the grid (and grid points) to be implemented in different ways

that can be changed easily. For example, when accessing a data

point, it could be stored in a number of different places in differ-

ent memories. Using abstractions that mask implementation, the

performance effects of these different implementations can then

be investigated and compared. Though the optimisations in this

project focus primarily on GPU memories, the framework could

be extended to include optimisations specific to other platforms

that are swapped in and out on a larger scale or for more complex

layouts (ie. combinations of memories used).

4. EXPERIMENTAL SETUP

In this section we describe our setup for investigating alternative

implementations of room acoustics benchmarks and our means of

assessing their performance on different architectures. First we in-

troduce the environment used in this study, including the separate

platforms and benchmarks. Then the analysis including metrics

and domain sizes used is described.

4.1. Environment

4.1.1. Hardware

The platforms used for this study are specified in Table 1. In-

cluded are two NVIDIA GPUs, two AMD GPUs, an Intel Xeon

Phi manycore CPU and a traditional Intel Xeon CPU. Of the two

NVIDIA GPUs, the consumer-class GTX-780 has much reduced

double precision floating point capability over the high-end K20

variant, but offers higher memory bandwidth. Of the AMD GPUs,

the R9 259X2 has higher specifications than the R280 and pro-

duces the best results overall.

4.1.2. Memory Bandwidth Reference Benchmark

As described in Section 2, memory bandwidth can be critical to

obtaining good performance (and this will be confirmed in Section

5). It is therefore important to assess our results relative to what

is expected given the memory bandwidth capability of a particular

architecture. However, the peak values presented in Table 1 are

rarely achievable in practice. STREAM [20] is an industry standard

benchmark which was run on each architecture to provide a refer-

ence instead (through simple operations requiring data access from

main memory).

4.2. Analysis

4.2.1. Metrics

The different versions of codes were compared using performance

timings (time run in seconds), megavoxels/second, and data through-

put (in GB/s). Time is determined by running the application with

timing calls in place at key points in the code (to determine how

much time is spent in the main computational kernel, the sec-

ondary kernel, for data IO and miscellaneous time). Megavoxels

per second is found by multiplying the volume of the room by the

number of time steps simulated and dividing by the simulation run

time in seconds. The data throughput is calculated by multiplying

the size of the room by the number of bytes accessed for every grid

point.

4.2.2. Acoustical Model Sizes

The “room” used in the comparison runs is a rectangle box. Two

different sized boxes (rooms) were used in the simulation runs:

256 x 256 x 202 points and 512 x 512 x 402 points. The purpose

of using two room sizes is to see what kind of impact there is from

increasing the domain space. These sizes do not indicate the actual

size of the room, just the number of points in the grid representing

the room. The physical size of the room then scales with the audio

sample rate chosen (in this study this is set to 44.10kHz). All ver-

sions use double precision as single precision can incur rounding

errors in certain cases.

5. RESULTS

In this section we present the results of comparing the different

room acoustics model implementations described previously as

run on the selected hardware platforms. We first present the best

performing results on each architecture to provide an overall as-

sessment of the hardware. We then compare the applicability, per-

formance and portability of these different runs. We go on to show

that memory bandwidth is critical to achieving good performance.

Finally, we describe the effect of optimisations and extend results

to a more complex version of the codes.

5.1. Overall Performance Comparison Across Hardware

In this section we give an overview of performance achieved across

the different hardware platforms, to assess the capability of the

hardware for this type of problem. Figure 2 shows the time taken

for the test case where we choose the best performing existing soft-

ware on each architecture. It can be seen that the GPUs show simi-

lar times, with the AMD R9 295X2 performing fastest. This result

translates to 8466 megavoxels updates per second. Another point

of interest is that the consumer-class NVIDIA GTX780 is signif-

icantly faster for the CUDA implementation than the K20, even

though it has many times lower double precision floating point

capability. This is because, as discussed further in Section 5.3,

memory bandwidth is more important that compute for this type

DAFX-370

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

Table 1: Specification of Different Hardware Architectures Used. Note that the “Ridge Point” is the ratio of Peak Gflops to Peak Bandwidth

(in the terminology of the ROOFLINE Model).

Platform Number of Cores/ Peak Bandwidth (GB/s) Peak GFlops Ridge Point Memory (MB)

Stream Processor (Double Precision) (Flops/Byte))

AMD R9 259X2 2816 320 716.67 2.24 4096

AMD R280 2048 288 870 3.02 3072

NVIDIA GTX 780 2304 288.4 165.7 0.57 3072

NVIDIA K20 2496 208 1175 5.65 5120

Xeon Phi 5110P 60 320 1011 3.16 8000

Intel Xeon E5-2620 24 42.6 96 2.25 16000

AMD R9 295X2 AMD R280 NVIDIA GTX780 NVIDIA K20 Xeon Phi Intel Xeon E5

0

100

200

300

400

opencl opencl cuda cuda targetDP opencl
Code Version [Platform]

T
im

e(
s)

Figure 2: Original fastest (optimised) versions across platforms

for simple room acoustics simulation of room size 512×512×404.

The timings shown produce 100ms of sound.

of problem. The Xeon Phi is seen to offer lower performance that

the GPUs, but remains faster than the traditional CPU.

5.2. Performance Comparison of Software Versions

In this section we analyse the differences in performance resulting

from running different software frameworks on a particular plat-

form. In Figure 3, it can be seen how the performance depends on

the software version. The main result is that for each architecture

the timings are comparable, in particular in comparison to the ab-

stractCL version. On the NVIDIA GPU, there is a small overhead

for the portable frameworks (OpenCL, abstractCL and targetDP)

relative to use of CUDA, but we see this as a small price to pay for

portability to the other platforms. In particular, the newly devel-

oped framework abstractCL shows comparable performance to the

original benchmarks and those written in OpenCL, indicating that

it is possible to build performant, portable and productive room

acoustics simulations across different hardware.

5.3. Hardware Capability Discussion

In this section, we further analyse the observed performance in

terms of the characteristics of the underlying hardware. The ROOFLINE

model, developed by Williams et al. [21], can be used to deter-

mine for a given application the relative importance of floating

AMD R9 295X2 AMD R280 NVIDIA GTX780 NVIDIA K20 Xeon Phi Intel Xeon E5

0

200

400

ab
st

ra
ct

C
L

O
pe

nC
L

ab
st

ra
ct

C
L

O
pe

nC
L

ab
st

ra
ct

C
L

C
U

D
A

O
pe

nC
L

ta
rg

et
D

P

ab
st

ra
ct

C
L

C
U

D
A

O
pe

nC
L

ta
rg

et
D

P

ab
st

ra
ct

C
L

O
pe

nC
L

ta
rg

et
D

P

ab
st

ra
ct

C
L

O
pe

nC
L

ta
rg

et
D

P

Code Version [Platform]

T
im

e(
s)

Kernel1
Data Copy Total
Kernel2
Other Time

Figure 3: Original timings of the simple room acoustics simula-

tion for room size 512×512×404 on all architectures tested. The

timings shown produce 100ms of sound.

point computation and memory bandwidth capabilities. It uses

the concept of “Operational Intensity” (OI): the ratio of opera-

tions (in this case double precision floating point operations) to

bytes accessed from main memory. The OI, in Flops/Byte, can

be calculated for each computational kernel. A similar measure

(also given in Flops/Byte and known as the “ridge point”), exists

for each processor: the ratio of peak operations per second to the

memory bandwidth of the processor. Any kernel which has an OI

lower than the ridge point is limited by the memory bandwidth of

the processor and any which has an OI higher than the ridge point

is limited by the processor’s floating point capability.

The OI for the application studied in this paper is 0.54, which

is lower than the ridge points of any of the architectures (given in

Table 1), indicating that this simplified version of the application

is memory bandwidth bound across the board (and thus not sensi-

tive to floating point capability). This explains why the NVIDIA

GTX780 performs so well despite the fact that it has very low float-

ing point capability: its ridge point of 0.57 is still (just) higher than

the application OI.

The blue columns in Figure 4 give observed data throughput

(volume of data loaded/stored by the application divided by run-

time, assuming perfect caching), for each of the architectures. The

black lines give the peak bandwidth capability of the hardware (as

reported in Table 1). It can be seen that, for all but the Xeon Phi

architecture, the measured throughput varies in line with the peak

DAFX-371

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

AMD R9 295X2 AMD R280 NVIDIA GTX780 NVIDIA K20 Xeon Phi Intel Xeon E5

0

100

200

300

opencl opencl cuda cuda targetDP opencl
Code Version [Platform]

B
an

dw
id

th
 (

G
B

/s
)

Peak Bandwidth Stream Benchmark

Bandwidth

Figure 4: Data Throughput for different versions of the

room acoustics benchmark across platforms for room size

512×512×404.

bandwidth, evidence that the overall performance of this applica-

tion can largely be attributed to the memory bandwidth of that ar-

chitecture. Since it is often very difficult to achieve near peak per-

formance, we also include (with dashed horizontal lines) STREAM

benchmark results (see Section 4.1.2), which give a more realistic

measure of what is achievable. It can be seen that our results are,

in general, achieving a reasonable percentage of STREAM but we

still have room for improvement. In addition to running STREAM,

profiling was also done on a selection of the runs. These results

showed higher values than our measured results, indicating that

our assumption of perfect caching (see above) is not strictly true

and there may be scope to reorganise our memory access patterns

to improve the caching. The Xeon Phi is seen to achieve a no-

ticeably lower percentage of peak bandwidth relative to the other

architectures, and this warrants further investigation.

5.4. Optimisation

Two optimisation methods were explored for the GPU platforms:

shared and texture memory. Texture memory is a read-only or

write-only memory that is distinct from global memory and uses

separate caching allowing for quicker fetching for specific types of

data (in particular, ones that take advantage of locality). The use

of texture memory is relatively straightforward in CUDA, requir-

ing only an additional keyword for input parameters. OpenCL is

restricted to an earlier version on NVIDIA GPUs which does not

support double precision in texture memory, so these results are

not included. Shared memory is specific to one of the lightweight

“cores” of a GPU (streaming multi-processor on NVIDIA) and can

only can be shared between threads utilising that core, so can be

useful for data re-use. A 2.5D tiling method was used to take ad-

vantage of shared memory [6].

Figure 5 shows the results for this experiment, where the opti-

mised versions are the fastest versions found in this project per

version per platform. Three different types of codes were run:

sharedtex uses shared and texture memory (for the CUDA ver-

sion), shared uses only shared memory and none uses no mem-

ory optimisations. As before, different platforms are indicated by

separate segments of the graphs. The reason for comparing to an

optimised thread configuration version instead of the original run

was to isolate what effect the memory optimisations had. Both

room sizes (large and small) were run, but the large rooms had

more significant differences in performance so are the only results

shown. Overall the abstractCL version showed the most consistent

improvement, however in this graph it is more clear that it is not

quite as fast as the OpenCL version due to the overhead of using a

more productive framework. All versions showed some improve-

ment with this use of shared memory, but this amount varied per

version and per room size across the different architectures. One

of the reasons these results do not show more improvement is be-

cause the codes are already close to peak bandwidth as is discussed

in Section 5.3.

AMD R9 295X2 NVIDIA K20

0

30

60

90

120

ab
st

ra
ct

C
L

op
en

cl

ab
st

ra
ct

C
L

cu
da

op
en

cl

Code Version [Platform]

T
im

e(
s)

sharedtex
shared
none

Figure 5: Memory optimisations for CUDA, OpenCL and ab-

stractCL versions of the room acoustics benchmarks run for room

size of 512×512×404 on an NVIDIA and AMD GPU. The timings

shown produce 100ms of sound.

5.5. Advanced Simulations

Results in this paper have thus far only been presented for a very

simplified problem: wave propagation is assumed lossless and the

simplest FDTD scheme (employing a seven-point stencil) is used.

It is thus of interest to explore more complex models of wave prop-

agation, as well as improved simulation designs. Two new features

were investigated for these so-called “advanced” codes: air vis-

cosity (see [6]) and larger stencil schemes of leggy type (see [3]).

The main algorithmic difference in adding viscosity is that another

grid is passed into the main kernel and more computations are per-

formed. Schemes operating over leggy stencils require access to

grid values beyond the nearest neighbours. For this investigation,

19-point leggy stencils were introduced (three points in each of the

six Cartesian directions as well as the central point, see Figure 1 in

[3]). The comparison was done on a smaller scale, however, with

the intention only of giving a general idea of whether or not the

codes performed similarly. Thus, only CUDA and OpenCL ver-

sions were tested. The variations were run on the two NVIDIA

GPUs, the two AMD GPUs and the Xeon Phi for both small and

large room sizes.

DAFX-372

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

Results of the performance of these advanced codes can be dis-

cussed in a number of ways including: in comparison to the sim-

pler codes, as a comparison amongst the different advanced ver-

sions, as a comparison between versions on the same platform and

also comparisons of the same version across platforms. Graphs

in Figure 6 show the performance timings and the memory band-

width of the advanced codes for the various implementations for

the larger room size. In these graphs, the following versions are

included: cuda (the original version), cuda_adv (cuda with vis-

cosity), cuda_leggy (cuda with leggy stencils) and cuda_leggyadv

(cuda with leggy stencils and viscosity). The comparable OpenCL

counterparts of these versions were also run. These graphs are set

up in a similar way as those found in Figures 3 and 4, where the

versions of the code run along the x-axis and the performance is on

the y-axis (in seconds) and the separated parts of the graph indicate

the platform it was run on. Here, the top graph shows performance

and the bottom shows bandwidth.

Generally the performance profile of the advanced codes looks

similar to what can be seen for the original codes in Section 5.1:

the codes still run fastest on AMD R9 259X2 and slowest on the

Xeon Phi. The versions run on the AMD R9 259X2 in comparison

to the same versions on the K20 hover between being 43%-54%

faster. For both large and small rooms, the leggy codes are slower

than the viscosity codes for both OpenCL and CUDA on every-

thing except the K20. The combination advanced codes (*_leg-

gyadv) are significantly slower across the board, particularly on

the Xeon Phi.

This purpose of this analysis is to see what effect algorithmic

changes (ie. number of inputs or floating point operations) in the

same benchmark have when run on the same platform. How the

performance changes with differences to the models of the rooms

can vary quite a bit across platforms, which echoes the results seen

when comparing local memory optimisations. When comparing

original versions to the leggy, viscosity or combination versions,

OpenCL codes are 1.4–6.4x slower for the combination versions.

When this is limited to AMD GPUs, the difference is only 1.4x

slower - for NVIDIA GPUs, 3–3.6x slower. In comparison, the

CUDA version on the NVIDIA GPUs varies from 1.6–2.4x slower

for the combination version. For the stand-alone leggy and vis-

cosity versions, this difference is much less pronounced, however

the same trend remains: OpenCL versions retain better perfor-

mance with changes on AMD platforms and significantly worse

than CUDA versions on NVIDIA GPUs. These differences cannot

wholly be attributed to specification differences given that the dif-

ference exists for all these versions between the AMD R280 and

NVIDIA GTX 780, which share some similar specifications.

6. SUMMARY AND FUTURE WORK

In this paper we have shown that it is possible to implement room

acoustics simulations in a way that allows the same source code to

execute with good performance across a range of parallel architec-

tures. Prior to this work, such simulations were predominantly tied

to NVIDIA GPUs and we have now extended applicability to other

platforms that were previously inaccessible. We have found that

the main indicator of how the application will perform on a given

architecture is the memory bandwidth offered by that architecture,

due to the fact that the algorithm has low operational intensity. The

best performing platforms are AMD and NVIDIA GPUs, due to

their high memory bandwidth capabilities. The AMD R9 259X2

has the highest peak bandwidth of the GPUs tested, and was corre-

AMD R9 295X2 AMD R280 NVIDIA GTX780 NVIDIA K20 Xeon Phi

0

500

1000

1500

2000

op
en

cl

op
en

cl
_a

dv

op
en

cl
_l

eg
gy

op
en

cl
_l

eg
gy

ad
v

op
en

cl

op
en

cl
_a

dv

op
en

cl
_l

eg
gy

op
en

cl
_l

eg
gy

ad
v

cu
da

cu
da

_a
dv

cu
da

_l
eg

gy
cu

da
_l

eg
gy

ad
v

op
en

cl
op

en
cl

_a
dv

op
en

cl
_l

eg
gy

op
en

cl
_l

eg
gy

ad
v

cu
da

cu
da

_a
dv

cu
da

_l
eg

gy
cu

da
_l

eg
gy

ad
v

op
en

cl
op

en
cl

_a
dv

op
en

cl
_l

eg
gy

op
en

cl
_l

eg
gy

ad
v

op
en

cl

op
en

cl
_a

dv

op
en

cl
_l

eg
gy

op
en

cl
_l

eg
gy

ad
v

Code Version [Platform]

T
im

e(
s)

Kernel1
Data Copy Total
Kernel2
TimeLeft

AMD R9 295X2 AMD R280 NVIDIA GTX780 NVIDIA K20 Xeon Phi

0

100

200

300

op
en

cl

op
en

cl
_a

dv

op
en

cl
_l

eg
gy

op
en

cl
_l

eg
gy

ad
v

op
en

cl

op
en

cl
_a

dv

op
en

cl
_l

eg
gy

op
en

cl
_l

eg
gy

ad
v

cu
da

cu
da

_a
dv

cu
da

_l
eg

gy
cu

da
_l

eg
gy

ad
v

op
en

cl
op

en
cl

_a
dv

op
en

cl
_l

eg
gy

op
en

cl
_l

eg
gy

ad
v

cu
da

cu
da

_a
dv

cu
da

_l
eg

gy
cu

da
_l

eg
gy

ad
v

op
en

cl
op

en
cl

_a
dv

op
en

cl
_l

eg
gy

op
en

cl
_l

eg
gy

ad
v

op
en

cl

op
en

cl
_a

dv

op
en

cl
_l

eg
gy

op
en

cl
_l

eg
gy

ad
v

Code Version [Platform]

B
an

dw
id

th
 (

G
B

/s
)

Bandwidth Limits: peak stream

Calculated Bandwidth: bandwidth

Figure 6: Timing (top) and Bandwidth (bottom) for different ver-

sions of the advanced room acoustics benchmarks across plat-

forms for room size 512×512×404. Smaller room results are not

included as they show similar pattern.

spondingly found to be the best performing platform for the room

acoustics simulation codes. In addition, we found the consumer-

class NVIDIA GTX780 outperforms the HPC-specific NVIDIA

K20 variant despite the fact it has many times lower floating point

capability, due to insensitivity of the application to computational

capability, as well as higher memory bandwidth of the former. Tra-

ditional CPUs have much lower memory bandwidth than GPUs,

and measured performance was correspondingly low. The Intel

Xeon Phi platform offers a high theoretical memory bandwidth,

but we were unable to achieve a reasonable percentage of this in

practice.

Performance-portable frameworks, including the abstractCL

framework designed to allow flexibility in implementation options,

were able to achieve similar performance to native methods, with

only relatively small overheads (that we consider a small price to

pay for the benefits that are offered by portability). However, rela-

tively low-level programming is still required for these frameworks

(including explicit parallelisation and data management). An ideal

framework would offer performance portability, whilst allowing

an intuitive definition of the scientific algorithm. Future work will

DAFX-373

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

adapt a higher level framework named LIFT [22], currently un-

der research and development at the University of Edinburgh, to

enable it for 3D wave-based stencil computations. This frame-

work aims, through automatic code generation, to allow execution

of an application across different hardware architectures in a per-

formance portable and productive manner. Future work will also

look into extending abstract frameworks such as LIFT to modelling

these codes across multiple parallel devices.

7. ACKNOWLEDGEMENTS

We thank Brian Hamilton and Craig Webb for providing the bench-

marks used in this project and for answering questions about acous-

tics. We would also like to thank Michel Steuwer for providing

invaluable advice about GPUs and OpenCL. This work was sup-

ported in part by the EPSRC Centre for Doctoral Training in Per-

vasive Parallelism, funded by the UK Engineering and Physical

Sciences Research Council (grant EP/L01503X/1) and the Univer-

sity of Edinburgh.

8. REFERENCES

[1] Dick Botteldooren, “Finite-Difference Time-Domain Sim-

ulation Of Low-Frequency Room Acoustic Problems,” The

Journal of the Acoustical Society of America, vol. 98, no. 6,

pp. 3302–3308, 1995.

[2] Stefan Bilbao, Brian Hamilton, Alberto Torin, et al., “Large

Scale Physical Modeling Sound Synthesis,” in Stockholm

Musical Acoustics Conference (SMAC), 2013, pp. 593–600.

[3] Brian Hamilton, Craig J Webb, Alan Gray, and Stefan

Bilbao, “Large Stencil Operations For GPU-Based 3-

D Acoustics Simulations,” Proc. Digital Audio Effects

(DAFx),(Trondheim, Norway), 2015.

[4] Niklas Röber, Martin Spindler, and Maic Masuch,

“Waveguide-Based Room Acoustics Through Graphics

Hardware.,” in ICMC, 2006.

[5] “Compilers and More: What Makes Performance Portable?,”

https://www.hpcwire.com/2016/04/19/

compilers-makes-performance-portable/.

[6] Craig Webb, Parallel Computation Techniques for Virtual

Acoustics and Physical Modelling Synthesis, Ph.D. thesis,

University of Edinburgh, 2014.

[7] Jelle Van Mourik and Damian Murphy, “Explicit Higher-

Order FDTD Schemes For 3D Room Acoustic Simulation,”

IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 22, no. 12, pp. 2003–2011, 2014.

[8] OpenMP Architecture Review Board, “OpenMP Ap-

plication Program Interface Version 4.5,” November

2015, http://www.openmp.org/wp-content/

uploads/openmp-4.5.pdf Accessed: 2016-08-12.

[9] David B. Kirk and Wen-mei W. Hwu, Programming Mas-

sively Parallel Processors: A Hands-On Approach, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd

edition, 2013.

[10] NVIDIA, “Programming Guide: CUDA Toolkit Documenta-

tion,” http://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html. Accessed: 2016-

08-12.

[11] James Reinders, “An Overview of Programming for Intel

Xeon Processors and Intel Xeon Phi Coprocessor,” https:

//software.intel.com/sites/default/

files/article/330164/an-overview-of-

programming-for-intel-xeon-processors-

and-intel-xeon-phi-coprocessors_1.pdf.

Accessed: 2016-08-05.

[12] Khronos OpenCL Working Group, “OpenCL Specifica-

tion. Version 2.2,” 2016, https://www.khronos.

org/registry/OpenCL/specs/opencl-2.2.pdf

Accessed: 2016-08-12.

[13] Alan Gray and Kevin Stratford, “A Lightweight Approach

To Performance Portability With TargetDP,” The Interna-

tional Journal of High Performance Computing Applica-

tions, p. 1094342016682071, 2016.

[14] Murray Cole, Algorithmic Skeletons: Structured Manage-

ment of Parallel Computation, Ph.D. thesis, University of

Edinburgh, 1989.

[15] Yongpeng Zhang and Frank Mueller, “Autogeneration and

Autotuning Of 3D Stencil Codes On Homogeneous And Het-

erogeneous GPU Clusters,” Parallel and Distributed Sys-

tems, IEEE Transactions on, vol. 24, no. 3, pp. 417–427,

2013.

[16] Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin, and

Markus Püschel, “Operator Language: A Program Genera-

tion Framework For Fast Kernels,” in Domain-Specific Lan-

guages. Springer, 2009, pp. 385–409.

[17] Cédric Nugteren, Henk Corporaal, and Bart Mesman,

“Skeleton-based Automatic Parallelization Of Image Pro-

cessing Algorithms For GPUs,” in Embedded Computer Sys-

tems (SAMOS), 2011 International Conference On. IEEE,

2011, pp. 25–32.

[18] Joshua Auerbach, David F Bacon, Perry Cheng, et al.,

“Growing A Software Language For Hardware Design,” 1st

Summit on Advances in Programming Languages (SNAPL

2015), vol. 32, pp. 32–40, 2015.

[19] Christian Lengauer, Sven Apel, Matthias Bolten, et al., “Ex-

astencils: Advanced Stencil-Code Engineering,” in Euro-

pean Conference On Parallel Processing. Springer, 2014, pp.

553–564.

[20] John D. McCalpin, “Memory Bandwidth and Machine Bal-

ance in Current High Performance Computers,” IEEE Com-

puter Society Technical Committee on Computer Architec-

ture (TCCA) Newsletter, pp. 19–25, Dec 1995.

[21] Samuel Williams, Andrew Waterman, and David Patterson,

“Roofline: An Insightful Visual Performance Model For

Multicore Architectures,” Communications of the ACM, vol.

52, no. 4, pp. 65–76, 2009.

[22] Michel Steuwer, Christian Fensch, Sam Lindley, and

Christophe Dubach, “Generating Performance Portable

Code Using Rewrite Rules: From High-Level Functional Ex-

pressions To High-Performance Opencl Code,” ACM SIG-

PLAN Notices, vol. 50, no. 9, pp. 205–217, 2015.

[23] George Teodoro, Tahsin Kurc, Jun Kong, et al., “Compar-

ative Performance Analysis Of Intel Xeon Phi, GPU And

CPU,” arXiv preprint arXiv:1311.0378, 2013.

DAFX-374

https://www.hpcwire.com/2016/04/19/compilers-makes-performance-portable/
https://www.hpcwire.com/2016/04/19/compilers-makes-performance-portable/
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf

	1 Introduction
	2 Background
	2.1 FDTD Room Acoustics Scheme
	2.2 Hardware and Native Programming Methods
	2.2.1 Traditional Multi-Core CPUs
	2.2.2 GPUs
	2.2.3 Intel Xeon Phi Many-core CPU

	2.3 Existing Portable Programming Methods
	2.3.1 OpenCL
	2.3.2 targetDP
	2.3.3 Other Methods

	3 Portable and Productive Framework Development
	3.1 Overview
	3.2 Functionality
	3.3 Advantages

	4 Experimental Setup
	4.1 Environment
	4.1.1 Hardware
	4.1.2 Memory Bandwidth Reference Benchmark

	4.2 Analysis
	4.2.1 Metrics
	4.2.2 Acoustical Model Sizes

	5 Results
	5.1 Overall Performance Comparison Across Hardware
	5.2 Performance Comparison of Software Versions
	5.3 Hardware Capability Discussion
	5.4 Optimisation
	5.5 Advanced Simulations

	6 Summary and Future Work
	7 Acknowledgements
	8 References

