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ABSTRACT

Physical modeling of string vibrations strongly depends on the

conditions at the system boundaries. The more complex the bound-

ary conditions are the more complex is the process of physical

modeling. Based on prior works, this contribution derives a gen-

eral concept for the incorporation of complex boundary conditions

into a transfer function model designed with simple boundary con-

ditions. The concept is related to control theory and separates the

treatment of the boundary conditions from the design of the string

model.

1. INTRODUCTION

The physical modeling of vibrating strings, e.g. guitar or piano

strings is a well studied topic in the area of sound synthesis. A

description of the physical phenomena in terms of partial differen-

tial equations (PDE) allows the application of different modeling

techniques. These methods transform the physical description into

computational models by transformations into the respective fre-

quency domain or by discretization in time and space [1, 2].

While a PDE describes the vibrations of a guitar string itself,

a suitable set of boundary conditions has to be chosen to achieve

a realistic scenario. For a guitar string different kinds of boundary

conditions are discussed in [3]. Simple boundary conditions can

be defined as conditions for deflection (fixed ends) or its first order

space derivatives (free ends). Complex boundary conditions, e.g.

impedance boundary conditions are described by a linear combi-

nation of physical quantities by a complex boundary impedance.

A suitable modelling technique is the Functional Transforma-

tion Method (FTM), based on an expansion into eigenfunctions

[4]. These eigenfunctions are most easily determined for simple

boundary conditions [5]. The incorporation of complex boundary

conditions leads to non-linear equations for the eigenvalues [6].

An alternative approach for the incorporation of complex bound-

ary conditions is based on a suitable state-space description. It is

shown for the FTM in [7] for the case of frequency-independent

impedance boundary conditions. These concepts are highly re-

lated to the basics of open-loop and closed loop systems in control

theory as the synthesis algorithm is kept separate from the bound-

ary model [8–10]. Thus the eigenvalues of the simple boundary

value problem act as eigenvalues of the open loop system and the

eigenvalues of the complex boundary value problem belong to the

closed loop system. The closed loop eigenvalues do not need to be

calculated explicitly, instead their effect is created by the feedback

loop.

This contribution extends the concepts presented in [7, 11] in

the continuous frequency domain which hold for a wide range of

PDE’s of physical interest. The synthesis models based on the

FTM are formulated in terms of a state-space description and a

well defined input/output model for the system boundaries is de-

rived. This model leads to a generalized boundary circuit, which

shows how the simple boundary conditions are connected to more

complex ones.

The presentation is not completely self-contained, since im-

portant steps have already been discussed in [7] and references

therein. Therefore readers are occasionally referred to the corre-

sponding sections of [7] for details not presented here.

The paper is structured as follows: Sec. 2 gives an overview on

the Functional Transformation Method to obtain a transfer func-

tion model by modal expansion. Subsequently the synthesis of

such systems is reformulated in terms of a state space description

in Sec. 3. Sec. 4 presents an extensive input/output model for phys-

ical systems and clarifies the terms simple and complex bound-

ary conditions. Especially the connection between both kinds of

boundary conditions is highlighted in this section, which leads to

a modified state space model in Sec. 5. Sec. 6 recapitulates the

string model presented in [7], which is reformulated to fit into the

input/output model. In Sec. 7 a bridge model for a guitar is pro-

posed, which is connected to the string model. The simulation

results are shown in Sec. 8. Finally Sec. 9 presents several ways in

which the model can be extended and applied in further works.

2. MULTIDIMENSIONAL TRANSFER FUNCTION

MODEL

For the synthesis of physical systems a multidimensional transfer

function model can be obtained by suitable transformation meth-

ods, e.g. with the Functional Transformation Method. The method

is based on a combination of the Laplace transformation for the

time variable and an expansion into spatial eigenfunctions by the

Sturm-Liouville transformation.

2.1. Physical Description

The PDEs describing a physical system along with their initial

and boundary conditions can be formulated in vector form. The

application of a Laplace transform removes the time derivatives

and leaves a set of ordinary differential equations. Linear systems

which are at rest for t < 0 can be formulated in a generic vector

form on the spatial region 0 ≤ x ≤ ℓ

[sC − L]Y (x, s) = Fe(x, s), L = A+ I
∂

∂x
, (1)

with the spatial differential operator L and the complex frequency

variable s. The vector Fe(x, s) is the continuous frequency do-

main equivalent of a vector of time and space dependent functions
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fe(x, t) exciting the system. The matrix C contains weighting pa-

rameters for the time derivatives, and the matrix A contains loss

parameters and is included in the spatial differential operator L.

The vector of variables Y (x, s) contains the unknown physical

quantities. The matrix I is the identity matrix.

The boundary conditions of the system prescribe the existence

of a boundary value Φ for one variable or a linear combination of

variables in the vector Y (x, s) at x = 0, ℓ. The conditions are

formulated in terms of the vector of boundary values and a matrix

of boundary conditions FH

b acting on the vector of variables

F
H

b (x, s)Y (x, s) = Φ(x, s), x = 0, ℓ, (2)

where the superscript H denotes the hermitian matrix (conjugate

transpose).

2.2. Sturm-Liouville Transformation

For application to the space dependent quantities in (1) a Sturm-

Liouville Transformation (SLT) is defined in terms of an integral

transformation [4]

Ȳ (µ, s) = T {Y (x, s)} =

∫ ℓ

0

K̃
H(x, µ)CY (x, s)dx, (3)

where the vector K̃ is the kernel of the transformation and Ȳ (µ, s)
is the representation of the vector Y (x, s) in the complex tempo-

ral and spatial transform domain. Defining a suitable kernel K,

the inverse transformation is expressed in terms of a generalized

Fourier series expansion

Y (x, s) = T {Ȳ (µ, s)} =

∞
∑

µ=−∞

1

Nµ

Ȳ (µ, s)K(x, µ), (4)

with the scaling factor Nµ. The kernel functions are unknown

in general, they can be determined for each problem (1) as the

solution of an arising eigenvalue problem [4,12]. The integer index

µ is the index of a discrete spatial frequency variable sµ for which

the PDE (1) has nontrivial solutions [4].

2.3. Properties of the Transformation

The SL-transform described above has to fulfill different proper-

ties to be applicable to a PDE (1), e.g. the discrete nature of the

eigenvalues sµ, the adjoint nature of the kernel functions K and K̃

and the bi-orthogonality of the kernel functions. The properties of

the SLT and the FTM are described in detail in [4, 12]. The math-

ematical derivations regarding the SLT and the FTM are omitted

here for brevity, as this contribution is focussed on the input and

output behaviour at the system boundaries.

2.4. Transform Domain Representation

The application of the transformation (3) turns a PDE in the form

of Eq. (1) into an algebraic equation of the form (see [7, Eq. (16)])

sȲ (µ, s)− sµȲ (µ, s) = F̄e(µ, s) + Φ̄(µ, s), (5)

with the transformed vector of boundary values and the transformed

excitation function

Φ̄(µ, s) = −
[

K̃
H(x, µ)Φ(x, s)

]

∣

∣

∣

∣

ℓ

0

, (6)

F̄e(µ, s) =

∫ ℓ

0

K̃
H(x, µ)Fe(x, s)dx. (7)

Solving (5) for the transformed vector of variables leads to the

representation

Ȳ (µ, s) = H̄(µ, s)
[

F̄e(µ, s) + Φ̄(µ, s)
]

, (8)

with the multidimensional transfer function

H̄(µ, s) =
1

s− sµ
, Re {sµ} < 0. (9)

3. STATE SPACE MODEL

The description by a multidimensional transfer function from Sec. 2

can be formulated in terms of a state-space description, basically

shown in [7]. This formulation provides many computational ben-

efits (e.g. to avoid delay free loops) and allows the incorporation

of boundary conditions of differnt kinds.

3.1. State Equation

The transform domain representation (5) is reformulated to a form

which resembles a state equation for each single value of µ

sȲ (µ, s) = sµȲ (µ, s) + F̄e(µ, s) + Φ̄(µ, s). (10)

Combining all µ-dependent variables into matrices and vectors,

expands the state equation to any number of eigenvalues sµ

sȲ (s) = AȲ (s) + Φ̄(s) + F̄e(s), (11)

with the vectors

Ȳ (s) =
[

· · · , Ȳ (µ, s), · · ·
]T

, (12)

Φ̄(s) =
[

· · · , Φ̄(µ, s), · · ·
]T

, (13)

F̄e(s) =
[

· · · , F̄e(µ, s), · · ·
]T

, (14)

and the state matrix is given as

A = diag (. . . , sµ, . . . ) . (15)

3.2. Output Equation

The inverse transformation from Eq. (4) can be reformulated in

vector form as an output equation for the state-space model

Y (x, s) = C(x)Ȳ (s), (16)

with the matrix

C(x) =

[

. . . ,
1

Nµ

K(x, µ), . . .

]

. (17)

3.3. Transformed Boundary Term

The transformed boundary term Φ̄ in Eq. (6), can be reformulated

in terms of a vector notation to fit into the state equation (11)

Φ̄(s) = B(0)Φ(0, s)−B(ℓ)Φ(ℓ, s), (18)

with the matrix

B(x) =









...

K̃H(x, µ)
...









, x = 0, ℓ. (19)

The state space description with matrices of possibly infinite

size is only used to show the parallelism to other state-space de-

scriptions. The matrices A,B(x) and C(x) act as transformation

operators rather than as matrices in the sense of linear algebra.
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4. INPUT/OUTPUT BEHAVIOUR

When dealing with boundary conditions of physical systems it is

important to select which quantities are defined as input and which

are ouputs of the system (see [10, p. 55]). The number of boundary

conditions corresponds to the order of the spatial differential oper-

ator, respectively the number of variables in the vector Y (x, s). In

many practical cases, boundary conditions are assigned to half the

variables at x = 0 and to half of the variables at x = ℓ. The other

variables at either side depend on the system dynamics and can be

observed, they are called boundary observations here.

With this distribution of boundary conditions and boundary

observations, the vector of variables Y can be sorted in a way, that

the boundary conditions appear on the top of the vector Y (x, s)
as Y1(x, s) and those variables, which are assigned to boundary

observations appear on the bottom as Y2(x, s). To construct these

vectors, the variable vector is multiplied by suitable permutation

matrices to extract the relevant entries, which leads to a separated

representation of the vector of variables

Y (x, s) =

[

Y1(x, s)
Y2(x, s)

]

. (20)

This partitioning carries over to the whole state space description.

The eigenfunctions K and K̃ from (3), (4) have the same size as

the vector Y (x, s), they can also be divided by applying the same

permutation

K(x, µ) =

[

K1(x, µ)
K2(x, µ)

]

, K̃(x, µ) =

[

K̃1(x, µ)

K̃2(x, µ)

]

. (21)

With this partitioning, the matrices in the output equation (16) and

the transformed boundary vector (18) are also divided

C(x) =

[

C1(x)
C2(x)

]

, B(x) =
[

B1(x) B2(x)
]

. (22)

4.1. Boundary Conditions

After selecting the input and output variables, the following sec-

tions discuss different kinds of boundary conditions and their con-

nection to each other. Sec. 6 presents an application of these gen-

eral concepts to a physical model of a vibrating string.

4.1.1. Simple Boundary Conditions

This section defines simple boundary conditions at x = 0, ℓ of

the physical system. Simple boundary conditions are conditions

acting on individual entries of Y1(x, s) at the outputs of the sys-

tem. At first the boundary matrices and vectors according to (2)

are specialized to

Fb(x, s) = Fs(x), Φ(x, s) = Φs(x, s). (23)

with

Fs(x) =

[

I 0

0 0

]

, Φs(x, s) =

[

Φs1(x, s)
0

]

. (24)

Additionally a matrix of boundary observations is defined

G
H

s (x) = I − F
H

s (x) =

[

0 0

0 I

]

, F
H

s (x) +G
H

s (x) = I.

(25)

With these two matrices the input and output behaviour of the sys-

tem is described completely. Applying the matrices of boundary

conditions (23) and boundary observations (25) to the vector of

variables (22) leads to (some arguments (x, s) omitted)

F
H

s Y =

[

Φs1

0

]

, G
H

s Y =

[

0

Yso

]

, (26)

Y1(x, s) = Φs1(x, s), Y2(x, s) = Yso(x, s). (27)

4.1.2. Complex Boundary Conditions

Complex boundary conditions are defined here as linear combi-

nations of physical quantities at the system boundaries x = 0, ℓ,
including time derivatives or complex parameters and functions.

Like simple boundary conditions, also complex boundary condi-

tions can be defined in a more general form. Again the matrix of

boundary conditions is specialized

Fb(x, s) = Fc(x, s), Φ(x, s) = Φc(x, s). (28)

with

Fc(x, s) =

[

Fc1(x, s) 0
Fc2(x, s) 0

]

, Φc =

[

Φc1(x, s)
0

]

. (29)

The matrix Fc1(x, s) has to be chosen as non-singular, except for

isolated values of s. Additionally, as in the case of simple bound-

ary conditions, a matrix of boundary observations is defined

Gc(x, s) =

[

0 Gc1(x, s)
0 Gc2(x, s)

]

, (30)

which transforms the vector of variables into a vector of complex

boundary observations

G
H

c (x, s)Y (x, s) =

[

0

Yco(x, s)

]

. (31)

Also with the complex boundary conditions the input and output

behaviour of the system can be described in a closed form, by ap-

plying both matrices (29), (30) to the vector of variables, which

leads to

F
H

c1(x, s)Y1(x, s) + F
H

c2(x, s)Y2(x, s) = Φc1(x, s), (32)

G
H

c1(x, s)Y1(x, s) +G
H

c2(x, s)Y2(x, s) = Yco(x, s). (33)

4.2. Connection between simple and complex Conditions

With the definitions of simple and complex boundary conditions

from Sec. 4.1.1 – 4.1.2 their connections can be explored, to ex-

press complex boundary conditions in terms of the simple ones.

So in general the physical system is described by a bi-orthogonal

basis for simple boundary conditions. Then the external connec-

tions are formulated in terms of relations between the input and

output variables of the complex boundary conditions.

4.2.1. Simple and Complex Boundary Conditions

Starting with the application of complex boundary conditions to

the vector of variables Y and exploiting Eq. (25) leads to

F
H

c (x, s)
(

F
H

s (x) +G
H

s (x)
)

Y (x, s) = Φc(x, s). (34)
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Φs1(ℓ, s)
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Φc1(ℓ, s)

Yco(ℓ, s)

Figure 1: Boundary circuit for the general connection between

simple and complex boundary conditions according to Eq. (35),

(38). Φs1(ℓ, s),Yso(ℓ, s): Inputs and observations of the model

for simple boundary conditions. Φc1(ℓ, s),Yco(ℓ, s): Inputs and

observations of the complex boundary circuit. M : Matrices defin-

ing the connection between simple and complex boundary condi-

tions.

Inserting the matrix of complex boundary conditions (29) and the

definitions of matrices of the simple case (24), (25) and applying

the block partitioning leads to an expression of the simple bound-

ary conditions Φs1 in terms of the complex boundary conditions

Φc1 and simple boundary observations Yso

Φs1(x, s) = M11(x, s)Φc1(x, s) +M12(x, s)Yso, (35)

with the connection matrices

M11(x, s) = F
−H

c1 (x, s), (36)

M12(x, s) = −F
−H

c1 (x, s)FH

c2(x, s). (37)

4.2.2. Simple and Complex Boundary Observations

Similar to the boundary conditions, also the boundary observation

of the simple and complex case can be connected. The goal is

to express the complex boundary observations Yco in terms of the

simple boundary values Φs1 and the simple boundary observations

Yso. Starting with Eq. (33) and exploiting the block structure of

matrices and vectors, together with (27), leads to

Yco(x, s) = M21(x, s)Φc1(x, s) +M22Yso(x, s), (38)

with the connection matrices

M21(x, s) = G
H

c1(x, s)F
−H

c1 (x, s), (39)

M22(x, s) = G
H

c2(x, s)−G
H

c1(x, s)F
−H

c1 (x, s)FH

c2(x, s).
(40)

Eq. (35) and (38) describe the connection between simple and

complex boundary conditions in terms of boundary values and

boundary observations.

Fig. 1 shows this connection between simple and complex

boundary conditions for a system boundary (open box on the left

side) at x = ℓ. The physical system on the left side is designed

with simple boundary conditions, so that the behaviour at x = ℓ
is defined by the partitioned vector Y from (20), respectively by

the simple boundary values Φs1 and the simple boundary observa-

tions Yso according to Eq. (27). The figure shows that whenever

a system with complex boundary conditions is desired, it is not

necessary to redesign the whole physical model. Instead Eqs. (35)

and (38) allow to impose the complex boundary values Φc1 on the

simple model and to express the complex boundary observations

Yco in terms of the simple ones.

5. MODIFIED STATE SPACE DESCRIPTION

In this section the connection between simple and complex bound-

ary conditions from Sec. 4.2 is incorporated into the state-space

description from Sec. 3.

5.1. Transformed Boundary Term

The simple boundary observations Yso can be derived by the ap-

plication of the partitioning (20), (22) to the output equation (16)

Yso(x, s) = C2(x)Ȳ (s), x = 0, ℓ. (41)

In the same way, the partitioning (20), (22) together with the sim-

ple boundary conditions from Eq. (24) is applied to the trans-

formed boundary term from Eq. (18). The result is

Φ̄(s) = B1(0)Φs1(0, s)−B1(ℓ)Φs1(ℓ, s) = B̂Φ̂(s), (42)

with the block matrices

B̂ =

[

B1(0)
−B1(ℓ)

]T

, Φ̂s(s) =

[

Φs1(0, s)
Φs1(ℓ, s)

]

. (43)

Now the connection between simple and complex boundary

conditions can be incorporated into the transformed boundary term

by inserting Eq. (35) with the boundary observations from (41)

into (42). Solving for Φ̄(s) leads to a representation of the bound-

ary term Φ̄ by the state variable Ȳ (s) and the complex boundary

conditions

Φ̄(s) = −B̂K̂Ȳ (s) +BcΦ̂c(s), (44)

with the block matrices

K̂ = −

[

M12(0, s)C2(0)
M12(ℓ, s)C2(ℓ)

]

, Φ̂c(s) =

[

Φc1(0, s)
Φc1(ℓ, s)

]

, (45)

Bc =
[

B1(0)M11(0, s) −B1(ℓ)M11(ℓ, s)
]

. (46)

5.2. State Equation and Output Equation

Including (44) into the state equation (11) leads to a modified state

equation, where the complex boundary conditions are incorporated

sȲ (s) = AcȲ (s) +BcΦ̂c(s) + F̄e(s), (47)

with the modified state feedback matrix

Ac = A− B̂K̂. (48)

The structure of the modified state equation shows that the bound-

ary circuit from Fig. 1 is equivalent to a state feedback structure.

The state matrix A of the state space description contains the poles

of the physical system, Eq. (48) shows the influence of the bound-

ary circuit which shifts the poles of the system with simple bound-

ary conditions.

The output equation (16) of the state-space description is not

directly affected by the incorporation of complex boundary condi-

tions.
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5.3. Relation to Control Theory

The modification of the open loop behaviour by feedback as in-

troduced in Sec. 5.2 is well known in the literature on control the-

ory [8,10]. The fact that system interconnection constitutes a feed-

back control loop is highlighted e.g. in [10, Fig. 15]. The notation

in (48) has been chosen to reflect the description of closed loop

systems in e.g. [9, Eq. (19)].

6. STRING MODEL

This section presents a multidimensional transfer function model

of a guitar string based on [7]. The derivations are omitted for

brevity; instead the results and especially the boundary conditions

from [7] are rewritten to fit the input/output model from Sec. 4.

6.1. Physical Description

A single vibrating string can be described by a PDE [1, Eq. (6)] in

terms of the deflection y = y(x, t) depending on time t and space

x on the string

ρAÿ + EIy′′′′ − Tsy
′′ + d1ẏ − d3ẏ

′′ = fe, (49)

where ẏ represents the time- and y′ the space-derivative and with

the cross-section area A, moment of inertia I and the length ℓ. The

material is characterized by the density ρ and Young’s modulus E.

Ts describes the tension and d1 and d3 are frequency independent

and frequency dependent damping [1]. The space and time depen-

dent excitation function is defined as fe = fe(x, t).
The PDE in (49) can be rearranged in the vector form (1) as

shown in [7]. To fit the vector of variables into the input/output

model (20), the vector is rearranged with suitable permutation ma-

trices. Therefore the vector of variables defined in [7] can be par-

titioned

Y1(x, s) =

[

sY (x, s)
Y ′′(x, s)

]

, Y2(x, s) =

[

Y ′(x, s)
Y ′′′(x, s)

]

. (50)

6.2. Simple Boundary Conditions

A set of simple boundary conditions for a string fixed at both ends

x = 0, ℓ is formulated as a set of equations for the deflection and

bending moment

sY (x, s) = Φ1(x, s), Y ′′(x, s) = Φ2(x, s) x = 0, ℓ. (51)

This set of linear equations can be formulated in terms of a matrix

of boundary conditions and a vector of boundary excitations ac-

cording to (2) as shown in [7]. From here on boundary conditions

of the first kind are called simple boundary conditions and they are

formulated as described in Sec. 4.1.1 in Eq. (24) with

Φs1(x, s) =

[

Φ1(x, s)
Φ2(x, s)

]

, x = 0, ℓ. (52)

6.3. Complex Boundary Conditions

As a set of complex boundary conditions, impedance boundary

conditions are used at x = 0 according to [7]. They are formulated

as a set of linear equations, combining the string deflection Y with

a force F by a frequency dependent admittance Yb(s)

sY (0, s)− Yb(s)F (0, s) = Φc1, Y ′′(0, s) = Φc2. (53)

The force can be expressed as a combination of two forces refor-

mulated in terms of the derivatives of string deflection [13]

F (0, s) = TsY
′(0, s)− EIY ′′′(0, s). (54)

The boundary conditions are rewritten as shown in Sec. 4.1.2 to fit

into the input/output model, with the matrices of boundary condi-

tions

F
H

c1(0, s) = I, F
H

c2(0, s) = Yb(s)

[

−Ts EI
0 0

]

, (55)

and the vector of boundary excitations

Φc1(0, s) =

[

Φc1(0, s)
Φc2(0, s)

]

. (56)

For the position x = ℓ the simple boundary conditions from Sec. 6.2

are applied. It then follows for the matrix of boundary conditions

at x = ℓ

F
H

c1(ℓ, s) = I, F
H

c2(ℓ, s) = 0, (57)

and for the boundary observations

Φc1(ℓ, s) = Φs1(ℓ, s). (58)

6.4. Kernel Functions

To fit into the input/output model from Sec. 4 also the kernel func-

tions from [7] have to be rearranged. For the primal kernel function

follows according to (21) with suitable permutations

K1(x, µ) =

[ sµ
γµ

sin(γµx)

−γµ sin(γµx)

]

, K2(x, µ) =

[

cos(γµx)
−γ2

µ cos(γµx)

]

,

(59)

where K1 is assigned to the boundary conditions and K2 to the

boundary observations. The same partitioning is applied to the

adjoint kernel function

K̃1(x, µ) =

[

q∗1 cos(γµx)
−γ2

µ cos(γµx)

]

, K̃2(x, µ) =

[

−
s∗
µ
q∗
1

γµ
sin(γµx)

γµ sin(γµx)

]

,

(60)

with the wave numbers γµ and the coefficient q1 defined in [7].

6.5. Modified State Space Model

For the synthesis of the string model (49) normally Eq. (4) can

be used as a superposition of first order systems. Alternatively

a state-space model can be set up for the synthesis (see Sec. 3).

Here the modified state-space model from Sec. 5 is applied for the

incorporation of complex boundary conditions (see Sec. 6.3).

6.5.1. Output Equation

The output equation is designed according to Eq. (16) with the out-

put matrix C(x) from Eq. (17), which is divided according to (22).

For the design of the matrices C1 and C2, the kernel functions (59),

(60) and the scaling factor Nµ (see [7, Eq. (15)]) are necessary.
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6.5.2. State Equation

The state equation for the synthesis of the string model is designed

according to Eq. (47). The modified state feedback matrix (48) is

constructed via the state matrix A using the eigenfrequencies as

the solution of the dispersion relation [7]

s2µ +

(

a1

c1
− λ2 c2

c1

)

sµ −
λ2

c1

(

λ2 + a2

)

= 0. (61)

The extension of the state matrix to incorporate complex boundary

conditions follows the principle shown in Sec. 5 using the matrices

in Eq. (45), (46).

These matrices are established with

• the feedback matrices M12 and M11 from (36)-(37) with

the complex boundary conditions from (55), (57),

• the partitioned output matrices C(x) according to (22) and (17),

• the complex boundary excitations (56), (58),

• the transformation matrices of the transformed boundary

term Φ̄ according to (42) and (19).

With a state equation designed in this form, the complex bound-

ary conditions are incorporated into a string model designed with

simple boundary conditions as shown in Fig. 1.

7. BRIDGE MODEL

As a realistic boundary circuit for the impedance boundary condi-

tions (53), a frequency dependent bridge model is chosen as dis-

cussed in [6]. A bridge model resembles the influence of a guitar

bridge, where the string is attached to the bridge at the position

x = 0.

For simplicity the bridge admittance is designed as the super-

position of N second order bandpass filters

Yb(s) =

N
∑

n=1

Yn

s ω0

Qn

s2 + ω0

Qn
s+ ω2

0

, (62)

with the quality factor Qn and the resonance frequency ωn =
2πfn for each mode. An additional gain factor Yn is added to

each bandpass. In general the admittance functions for the bridge

are position and direction dependent, so the admittance differs for

different strings [6].

The physical parameters for the bridge resonances can be taken

from measurements as e.g. shown in [14]. There the lowest six

most significant eigenmodes of the bridge are realized with damped

sinusoids.

Figure 2 shows the first six prominent modes of the bridge ad-

mittance Yb(s) in the frequency domain. The resonance frequen-

cies ωn and the quality factors Qn are taken from [14]. The gain

factors are related to the effective masses Yn = 1

mn
as presented

in [6], with the physical values for the effective masses from [14].

For simulations in the continuous frequency domain, the ad-

mittance function from Eq. (62) is directly used. The function is

just inserted into the boundary conditions (55) and incorporated

into the modified state space model described in Sec. 6.5.
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Figure 2: Absolute value of the bridge admittance Yb(s) according

to Eq. (62). Shown are the N = 6 prominent modes [14].

8. SIMULATION RESULTS

The following section shows the simulation results for a guitar

string including a boundary circuit. All simulation results are com-

puted using the modified state-space model as shown in Sec. 6.5,

with the state equation (47) and the output equation (16).

All calculations are performed in the continuous frequency do-

main and the results are presented in terms of the amplitude spec-

tra of the bending force Fbend(x, s) in y-direction in the lower

frequency range. The bending force is calculated according to

Fbend(x, s) = EIY ′′′(x, s), (63)

where several valid simplifications were applied [3, 13].

8.1. Boundary Conditions and Excitation Function

The complex boundary conditions are chosen for the frequency do-

main simulations of the string according to Sec. 6.3. The bound-

ary values Φc1,Φc2 of the complex boundary conditions are set

to zero for brevity. The admittance Yb(s) is interpreted as the ad-

mittance of the guitar bridge, where the string is placed on. The

admittance is varied for the following simulations.

The function fe(x, t) exciting the string is a single impulse at

the position xe = 0.3m on the string, as shown in [7]. In the

frequency domain this excitation leads to a uniform excitation of

all frequency components. The simulation of output variables in

response to the excitation function can be seen as an impedance-

analysis of the string.

For all simulations a nylon guitar low E-String is used. The

values for the physical parameters in Eq.(49) are taken from [6,15,

16].

8.2. Frequency independent Bridge Impedance

In a first step the simulation is performed for a frequency indepen-

dent constant bridge admittance Yb(s) = const. Figure 3 shows

the normalized amplitude spectra of the bending force |Fbend(0, s)|
at the bridge position x = 0 for the lower frequency range. The

bridge admittance is varied Yb(s) = 0 s/kg, 2 s/kg, 5 s/kg.
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For zero admittance (solid curve in Fig. 3) the modes of the

guitar string can be seen clearly at the fundamental frequency and

the higher modes. The behaviour complies with that of a string

model with simple boundary conditions as the feedback path in

the modified state matrix (48) is zero. The results for a string with

simple boundary conditions are confirmed in [5].

For increasing bridge admittance (dotted, dashed curve in Fig. 3)

all modes of the guitar string are damped equally. These results are

not realistic as a real bridge impedance is strongly frequency de-

pendent. The results for a frequency independent admittance show

the validity of the presented concepts for a feedback structure for

a generic example and the results of [7] are verified.
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Figure 3: Absolute value of the spectrum of bending force

Fbend(0, s) at the bridge position x = 0, for three different fre-

quency independent bridge admittances Yb = const.

8.3. Frequency dependent Bridge Impedance

Now a frequency dependent bridge admittance Yb(s) is used for

the simulations according to Sec. 7 including the first six (N =
1, . . . , 6) modes of a measured bridge impedance (see Fig. 2). The

physical values for the mode resonance frequencies fn, the Q-

values and the effective masses are taken from [14, Table 1].

The results of the string simulation for a frequency dependent

bridge model are pictured in Fig. 4. The figure shows the am-

plitude spectrum of bending force Fbend(0, s) at x = 0 for a zero

bridge admittance Yb = 0 (solid curve) and a frequency dependent

bridge admittance Yb(s) according to Eq. (62) (dotted curve).

To have a comprehensive representation of the string behaviour

the bridge admittance (as shown in Fig. 2) is plotted into Fig. 4 to

indicate the mode positions of the bridge model (dashed curve).

The frequency range is limited to the interesting range, where the

bridge modes influence the string vibration [14, Table 1].

In Fig. 4 the influence of the bridge admittance on the string

vibration can be seen clearly. Depending on the resonance fre-

quencies fn and the corresponding amplitudes of the bridge ad-

mittance, the modes of the vibrating string are shaped. Some of

the peaks are damped completely (around 180Hz in Fig. 4) other

peaks are shifted in frequency according to the profile of Yb(s).

Fig. 5 shows the influence of the bridge admittance Yb(s) on

the bending force Fbend(xe, s) according to Eq. (63) at the exci-

tation position x = xe. It can be seen that in the frequency inde-

pendent case (dotted line) all string resonances are damped in the

same way. For a frequency dependent bridge admittance (dashed

line) the modes are influenced according to the shape of the bridge

admittance.
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Figure 4: Absolute value of the spectrum of bending force

Fbend(0, s) at the bridge position x = 0 for zero bridge admit-

tance (solid line) and for a frequency dependent bridge admittance

according to Eq. (62) in Sec. 7 (dotted line). The dashed black line

is an amplitude shifted version of the bridge admittance Yb(s),
plotted for illustration.

0 100 200 300 400 500
10−6

10−5

10−4

10−3

10−2

10−1

f in [Hz]

|F
b
e
n
d
(x

o
,s
)|

Yb = 0 s/kg

Yb(s)

Yb = 5 s/kg

Figure 5: Absolute value of the spectrum of bending force

Fbend(xe, s) at the excitation position xe = 0.3m for zero bridge

admittance (solid line), for a frequency dependent bridge admit-

tance according to Eq. (62) in Sec. 7 (dashed line) and for a con-

stant frequency independent bridge admittance Yb = const (dot-

ted line).
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9. FURTHER WORKS

This contribution presents a general approach for the incorpora-

tion of complex boundary conditions into systems designed with

simple boundary conditions based on concepts from control the-

ory [8–10]. This method can be used in many applications and can

be further improved. Therefore the following further works are

envisaged: The bridge admittance (62) was chosen exemplary as a

superposition of bandpass filters including realistic resonance fre-

quencies and quality factors based on [14]. For further works the

model can be extended to include more realistic damping effects.

The concepts shown here can be used to link a body model to the

bridge in a block-based style.

The presented concepts are based on a modified state-space

description (see Sec. 5) including a feedback matrix in the contin-

uous frequency domain. These concepts can be transformed into

the discrete-time domain for real-time simulations, which requires

a re-design of the state-space description from Sec. 3 and Sec. 5.

Suitable state space techniques have been presented in [7, Secs.

3-5].

Interactions of the model at any position on the string also can

be realized with the presented concepts. According to Sec. 4 an

input/output model including the excitation function fe(x, t) can

be derived, e.g. for string-fretboard or string-finger interaction.

The concept for the incorporation of complex boundary condi-

tions can be extended to more than one spatial dimension. E.g. the

eigenfunctions for the 2D plate equations cannot be derived ana-

lytically except for the most simple boundary conditions [17]. The

presented concept appears to be a promising approach for the sim-

ulation of the plate equation with complex boundary conditions.

10. CONCLUSIONS

This paper presented a concept for the incorporation of complex

boundary conditions into systems designed with simple bound-

ary conditions. Building on prior work this contribution develops

an input/output description for systems based on transfer function

models. Subsequently it has been shown that complex boundary

conditions (e.g. impedance boundary conditions) can be included

into a model by the design of a feedback loop related to control

theory. The concepts allow to change the boundary behaviour of a

system without changing the interior model of the system.

The validity of the presented concepts is verified by an ex-

tensive example for modelling of guitar strings. A bridge model

is added to an existing string model based on a multidimensional

transfer function. The results are presented in terms of several

spectra of the string resonances.
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