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ABSTRACT

The reverberation time is one of the most prominent acoustical

qualities of a physical room. Therefore, it is crucial that artifi-

cial reverberation algorithms match a specified target reverberation

time accurately. In feedback delay networks, a popular framework

for modeling room acoustics, the reverberation time is determined

by combining delay and attenuation filters such that the frequency-

dependent attenuation response is proportional to the delay length

and by this complying to a global attenuation-per-second. How-

ever, only few details are available on the attenuation filter design

as the approximation errors of the filter design are often regarded

negligible. In this work, we demonstrate that the error of the filter

approximation propagates in a non-linear fashion to the resulting

reverberation time possibly causing large deviation from the speci-

fied target. For the special case of a proportional graphic equalizer,

we propose a non-linear least squares solution and demonstrate the

improved accuracy with a Monte Carlo simulation.

1. INTRODUCTION

Reverberation time is one of the most prominent acoustical qual-

ities of a physical room dominating the perceptual quality of a

space depending on the intended purpose. The reverberation time,

denoted by T60, is the most common decay rate measure and is

defined as the time needed for the energy decay curve of an im-

pulse response to drop by 60 dB [1]. The frequency-dependent

reverberation time T60(ω) can be similarly derived from the en-

ergy decay relief [2]. The accuracy of perceiving the reverberation

time has been studied from various application standpoints [3, 4],

however, specific just-noticeable-differences may vary depending

on the stimulus signal, early to late reverberation ratio and other

properties. For a rough orientation, JNDs of 4% have been re-

ported by participants listening to bands of noise [3], 5-12% for

impulse responses and 3-9% for speech signals [5].

Consequently, generative algorithms for artificial reverbera-

tion strive to recreate the reverberation time of the desired virtual

space accurately. Among the algorithms for artificial reverbera-

tion, the feedback delay networks (FDNs) enjoy popularity for its

versatility and its efficient implementation [6, 7, 8]. The reverber-

ation time of FDNs is commonly determined in two steps: Firstly,

a lossless FDN is designed, i.e., the energy entering the FDN cy-

cles unattenuated through the feedback loop such that there is no

decay of energy. Secondly, the attenuation filters are introduced in

the feedback loop to control the decay rate of the energy and by

this the resulting reverberation time of the system. Fig. 1 shows

a single feedback comb filter with delay line z−m and attenuation

filter A(z).

∗ The International Audio Laboratories Erlangen are a joint institu-
tion of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and
Fraunhofer Institut für Integrierte Schaltungen IIS.

x(n) z−m A(z) y(n)

Figure 1: Feedback comb filter with delay length of m samples

and attenuation filter A(z) determining the resulting reverberation

time.

There are commonly two paradigms for designing the atten-

uation filters: The first being motivated by physical room acous-

tics, where the reverberation time results from different absorptive

boundary materials and the free path in-between [9, 10, 11]. The

resulting reverberation time can be predicted by a modified version

of Sabine’s [12] and Eyering’s [13] formulas. Whereas this attenu-

ation filter design is useful for recreating real room acoustics, it is

not optimal for achieving precise control of the reverberation time.

The second paradigm is motivated from a system theoretic per-

spective, where attenuation filters influence directly the magnitude

of the system poles of the FDN which in turn have a close rela-

tion to the resulting reverberation time. The idea is to choose the

strength of the attenuation filter proportional to the corresponding

delay lengths, i.e., the longer the delay, the stronger is the attenu-

ation [6]. By this, it is possible to define a global attenuation-per-

second no matter how the signal travels through the delay network.

Various filter types have been proposed to realize the atten-

uation filter A(z) depending on the control flexibility, computa-

tional complexity and required accuracy. In the early days, the

most cheaply available filter was a one-pole lowpass filter [6, 14,

15, 16, 17, 18]. Biquadratic filters allow control of the decay time

in three independent frequency bands, with adjustable crossover

frequencies [19, 20]. More advanced studies try to emulate the

frequency response of reflection coefficients in octave bands by

applying high-order filter IIR filters [9, 10, 21]. Recently, Jot pro-

posed a proportional graphic equalizer being a simple yet effective

method to control an arbitrary number of logarithmic bands [22].

Because of its beneficial design, this graphic equalizer is central to

the discussion in this work.

Despite of the large number of proposals on the FDN struc-

ture and the attenuation filter, only few details are given on the

design of the attenuation filter A(z) assuming that the approxi-

mation error made is negligible. However, the example given in

Fig. 2 demonstrates that an attenuation filter with a maximum ap-

proximation error of a few dB may yield a poor approximation

of the resulting reverberation time, in fact it has an infinite T60

at 2 kHz. The reason for this inconsistency can be found in the

reciprocal relation between the attenuation filter response and the
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(a) Target magnitude response of the attenuation filter and an ap-

proximated filter.
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(b) Corresponding target T60 response and the resulting T60 of the

approximated filter.

Figure 2: Target reverberation time and corresponding target attenuation filter magnitude response on the dB scale for a delay m of 100 ms.

Although the approximated filter exhibits relatively small attenuation errors, it exhibits large errors for the reverberation time.

reverberation time. The following paper is dedicated to improv-

ing the design of the attenuation filter to achieve a more accu-

rate reverberation time. Section 2 introduces the background on

FDNs and the error propagation between the magnitude response

and the reverberation time. Further it introduces the proportional

graphic equalizer used for the implementation of the attenuation

filter. Section 3 introduces different techniques to determine the

parameters of the graphic equalizers and demonstrates their im-

pact on a case example. Further, a Monte Carlo simulation with

randomized frequency-dependent target reverberation time evalu-

ates the quality of the different parameter estimation methods.

2. REVERBERATION TIME OF AN FDN

2.1. Combination of Comb Filters

An FDN consists of multiple delay lines interconnected by a feed-

back matrix, which is commonly chosen to be a unilossless ma-

trix1. The constituting lossless FDN is adaptable to produce a

specified reverberation time by extending every delay line with an

attenuation filter [6]. Because of the lossless prototype, each atten-

uation filter can be considered independently and only dependent

on the corresponding delay line. Consequently, the remaining pa-

per only considers single delay line FDNs, which are commonly

referred to as absorptive feedback comb filters (see Fig. 1). The

transfer function of the absorptive feedback comb filter in Fig. 1 is

H(z) =
1

1−A(z)z−m
, (1)

where A(z) is the transfer function of the attenuation filter and

m is the delay length in samples. Every time the signal traverses

the feedback loop, it is affected by the attenuation filter such that

this recursive effect can be described as an attenuation-per-time

interval. Particular care should be taken for the design of the at-

tenuation filter A(z) to ensure the stability of (1). The global tar-

1In contrast to lossless feedback matrices used for example in [7],
unilossless feedback matrices are lossless for all possible delays. For more
information, the reader is referred to [23].

get attenuation-per-sample δ(ω) on dB scale can be related to the

frequency-dependent reverberation time T60(ω) by

δ(ω) = −60
1

fsT60(ω)
, (2)

where fs is the sampling frequency. On a linear scale, the attenuation-

per-sample is given by

D(ω) = 10δ(ω)/20. (3)

The attenuation filter A(z) is commonly idealized in having

zero-phase such that all system poles of (1) lie on the line specified

by |A(ω)|1/m which in turn determines the decay rate of the FDN

[6]. Although this cannot be satisfied strictly, in many designs

the attenuation filter delay is small compared to the delay m and

can be neglected. To achieve the target reverberation time, the

attenuation filter is designed such that [6]

|A(ω)| ≈ Dm(ω)

or

α(ω) ≈ mδ(ω),

(4)

where

α(ω) = 20 log10 |A(ω)|. (5)

In the following section, we explain the error propagation of

the filter response as seen in the example given in Fig. 2.

2.2. Error Propagation of Attenuation Filter Approximation

The design of the attenuation filter may be performed by approx-

imating the target magnitude response either on the dB or linear

scale in (4) minimizing an appropriate error norm [24]. First,

we focus on a least-squares design approach performed on the dB

scale as the main objective such that (4) is expressed as 2

‖α−mδ‖22. (6)

2The Euclidean norm ‖·‖2 of a continuous frequency response F is

given by ‖F‖2 =
(

∫ 2π
0 |F (ω)|2dω

)1/2
whereas for a n × 1 vector v

the Euclidean norm is ‖v‖2 =
(

∑n
i=1 |vi|

2
)1/2

.
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Figure 3: Error propagation from the filter magnitude response

to the resulting reverberation time for a delay m of 100 ms. The

black line depicts the relation between filter magnitude and rever-

beration time as given in (2) and (4). The blue shaded intervals

indicate error intervals of ±0.045 dB around two target values

(solid blue lines) and the green shaded intervals depict the cor-

responding error of the reverberation time around the two target

values (solid green lines).

We refer to this approach as the magnitude least-squares (MLS)

approach.

Because of (2), the approximation error however propagates

in a non-linear fashion to the resulting reverberation time. Fig. 3

shows different target magnitudes of an attenuation filter on the dB

scale with three equidistant error intervals and corresponding re-

verberation times. Although the approximation error of the atten-

uation magnitude is homogenous, the resulting reverberation time

can deviate arbitrarily depending on the target value. For strong

attenuation of -1 dB, an approximation error of 0.2 dB has ne-

glectable influence on the resulting reverberation time. Whereas

for weak attenuation of -0.18 dB the same error can lead to insta-

bility as depicted in in Fig. 2.

To overcome this problem, we propose to minimize the error

directly on the resulting reverberation time, i.e.,

∥

∥

∥

∥

1

α
− 1

mδ

∥

∥

∥

∥

2

2

. (7)

We refer to this approach as the T60 least-squares (TLS) approach.

In the following, we discuss the squared errors (6) and (7) for a

recently proposed attenuation filter implementation for FDN based

on a proportional graphic equalizer [22].

2.3. Proportional Graphic EQ

In the following, we give details on a multiband graphic equalizer

allowing logarithmic band adjustment of the reverberation time

[22]. The technical details are similar to the ones given in [25, 26].

The graphic multiband equalizer consist of a number of cascaded

2nd order IIR filters, each of which controls a certain band. The

lowest and highest band filters are shelving filters [25]:

HLS,g(z) = g1/2
p0 + p1z

−1 + p2z
−2

q0 + q1z−1 + q2z−2
(8)

HHS,g(z) = g/HLS,g(z) (9)

with

p0 = g1/2Ω2 +
√
2Ωg1/4 + 1 (10)

p1 = 2g1/2Ω2 − 2 (11)

p2 = g1/2Ω2 −
√
2Ωg1/4 + 1 (12)

q0 = g1/2 +
√
2Ωg1/4 +Ω2

(13)

q1 = 2g1/2Ω2 − 2 (14)

q2 = g1/2 −
√
2Ωg1/4 +Ω2, (15)

where g is the gain at DC (ω = 0) for HLS,g and at the Nyquist

frequency (ω = fs/2) for HHS,g; and Ω = tan(ωc/2), where

the gain is g1/2 at the cutoff frequency ωc in radians. Whereas

the remaining filters are peak-notch filters being defined by the

transfer function [25]:

HPN,g(z) =
p0 + p1z

−1 + p2z
−2

q0 + q1z−1 + q2z−2
(16)

p0 = g1/2 + g tan(B/2) (17)

p1 = −2g1/2 cos(ωc) (18)

p2 = g1/2 − g tan(B/2) (19)

q0 = g1/2 + tan(B/2) (20)

q1 = −2g1/2 cos(ωc) (21)

q2 = g1/2 + tan(B/2), (22)

where B is the bandwidth which can be alternatively determined

by the quality factor Q using B = ωc

Q
. The cutoff and center

frequencies ωc of the respective band filters are spaced logarithmi-

cally over the full frequency range. The so-called command gain

g of the band filter indicates the maximum boost or attenuation of

the magnitude response, respectively.

This parametrization allows that the magnitude responses of

the shelving and peak/notch filters at different command gain set-

tings (but with fixed center frequency and bandwidth) are self-

similar on the dB scale [27]:

g log10 |HX,1| ≈ log10 |HX,g|, (23)

where X ∈ {LS,HS, PN} for HX,g . Fig. 4a shows the magnitude

response of a peak/notch filter for command gains between -30 and

30 dB. It can be observed that the self-similarity property is well-

approximated for absolute gains up to 10 dB, but deteriorates for

higher absolute gain values. Fig. 4b shows the magnitude response

of the individual biquadratic filters of a 9-band graphic equalizer

for a prototype gain of 1 dB. There are many refinements for the

parametrization of the graphic equalizer, which can be incorpo-

rated to further improve the filter design results, e.g. additional

opposite filters to reduce the interference between the bands [28],

high-precision iterative optimization [29], or improved interpola-

tion of the target response between the center frequencies [30].

The transfer function of the complete graphic equalizer with

L-bands is then given by:

AGE(z) = g0

L
∏

l=1

Hl,gl(z), (24)

where g0 is an overall broadband gain and Hl,gl is the lth-band

with gain gl, first and last band being low- and high shelving fil-
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(a) Single band proportional gain behavior of the magnitude re-

sponse.
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(b) Prototype magnitude responses for a 9-band graphic equalizer

with additional broadband gain as defined in [25].

Figure 4: Proportional graphic equalizer as proposed in [22].

ters and the remaining bands being peak filters. The vector of com-

mand gains is then

g = [g0, g1, . . . , gL]
⊤

γ = 20 log10(g),
(25)

where the log10 is applied element-wise, and (·)⊤ denotes the

transpose operation.

In the next section, we explain the impact of the different error

norms on the filter design method for the graphic equalizer and the

resulting reverberation time.

3. MULTIBAND GAIN ESTIMATION

3.1. Linear Least-Squares Solution

Because of the self-similarity in (23), the magnitude responses of

the band filters can be used as basis functions to approximate the

magnitude response of the overall graphic equalizer. The filters

are sampled at a K × 1 vector of control frequencies ωP spaced

logarithmically over the complete frequency range, where K ≥ L.

The resulting interaction matrix is

B = 20 log10
∣

∣[g′, H1,g′(ωP), . . . , HL,g′(ωP)]
∣

∣

=
(26)

of size K×(L+1), where g′ is a prototype gain and g′ = g′1K×1.

The white color indicates 0 dB gain and dark color indicates gains

up to 1 dB in Fig. 4b. The interaction matrix B represents how

much the response of each band filter leaks to other bands. Simi-

larly, the target vector is

τ = mδ(ωP), (27)

where δ is applied element-wise. The command gains γ for the

individual filters yield the resulting magnitude response on the dB

scale of the entire attenuation filter:

αGE(ωP) = Bγ. (28)

The magnitude least squares problem in (6) can then be restated as

a linear least-squares problem:

γMLS = argmin
γ

‖Bγ − τ‖22

= (B⊤
B)−1

B
⊤
τ ,

(29)

where (B⊤B)−1B⊤ is often called the Moore-Penrose pseudoin-

verse of B. The condition number of B⊤B is between 105 -

2 · 105, which indicates the inverse operation to be numerically

unstable. The pseudoinverse matrix can be computed in advance

using the QR-decomposition approach which is numerically more

stable than the direct approach, and can then be stored.

3.2. Non-Linear Least-Squares Solution

The T60 least-squares problem given in (7) yields then the follow-

ing nonlinear least-squares problem:

γTLS = argmin
γ

∥

∥

∥

∥

1

Bγ
− 1

τ

∥

∥

∥

∥

2

2

=

K
∑

k=1

(

1

(Bγ)k
− 1

τk

)2

,

(30)

where (Bγ)k =
∑L

l=0 Bklγl. Unfortunately, there is no explicit

solution for this non-linear problem such that it has to be solved

by a numerical optimization algorithm, e.g., gradient descent algo-

rithm [31]. For gradient based approaches it is efficient and more

stable to provide the first and second derivatives analytically. The

gradient of (30) is given by

∂

∂γi

∥

∥

∥

∥

1

Bγ
− 1

τ

∥

∥

∥

∥

2

2

= 2

K
∑

k=1

(

1

(Bγ)k
− 1

τk

)(

−Bki

(Bγ)2k

)
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(a) Magnitude response with different filter design methods.
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(b) Reverberation time with different filter design methods.

Figure 5: Case study for target reverberation time given in Section 4.1. The dashed lines indicate the approximation response resulting

from (28), whereas the solid lines indicate the actual filter response which may differ because of violations of the self-similarity property

(23). Both unconstrained methods MLSUnc and TLSUnc has large deviations between the approximation and actual filter response. The

TLSCon results in the least error in the resulting reverberation time.

and the Hessian matrix is given by

∂2

∂γi∂γj

∥

∥

∥

∥

1

Bγ
− 1

τ

∥

∥

∥

∥

2

2

=

2

K
∑

k=1

BkiBkj

(Bγ)4k
+

(

1

(Bγ)k
− 1

τk

)(

2BkiBkj

(Bγ)3k

)

,

where 0 ≤ i, j ≤ L.

3.3. Constrained LLS and NLLS

Additionally to the least squares problem, we introduce linear con-

straints on the command gains γ to account for the deteriorating

self-similarity for large gains in (23):

−10 ≤ γl ≤ 10 for 1 ≤ l ≤ L, (31)

where the value of 10 dB was found empirically. Please note that

the first gain γ0, which is a broadband gain is not limited by a

constraint.

In the following, we employ the gradient descent implementa-

tion fmincon and fminunc in MATLAB with and without gain con-

straints, respectively, to approximate the optimal command gains

γ. For non-linear problems, it is inherent to find a local minimum

instead of the globally optimal solution and therefore the choice

of the initial value γ init can impact the quality of the solution con-

siderably. Different initial values were tested informally, and for

simplicity, we settled for the broadband average gain:

γ
init = [τ , 0 . . . , 0], (32)

where τ is the arithmetic mean of τ .

4. EVALUATION

Four filter design methods are evaluated in this section:

• MLSUnc: linear unconstrained LS - (29)

• MLSCon: linear constrained LS - (29) & (31)

• TLSUnc: nonlinear unconstrained LS - (30)

• TLSCon: nonlinear constrained LS - (30) & (31)

4.1. Case study

To illustrate some of the shortcomings of a magnitude least squares

method for the graphic equalizer, we choose an example target re-

verberation time and the corresponding target magnitude response

values for a delay length of 100 ms. The centre frequencies, the

reverberation time definitions and the corresponding target mag-

nitude attenuation are given in Table 1. The large fluctuation in

this example was chosen to demonstrate more clearly the potential

issues and may be exaggerated in the context of many practical

use cases. Table 1 also gives the solutions to the four filter design

methods MLSUnc, MLSCon, TLSUnc and TLSCon for a 9-band

graphic equalizer and an additional broadband gain. The Fig. 5

shows the resulting attenuation and reverberation time responses

for the four methods:

• MLSUnc: The approximation response on the magnitude

domain is as expected the best fit to the target magnitude.

The corresponding reverberation time deviates strongly, in

fact being infinite at 2 kHz. The actual filter response devi-

ates in turn from the approximation in both domains. This

is because of a violation of the self-similarity property (23).

• MLSCon: The additional constraints on the command gains

γ result in a close match between the approximation and

the actual filter response. However, the overall filter design

quality is poor.

• TLSUnc: The non-linear filter design yields a optimal fit to

the target reverberation time, but with a similar deviation

from the actual filter response as observed with MLSUnc.

• TLSCon: The additional constraints on the command gains

leads to well corresponding approximation and actual filter

response and results in a good overall approximation of the

target reverberation time response.
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Table 1: Case study corresponding to Fig. 5. The MSE value of the best performing method is indicated in bold.

Center Frequency ωc [Hz] MSE 63 125 250 500 1k 2k 4k 8k 16k

Reverberation Time [s] T60 1 1 1 1 3 3 0.1 1 1

Magnitude Attenuation [dB] τ 6 -6 -6 -6 -2 -2 -60 -6 -6

Magnitude errors [dB] at ωc

Linear unconstrained LS MLSUnc 12.08 -1.98 -4.86 -9.31 -12.59 -16.52 -6.72 6.68 -12.35 -15.13

Linear constrained LS MLSCon 10.28 -1.15 0.85 -0.11 1.92 -2.35 -11.07 33.32 -16.16 -4.30

Nonlinear unconstrained LS TLSUnc 9.72 -0.07 0.55 0.55 0.92 -0.30 -1.38 35.44 -2.48 0.29

Nonlinear constrained LS TLSCon 12.17 0.08 0.02 0.16 0.11 -0.20 -0.94 44.08 -2.75 0.29

T60 errors [s] at ωc

Linear unconstrained LS MLSUnc 0.90 -0.25 -0.45 -0.61 -0.68 -2.68 -2.31 0.01 -0.67 -0.72

Linear constrained LS MLSCon 0.77 -0.16 0.17 -0.02 0.47 -1.62 -2.54 0.12 -0.73 -0.42

Nonlinear unconstrained LS TLSUnc 0.42 -0.01 0.10 0.10 0.18 -0.39 -1.22 0.14 -0.29 0.05

Nonlinear constrained LS TLSCon 0.32 0.01 0.00 0.03 0.02 -0.28 -0.96 0.28 -0.31 0.05

Command gain solutions [dB] γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9

Linear unconstrained LS MLSUnc -0.74 -5.14 -2.84 -3.27 -2.80 -3.48 22.30 -65.06 9.74 -5.76

Linear constrained LS MLSCon -18.55 10.00 8.41 5.54 8.13 10.00 5.09 -10.00 -2.36 10.00

Nonlinear unconstrained LS TLSUnc -19.77 13.32 7.66 7.89 6.30 9.66 17.64 -18.64 14.05 12.30

Nonlinear constrained LS TLSCon -12.15 5.98 3.35 3.76 1.86 6.20 10.00 -10.00 5.02 6.03

To summarize, there are two reasons for poor filter designs: Firstly,

the command gains are too large, causing the self-similarity prop-

erty to deteriorate. The solutions listed in Table 1 also demonstrate

that the command gains cannot be simply constraint after the ap-

proximation. Secondly, good approximation in the attenuation do-

main may still result in a poor approximation of the reverberation

time. Both shortcomings are overcome by the TLSCon solution

resulting in a considerable improvement. In the next section, we

expand this result from this specific case study by a Monte Carlo

simulation.

4.2. Monte Carlo Simulations

To evaluate the accuracy of the four filter design methods for a

large number of target functions, we perform a Monte Carlo sim-

ulation. For this, we randomize the target reverberation time T60

at nine octave band points with uniform distribution between 0.1

and 5 s. We consider three delay lengths of 10, 100 and 1000 ms.

For each condition, we computed 1000 randomized T60 responses.

The approximation error is quantified by the mean squared error

(MSE) between the target reverberation time and the approximated

reverberation time. Solutions which created an unstable feedback

loop were counted separately and are referred to as the probability

of instability.

Fig. 6 depicts the probability distribution of the MSE for the

different filter design methods. The quality of approximation can

be observed consistently to the case study in increasing order: ML-

SUnc, MLSCon, TLSUnc and as the best filter design method

TLSCon. The probability of instability is roughly in reversed order

with some exceptions. Regarding the three different delay lengths,

we can observe:

• m = 10 ms: The MSE is relatively small for all four fil-

ter design methods. Constrained and unconstrained meth-

ods behave largely similar. The MLS methods have a 3-5%

chance that the MSE is larger than 2 s, whereas this prob-

ability is zero for the TLS methods. The probability of in-

stability is 20% for the MLS methods, whereas it is 0% for

TLS methods.

• m = 100 ms: Overall, the MSE is slightly larger than for

m = 10 ms. However, the probability of instability for

MLS decreases by up to 7%.

• m = 1000 ms: All methods but TLSCon perform consider-

ably worse with the MSE being distributed almost equally

up to 2 s. The probability to have an MSE over 2 s is be-

tween 15-22% for these methods. The probability of in-

stability for the unconstraint methods is between 19-21%,

whereas the constraint methods have a 0% chance to be-

come unstable.

Regarding the impact of the delay length on the MSE, we can ob-

serve the following two effects. Firstly, for short delays the target

magnitude response is relatively small, e.g., a reverberation time

of 5 s corresponds to an attenuation of -0.12 dB per 10 ms, and

0.1 s corresponds to an attenuation of -6 dB per 10 ms. Because of

the small target attenuation there is almost no effect from the ap-

proximation constraint on the command gains. Further, for MLS

methods the target attenuation is close to 0 dB such that the error

margin before instability is very narrow causing a high probability

of instability. Secondly, long delays deteriorate the approxima-

tion quality as the attenuation filter has to attenuate more in one

go: a reverberation time of 0.1 s corresponds to an attenuation of

-600 dB per 1000 ms, -60 dB per 100 ms and -6 dB per 10 ms. The

large attenuation of -600 dB is naturally more difficult to achieve

in a controlled fashion than smaller attenuations. The unconstraint

methods adapt large command gains causing uncontrolled ripples

in the frequency response and therefore unstable feedback. On
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Figure 6: Numerical evaluation of the MSE distribution for differ-

ent filter design methods.

the contrary, MLSCon chooses a large broadband command gain,

and relatively small band command gains such that the filter over-

attenuates, which guarantees stable feedback, but causes also large

deviation from the target reverberation time. Overall, it can be

noted that the proposed filter design method TLSCon outperforms

the other methods considerably, especially as it guarantees a stable

FDN.

5. CONCLUSION

The impact of different filter design methods of the attenuation

filter in an FDN on the resulting reverberation time was investi-

gated. The attenuation filter was implemented by a proportional

graphic equalizer. Four methods to compute the parameters were

discussed: a linear least-squares problem with and without linear

constraint on the command gains approximating the target atten-

uation magnitude response, and the nonlinear least-squares prob-

lem with and without linear constraint approximating the target

reverberation time response directly. In a Monte Carlo simulation,

we demonstrated that the nonlinear LS solution with linear con-

straints outperforms the other filter design methods considerably,

especially as it guarantees a stable FDN.

This study focus for practicality on a particular filter imple-

mentation, however we suggest that it is possible to extend the

presented results to other filter types. The proposed approach is

difficult to perform in interactive real-time environments such that

further investigation in more efficient solutions is required.
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