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ABSTRACT

Using bandlimited impulse train (BLIT) synthesis, it is possible to

generate waveforms with a configurable number of harmonics with

an equal amplitude. In contrast to the sinc-pulse, which is typically

used for bandlimiting in BLIT and only allows to set the cutoff

frequency, a Hammerich pulse can be tuned by two independent

parameters for cutoff frequency and stop band roll-off. Replacing

the perfect lowpass sinc-pulse in BLIT with a Hammerich pulse,

it is possible to directly synthesise a multitude of signals with an

adjustable lowpass spectrum.

1. INTRODUCTION

Subtractive sound synthesis with analogue synthesisers requires

generic and spectrally rich harmonic waveforms. Traditionally,

these are rectangular, triangular and sawtooth waveforms. Their

flat spectrum is successively shaped by filters until it matches the

expectations of the musician. These filters usually have a low-

pass characteristic with a variable cutoff frequency, adjustable res-

onance peak and a slope of 12 or 24 dB per octave. One major

problem of digital subtractive synthesis is the fact that trivial im-

plementations of the required basic waveforms leads to massive

aliasing. The creation of bandlimited oscillators has been an ac-

tive research topic ever since digital sound synthesis became of in-

terest. An extensive summary and discussion of various methods

can be found in [1] and [2]. The latter also introduced the Poly-

BLEP approach (detailed in [3]) which today is a standard method

to create high quality bandlimited waveforms due to its low com-

putational cost and easy implementation.

Subtractive synthesis is a straightforward approach when build-

ing analogue synthesisers. Today, many digital synthesisers mimic

an analogue subtractive workflow, mainly due to the fact that musi-

cians have been used to it for decades and the use of filters to shape

the sound is at the same time intuitive, simple and versatile. How-

ever, for the performing musician the exact synthesis method does

not matter. It is more important that the synthesiser allows to create

musically sounding signals which can be intuitively controlled by

only a few but powerful parameters [4]. From an engineering point

of view it does not make sense to put a lot of effort into the gen-

eration of aliasing-free waveforms with harmonics up to half the

sampling frequency and then to remove most of the high frequency

content with a lowpass filter. A method to directly synthesise the

desired signal spectra would alleviate the effort for anti-aliasing

strategies as such a signal will contain less high frequency content

from the beginning. Additive synthesis as a discrete summation

of amplitude-weighted sine waves would offer full control to the

creation process of perfectly bandlimited signals but due to the re-

sulting computational complexity it is rarely used in practice.

The discrete summation formula (DSF) from Moorer [5] are

a set of closed form solutions to discrete harmonic series (infi-

nite or finite). They allow a direct synthesis of harmonic signals

with a specified number of partials and an exponentially increas-

ing or decreasing spectral envelope. By the combination of dif-

ferently parametrised DSF one can create further complex spectral

envelopes. Although the DSF are more efficient than a discrete ad-

ditive synthesis they still require a considerable amount of trigono-

metric function evaluations.

Bandlimited impulse train (BLIT) synthesis [1] is another ap-

proach to create lowpass signals and relies on the fact that an im-

pulse train exhibits a flat spectrum with an infinite amount of har-

monics. When the impulse train is convolved with a sinc-function,

a perfect bandlimited signal will be obtained, whereas the fre-

quency of the sinc-pulse determines the cutoff frequency. In prac-

tical applications, the infinite length sinc-function has to be win-

dowed and limited to a reasonable length and the computationally

expensive convolution is replaced by a summation of overlapping

sinc-pulses with a pulse distance proportional to the fundamental

frequency (sum of windowed sinc-function BLIT synthesis [1]). A

windowed sinc-function will loose its perfect lowpass characteris-

tic and stop-band ripple occurs. The selection and parametrisation

of the window and its length influences the final lowpass shape

[6]. BLIT synthesis was further developed and optimised in var-

ious aspects (e.g. in [7, 8]), but the created signals have been al-

ways used as a bandlimited input for subtractive workflows. To the

knowledge of the authors, a direct BLIT synthesis of signals with

real-time configurable lowpass spectra has not been investigated

so far.

The Hammerich pulse [9] was introduced as a pulse shape

filter [10] for transmission systems and its spectral shape can be

tuned by two independent parameters for cutoff frequency and stop

band roll-off. Replacing the sinc-pulses in BLIT with Hammerich

pulses allows to directly synthesise signals with adjustable low-

pass spectra. The fundamental frequency, cutoff frequency and

stop band roll-off are monotonic parameters and can be modu-

lated smoothly. In a sound synthesis application, the few parame-

ters and inherent limitation to lowpass spectra reduces complexity

in the user interface and offers the musician an intuitive and less

technical access. Nevertheless, a wide variety of sounds similar to

subtractive synthesisers can be created without additional filtering.

Moreover, unique sounds can be generated for example by modu-

lating the filter roll-off which would not be possible with classical

analogue synthesisers.

The idea to create a versatile oscillator with Hammerich pulse

shapes was already briefly described in [11]. In this paper, the fo-

cus will be on a detailed discussion of such a lowpass bandlimited

impulse train (LP-BLIT) oscillator in the context of sound synthe-
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sis applications. Throughout the following Section 2, the principle

of BLIT synthesis and the integration of the Hammerich pulse will

be explained. In Section 3 we will give some examples how to

create more complex spectra by combination of several oscillator

outputs, leaky integration and parameter modulation before Sec-

tion 4 provides a short discussion and conclusion.

2. IMPULSE TRAIN SYNTHESIS

A continuous-time pulse train with an inter-pulse distance T0

d(t) =

∞
∑

l=−∞

δ(t− l T0) (1)

exhibits a spectrum

D(jω) =

∞
∑

l=−∞

δ(ω − l ω0), ω0 =
2π

T0

(2)

with harmonics at multiples of ω0. The fact that the harmonic

interval ω0 is directly related to T0 can be utilised to synthesise a

signal with an infinite amount of harmonics and a fundamental fre-

quency F0 = 1/T0. Sampling of d(t) for digital implementations

would lead to massive aliasing due to its infinite bandwidth. Ap-

plying an ideal lowpass filter with a cutoff frequency ωc = 2πfc

h(t) =
sin(ωc t)

ωc t
↔ H(jω) = rect

(

ω

2ωc

)

(3)

results in a bandlimited signal

x(t) = d(t) ∗ h(t) (4)

which can then be sampled at a sample rate fs > 2 fc without

aliasing [1]. In the frequency domain, the convolution from Eq. 4

will create a harmonic spectrum

X(jω) = H(jω) ·D(jω)

= H(jω) ·

(

∞
∑

l=−∞

δ(jω − l ω0)

)

(5)

weighted with the spectral shape H of the filter. By replacing or

modifying the filter, it is possible to synthesise any bandlimited

harmonic signal with an arbitrary spectral shape.

Instead of a computationally expensive time-domain convolu-

tion, a direct summation of time-shifted impulse responses

x(t) = d(t) ∗ h(t) =

∞
∑

l=−∞

h(t− l T0) (6)

will lead to an identical result. This is particularly useful if the im-

pulse response can be simply calculated with a closed-form equa-

tion as it is the case with the sinc-function.

Other pulses with a lowpass characteristic, as for example the

raised cosine pulse, offer a more detailed adjustment of their fre-

quency response than the sinc-function. The Hammerich pulse was

introduced in [10] as a pulse shape filter for transmission systems.

Its impulse and frequency response is given by

hH(t) =
α · sin(ωc t)

sinh(α · ωc t)
(7)

HH(jω) =
1

4fc

[

1− tanh

(

|ω| − ωc

4αfc

)]

(8)
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Figure 1: Hammerich pulse for various values of α.

and permits an intuitive adjustment of the lowpass characteristic

by two independent parameters for cutoff frequency ωc and stop

band slope α. Reasonable parameter ranges are 0 < α < 10 and

ωc > 2πF0. For small values of α, the impulse response

lim
α→0

hH(t) =
sin(ωc t)

ωc t
= sinc(ωc t) (9)

converges towards a sinc-function and for α → ∞ the resulting

stop band slope as well as the pulse width converges to zero. Ex-

emplary impulse and frequency responses are depicted in Fig. 1 for

selected values of α. The -6 dB point is fairly accurate set by ωc,

whereas the linear slope beyond this point is only controlled by α.

Figure 2 depicts a time-domain pulse train after convolution with

a Hammerich impulse response together with the corresponding

spectrum. The parameters of the Hammerich filter were chosen as

fc = 4F0 and α = 0.4. All harmonics follow the shape of the

pulse spectrum as it was expected based on Eq. 5.

2.1. Discrete-time implementation with finite pulse length

By sampling the Hammerich pulse from Eq. 7 with a sample rate

fs, the discrete-time pulse

hH(n) =
α · sin(Ωc n)

sinh(α · Ωc n)
, Ωc = 2π

fc
fs

, (10)

is obtained. The cutoff frequency fc = Nh · F0 can also be

expressed as a multiple of the fundamental frequency, whereas

Nh ≥ 1 determines the number of harmonics before the filter starts

to roll off. This yields a pulse

hH(n) =
α · sin(Nh · Ω0 n)

sinh(α ·Nh · Ω0 n)
, Ω0 = 2π

F0

fs
, (11)
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Figure 2: Pulse train convolved with a Hammerich pulse

(fc = 4F0 and α = 0.4).

with parameters for the number of harmonics, filter slope and fun-

damental frequency being directly accessible from a synthesiser

application.

Two facts have to be considered for a discrete-time implemen-

tation compared to the continuous-time derivation in the previous

section. First, the theoretically infinite length of the pulse has to be

limited in order to avoid an infinite amount of overlapping pulses

in the sum from Eq. 6. This limitation of the impulse length is

equivalent to a windowing of the impulse response and leads to a

distortion of the pulse spectrum. The shape of the resulting error

can be optimised by applying a smooth window to both ends of

the pulse [6]. The number of overlapping pulses is a trade-off be-

tween computational complexity and how close the actual spectral

envelope will match the theoretic spectrum given in Eq. 8. Sec-

ond, even if the cutoff frequency of the Hammerich pulse is below

fs/2, aliasing may occur due to the flat spectral roll-off after fc
depending on the actual selection of α. Hence, it is necessary to

limit the combination of the parameters Nh and α such that the

resulting stop band attenuation in Eq. 8 falls below an acceptable

level at half the sample rate.

Regarding computational complexity, the calculation of the

sine and hyperbolic sine in the Hammerich pulse is the limiting

factor. Both functions could be approximated by the Taylor series

sin(x) = x−
x3

3!
+

x5

5!
+ . . . =

K−1
∑

k=0

(−1)k · x2k+1

(2k + 1)!
(12)

sinh(x) = x+
x3

3!
+

x5

5!
+ . . . =

K−1
∑

k=0

x2k+1

(2k + 1)!
(13)

where the number of evaluated terms K determines the accuracy.

For the periodic sine, the argument has to be wrapped to a range

x ∈ [−π/2, π/2] to minimize the required order of the Taylor
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Figure 3: Error after the approximation of hH(n) with K Taylor

series terms for single and double precision floating point imple-

mentations.

polynomial. The inverse factorial can be calculated in advance

and using the Horner scheme for the evaluation of the polynomial,

only K − 1 additions and multiplications are required for each

Taylor series. The standard Matlab sin and sinh implementations

and the single and double precision Taylor approximations were

compared for the calculation of a Hammerich pulse. The respec-

tive maximum error as well as the power normalised mean square

error are shown in Fig 3. Based on these results it appears that

7 terms are already sufficient to achieve an error below -100 dB

and for more than 10 terms the numerical resolution limit of single

precision floating point numbers will be reached.

3. SOUND SYNTHESIS EXAMPLES

3.1. Combination of oscillators

Recursive filters are usually used in subtractive synthesis due to

computational constraints but will lead to a frequency-dependent

phase shift of each harmonic and a predictable combination of sev-

eral oscillators without unwanted partial cancellations is difficult.

The pulse shaping in BLIT corresponds to a linear-phase FIR low-

pass filtering, hence all harmonics are still in phase after the filter-

ing and it is straightforward to add or subtract multiple oscillator

outputs in a predictable manner to create more complex spectra.

Let us define a signal xi(n) that has a fundamental frequency

F0i = i·F0 which is an integer multiple of another signal x(n) but

both share the same spectral envelope. In this case, the difference

between x(n) and xi(n)

xD(n) = x(n)−
xi(n)

i

= d(n) ∗ hH(n)−
di(n)

i
∗ hH(n)

=

[

d(n)−
di(n)

i

]

∗ hH(n) (14)

yields a signal where every i-th harmonic is cancelled. For i = 2,

which is equivalent to using a bipolar impulse train as source signal

[1], a signal xO(n) with only odd harmonics remains (Fig. 4 b).
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Figure 4: Unipolar pulse train with full number of harmonics (a),

bipolar pulse train with only odd harmonics (b) and signal with

even harmonics (c) as a sum of two different unipolar pulse trains.

Using Hammerich pulses with different parameters for each oscil-

lator offers further possibilities. A signal with even harmonics

xE(n) = x1(n) +
d2(n)

2
∗ hH(n), (15)

as depicted in Fig. 4 b), can be constructed from the sum of one

pulse train d2(n) with twice the fundamental frequency and arbi-

trary filter and another single harmonic signal x1(n) and funda-

mental frequency F0.

3.2. Standard waveforms

It was shown in [1] that the standard waveform (rectangular, saw-

tooth and triangular) can be created with a simple integration of

impulse train signals. In our case, a lowpass filtered sawtooth

xsaw(n) = x(n) ∗ hI(n) (16)

is obtained by convolving a bandlimited impulse train signal x(n)
with an integrator impulse response hI(n). To avoid accumulation

of an error constant in the integration, it is usually recommended

to use a leaky integrator. A second order leaky integrator with zero

DC gain was proposed by [12]

HI(z) = π
γ + 1

2

(

1− z−1

1− 2γz−1 + γ2z−2

)

(17)
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Figure 5: Sawtooth (a), rectangular (b) and triangular waveforms

(c) created by a combination of oscillators and leaky integration.

and consists of a cascaded first order leaky integrator and a one-

pole highpass. The parameter γ = exp(2πfcI /fs) defines the cut-

off frequency of the highpass (typically fcI < 20 Hz) and thereby

the crossover point between leaky and non-leaky integration. The

rectangular waveform

xrect(n) = xO(n) ∗ hI(n) (18)

is obtained by leaky integration of a signal with only odd harmon-

ics. Finally, the triangular signal

xtri(n) = xrect(n) ∗ hI(n) = xO(n) ∗ hI(n) ∗ hI(n) (19)

is an integrated rectangular signal, or two-times integrated signal

with odd harmonics. Figure 5 depicts exemplary bandlimited saw-

tooth, rectangular and triangular signals which were obtained by

leaky integration.

3.3. Modulation

All pulse parameters can be directly modulated in a sound syn-

thesis application. Figure 6 a) visualises a fundamental frequency

sweep ranging from 20 Hz up to 7 kHz with NH = 5 and α = 0.8
at a sample rate of 44.1 kHz. Aliasing is kept at a low level by

constantly checking and limiting the parameters NH and α in de-

pendency of the current fundamental frequency. A step-wise mod-

ulation of the number of harmonics is shown in Fig. 6 b).
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(a) Sweep from 20 Hz to 7 kHz with NH = 5 and α = 0.8.
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(b) Step-modulated number of harmonics (NH = 3, 5, 9, 13).

Figure 6: Example spectrograms showing a modulation of the fun-

damental frequency and number of harmonics.

4. CONCLUSION

Usually, in bandlimited impulse train (BLIT) synthesis, sinc-pulses

are used to filter a pulse train and to obtain a spectrum with a de-

fined number of harmonics of equal magnitude. In this paper it

was proposed to replace the sinc-pulse with a Hammerich pulse

as its spectral shape can be directly controlled by two indepen-

dent parameters for cutoff frequency and filter roll-off. The closed

form equation for the Hammerich pulse can be evaluated per sam-

ple, does not require the creation of a wavetable and an immediate

modulation of the pulse parameters is possible. As all harmon-

ics in a pulse are in phase, differently configured oscillators can

be easily combined to create more complex spectral shapes. It

was shown how to synthesise spectra with odd or even harmonics

and together with a leaky integrator, various standard waveforms

(rectangular, triangular, sawtooth) can be created. The Hammerich

pulse considerably expands the BLIT principle to become a full-

featured synthesis procedure and despite the restriction to lowpass

spectra, a wide variety of useful sounds and waveforms can be cre-

ated without additional filtering.

The possibilities and limitations of this new waveform gener-

ation algorithm still have to be explored in practical musical ap-

plications. First tests with a real-time modulation of the pulse pa-

rameters were quite promising. In particular the simple interface

with only a few but very expressive parameters supports an intu-

itive and creative workflow. For the future it might be in particular

interesting to find further pulse shapes which can be calculated and

parametrised in a similar fashion as the Hammerich pulse but ex-

hibit a different frequency response, e.g. highpass, bandpass or

resonant lowpass.
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