
Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

REAL-TIME FORCE-BASED SOUND SYNTHESIS USING GPU PARALLEL COMPUTING

Ryoho Kobayashi

Faculty of Environment and Information Studies,
Keio University SFC

Kanagawa, Japan
ryoho@sfc.keio.ac.jp

ABSTRACT

In this paper we propose a real-time sound synthesis method using
a force-based algorithm to control sinusoidal partials. This syn-
thesis method can generate various sounds from musical tones and
noises with three kinds of intuitive parameters, which are attractive
force, repulsive force and resistance. However, the implementation
of this method in real-time has difficulties due to a large volume
of calculations for manipulating thousands or more partials. In or-
der to resolve these difficulties, we utilize a GPU-based parallel
computing technology and precalculations. Since GPUs allowed
us to implement powerful simultaneous parallel processing, this
synthesis method is made more efficient by using GPUs. Further-
more, by using familiar musical features, which include MIDI in-
put for playing the synthesizer and ADSR envelope generators for
time-varying parameters, an intuitive controller for this synthesis
method is accomplished.

1. INTRODUCTION

A force-based sound synthesis [1] is an application of sinusoidal
partial editing techniques. This synthesis method can generate
various sounds from musical tones and noises with three kinds
of intuitive parameters, which are attractive forces to a reference
spectrum, repulsive forces between partials, and resistances for de-
creasing the speeds of the partials. However, this method requires
a large volume of calculations due to a need of some thousands or
more partials to control.

By recent developments of graphics processing units (GPUs)
[2] and APIs for handling these processors, an implementation
of an efficient simultaneous parallel processing has been realized.
GPUs are originally developed for computer graphics and visual
image processing, however, they have begun to be used for gen-
eral purpose due to a popularization of general-purpose comput-
ing on graphics processing units (GPGPU) [3]. And they recently
have been utilized for sound processing and syntheses [4, 5, 6].
A GPGPU framework is considered of value for a acceleration of
force-based sound synthesis, because this synthesis method needs
many simple calculations simultaneously.

In this paper we propose a process to accomplish a real-time
sound synthesis using a force-based algorithm by utilizing a GPU-
based parallel computing technique. All programs presented in
this paper are written in Swift [7] and use Metal API [8] for GPU
processing.

2. FORCE-BASED SOUND SYNTHESIS

The sound synthesis method presented in this paper uses a force-
based algorithm, which is commonly known as a graph drawing

algorithm [9, 10]. The fundamental process for the synthesis is
described in this section.

2.1. Analysis of a Reference Sound Source

The first step is the analysis of a reference sound source. The
Short-Time Fourier Transform (STFT) analysis [11] is used for
this step, where amplitudes A(k) for each frequency F (k) are de-
tected by

X(k) =

N−1X
n=0

x(n)e−2πikn/N (1)

A(k) = |X(k)| (2)

F (k) =
kR

N
(3)

where x(n) consists of N samples of a windowed waveform and
R represents the sampling rate.

2.2. Distribution of Partials

The synthesis phase for the proposed method begins by generating
partials in a specific range of frequencies. The amplitudes of the
partials are unchangeable. The user specifies the maximum num-
ber of partials and the number of active partials is determined in
proportion to the amplitude of the reference sound as (4).

ν = νmax

N−1X
k=0

αA(k) (4)

In this equation, α represents a constant number for scaling the
amplitude. The active or inactive partials are randomly chosen.
In this step, since the frequencies of the partials are random, an
unpitched sound is typically created.

2.3. Attractive Force

Attractive forces, which are applied to the partials, are generated
from the spectrum detected from the reference sound. A partial
is attracted to neighboring frequency components. The force is
inversely proportional to the square of the distance between the
target frequency component and the frequency of the partial.

fa(P (i)) =
X

0<|F (k)−PF (i)|<τ

sgn(F (k) − PF (i))gaA(k)

|F (k) − PF (i)|2 (5)

fa(P (i)) represents an attractive force for partial P (i) of which
the frequency is PF (i), ga is a constant value to adjust the strength
of the force, and τ corresponds to the range of the effective fre-
quency components.

DAFX-153

ttp://www.sfc.keio.ac.jp
mailto:ryoho@sfc.keio.ac.jp

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

2.4. Repulsive Force

To avoid congestion of partials at a small peak in the spectrum,
repulsive forces are generated between every pair of partials. The
force is inversely proportional to the square of the distance be-
tween the partials.

fr(P (i)) =
X

PF (j) 6=PF (i)

sgn(PF (i) − PF (j))gr

|PF (i) − PF (j)|2 (6)

fr(P (i)) represents a repulsive force for partial P (i). By using all
pairs of partials for the calculation, partials depart from condensa-
tions.

2.5. Resistance

When the reference sound has a static frequency component, the
partials have the risk of periodic vibration around a spectral peak.
This is because the attractive forces convert back and forth be-
tween potential and kinetic energy. Therefore, the oscillations are
inhibited by implementing resistance.

f(P (n, i)) = fa(P (n, i)) + fr(P (n, i)) (7)

v(P (n, i)) = r(v(P (n − 1, i)) + f(P (n − 1, i))) (8)

In this equation, v(P (n, i)) represents a current speed for partial
P (i), n is the current time frame, and r is a resistance value be-
tween 0 and 1.

2.6. Synthesis

The forces, which are derived above, are applied to partials at every
frame by addition of the forces.

PF (n, i) = PF (n − 1, i) + v(P (n − 1, i)) (9)

The sound synthesis is accomplished using a common oscillator
bank synthesis technique [12, 13] which is realized by

y(t) =
X
∀i

A cos[2πPF (n, i)t + φi] (10)

where A represents a constant amplitude for each partial, and φi is
an initial phase.

3. GPU-BASED PARALLEL COMPUTING

3.1. General-purpose computing on graphics processing units

General-purpose computing on graphics processing units (GPGPU)
refers to the use of GPUs for general purpose parallel computing,
and performs computation in applications traditionally handled by
the central processing unit (CPU), outside of computer graphics
and image processing. GPU has ability to process multiple tasks
simultaneously by having thousands of cores. OpenCL [14] and
NVidia’s CUDA [15] are two popular frameworks to implement
general purpose computations on GPUs. The synthesis method
this paper proposes uses Apple’s Metal API [8] for low-overhead
access to the GPUs.

3.2. Metal API

Metal [8] is a graphics application programming interface (API),
which allows low-level and low-overhead access to GPUs. Metal
is developed and provided by Apple, and is available to use on
iOS and Mac OS X. The previous implementation of this syn-
thesis method was written in Objective-C and ran on Mac OS X.
The real-time version, which is proposed in this paper, is rewrit-
ten in Swift, and is still implemented for Mac OS, thus, Apple’s
Metal API is expected to deliver high performance and has good
prospects for the future. Furthermore, further possibilities of im-
plementation for mobile devices are expected, because Metal is
compatible with iOS.

By using Metal framework, a low-overhead interface, a mem-
ory and resource management, integrated support for both graphics
and compute operations, and precompiled shaders are provided.
For the force-based sound synthesis, the handling of the current
frequency, the resistance for speed, and the attractive/repulsive
forces are required for acceleration to manipulate each partial com-
ponent. Therefore, the current frequency and speed need to be
stored until the calculations for the next time frame are performed.

4. IMPLEMENTATIONS

We present implementations of GPU-based parallel computing tech-
nologies and conceptions for the efficiencies of calculations for
force-based sound synthesis.

4.1. Attractive and Repulsive Forces

The attractive force for a partial is proportional to the amplitude
for a target frequency component, and inversely proportional to
the square of the distance between the target frequency component
and the frequency of the partial. The repulsive force is inversely
proportional to the square of the distance between the partials.

These two forces are possible to calculate by using the con-
volutions of the functions below with the reference spectrum for
the attractive forces and the spectrum of current partials for the
repulsive forces.

ha(F) =
−sgn(F)ga

F 2
(11)

F is a frequency, ga is a value to adjust the strength of the force.
and ha(F) is a calculated function for attractive forces.

Figure 1: Function for calculating attractive forces.

DAFX-154

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

hr(F) =
sgn(F)gr

F 2
(12)

F is a frequency, gr is a value to adjust the strength of forces. and
hr(F) is a calculated function for repulsive forces.

Figure 2: Function for calculating repulsive forces.

The summation of these forces are described the following
equation 13.

α(F) = ha(F) ∗ Ad(F) + hr(F) ∗ Ac(F) (13)

where α(F) is a summation of the attractive and repulsive forces,
Ad(F) is an amplitude for a frequency F from a reference source,
and Ac(F) is an amplitude from current partials.

4.2. Updating of Frequencies of Partials

The speed of the frequency change v(P (n, i)) and the frequency
of a partial PF (n, i) for the newer frame are calculated by the
equasion 8 and 9 in section 2. Since these calculations are achieved
by using simple summations and multiplications, parallel comput-
ing is applied without difficulties.

5. MIDI INPUT

To use the force-based synthesis method for a musical performance,
MIDI note messages [16] are available to input. The fundamental
frequency for a reference source spectrum is calculated from the
“note number”, and the maximum number of partials is propor-
tional to the “velocity”.

5.1. Preset Reference Spectra

Efficient computations are accomplished by using GPU-based par-
allel computing presented in previous sections, however, the vol-
ume of calculations is still large. Therefore, a preparation of ref-
erence spectral sources and precalculations of the attractive forces
are valuable for the achievements of a stable real-time synthesis
environment.

The force-based synthesis is possible to generate a variety of
timbres by controlling the combination of attractive and repulsive
forces and a resistance, thus, simple harmonic series are useful
enough. By preparing the reference source, the attractive forces
ha(F) ∗ Ad(F) in equation 13 are also available to prepare.

5.2. ADSR Envelopes

This synthesis method can generate various sounds by adjusting
the parameters. In particular, the coefficients for attractive force
ga in the equation 5, repulsive force gr in the equation 6, and re-
sistance r in the equation 8 are important for controlling the simi-
larity to the reference sound and the quickness of transitions.

By implementing time-varying controls for these parameters,
users can dynamically synthesize various sounds. The synthe-
sis method allows users to assign attack time, decay time, sus-
tain value, and release time (ADSR) functions, and minimum and
maximum values to the three parameters. The ADSR envelope
generator model is generally used in existing synthesizers through
the ages, and familiar to musicians. These dynamic controls are
simultaneously activated with MIDI note messages and adjusted
with MIDI control messages.

5.3. Synthesized Result

In this section, we present a synthesized result of this method.
A spectrogram of a reference sound source for this example is

made from sawtooth waves as shown in Figure 4. In this source
sound, a fundamental pitch increase, and every overtones are con-
tained.

Figure 3: Input MIDI notes.

Figure 4: Reference sound source (sawtooth wave).

By applying ADSR envelopes in Figure 5 for 5000 partials, a
result as shown in Figure 6 is generated. This result shows that
a strong repulsive force at an attack makes noise and the partials
are gradually attracted to the reference source. At the first note,

DAFX-155

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

Figure 5: ADSR envelopes.

Figure 6: Synthesized result.

randomly distributed partials cannot converge on reference over-
tones during the short duration of 500ms. Since the second and
third notes start from partials with density fluctuation, which are
made by the previous note, they are easily attracted on the refer-
ence overtones.

6. CONCLUSIONS

In this paper, a real-time application for force-based sound synthe-
sis, which is accomplished by using GPU-based parallel comput-
ing, is proposed. The utilization of GPUs is powerful and efficient
for this synthesis method. Although it is difficult for off-the-shelf
personal computers to generate high-quality results in real-time in
this time, thus, some ideas for reducing the calculation cost are im-
plemented. In this section, we provide the process for the real-time
synthesis.

6.1. Preparations

1. Select one reference source sound which is previously de-
tected frequency components

2. Calculate attractive forces from the reference spectrum

3. Setup the maximum number of partials and prepare the cor-
responding shader

6.2. Real-Time Processing

1. Receive MIDI note message

2. Scale the attractive force function corresponding to the note
number.

3. Distribute partials corresponding to the velocity and ADSR
function.

4. Calculate attractive and repulsive forces for each partial

5. Calculate speeds and frequencies for each partial

6. Store the new speeds and frequencies of the partials

7. Synthesize the sound for the current frame by using inverse
fast Fourier transform (IFFT) [11]

6.3. Future works

The major limitation for this synthesis method is caused by the
limit of the frame-rate, which depends on the capabilities of GPUs.
GPUs are generally designed for manipulating visual data, there-
fore, the upper limit of the frame-rate is not enough for a high-
quality sound synthesis. We consider that the development of the
interpolation techniques between frames has value, though the im-
provement of these kind of processors are expected.

7. REFERENCES

[1] Ryoho Kobayashi, “Sinusoidal synthesis using a force-based
algorithm,” in Proceedings of the 17th International Confer-
ence on Digital Audio Effect (DAFx-14), Erlangen, Germany,
September 1-5 2014, pp. 19–22.

[2] John D. Owens, Mike Houston, David Luebke, Simon Green,
John E. Stone, and James C. Phillips, “GPU computing,”
Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[3] Mark Harris, “GPGPU: General-purpose computation on
GPUs,” SIGGRAPH 2005 GPGPU COURSE, 2005.

[4] Lauri Savioja, Vesa Välimäki, and Julius O. Smith III, “Au-
dio signal processing using graphics processing units,” Jour-
nal of the Audio Engineering Society, vol. 59, no. 1/2, pp.
3–19, 2011.

[5] Lauri Savioja, Vesa Välimäki, and Julius O. Smith III, “Real-
time additive synthesis with one million sinusoids using a
GPU,” Audio Engineering Society Convention 128, 2010.

[6] Pei-Yin Tsai, Tien-Ming Wang, and Alvin Su, “GPU-based
spectral model synthesis for real-time sound rendering,” in
Proceedings of the 13th International Conference on Digi-
tal Audio Effect (DAFx-10), Graz, Austria, September 6-10
2010, pp. 1–5.

[7] Apple Inc., “Swift - apple developer,” Available at https://
developer.apple.com/metal/, accessed March 15, 2016.

DAFX-156

https://developer.apple.com/metal/
https://developer.apple.com/metal/

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5–9, 2016

[8] Apple Inc., “Metal for developers,” Available at https://
developer.apple.com/swift/, accessed March 15, 2016.

[9] Thomas M. J. Fruchterman and Edward M. Reingold,
“Graph drawing by force-directed placement,” Software:
Practice and Experience, vol. 21, no. 11, pp. 1129–1164,
1991.

[10] John Adrian Bondy and Uppaluri Siva Ramachanda Murty,
Graph Theory with Applications, The Macmillan Press Ltd.,
London, 1976.

[11] Jont B. Allen, “Short term spectral analysis, and modifica-
tion by discrete fourier transform,” IEEE Transactions on
Acoustics, Speech, and Processing, vol. 25, no. 3, pp. 235–
238, 1977.

[12] G. DiGiugno, “A 256 digital oscillator bank,” in Proceed-
ings of the International Computer Music Conference, MIT,
Cambridge, 1976, pp. 188–91.

[13] F. Richard Moore, Elements of Computer Music, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1990.

[14] John E. Stone, David Gohara, and Guochun Shi, “OpenCL:
A parallel programming standard for heterogeneous comput-
ing systems,” Computing in Science and Engineering, vol.
12, no. 3, pp. 66–73, 2010.

[15] Jason Sanders and Edward Kandrot, CUDA by Example:
An Introduction to General-Purpose GPU Programming,
Addison-Wesley Professional, 2010.

[16] MIDI Manufacturers Association, The Complete MIDI 1.0
Detailed Specification, 1996.

[17] Pat Hanrahan and Jim Lawson, “A language for shading and
lighting calculations,” ComputerGraphics, vol. 24, pp. 289–
295, 1990.

[18] Alécio P. D. Binotto, Joao L. D. Comba, and Carla M. D. Fre-
itas, “Real-time volume rendering of time-varying data using
a fragment-shader compression approach,” in IEEE Sympo-
sium on Parallel and Large-Data Visualization and Graph-
ics, 2003, pp. 69–75.

8. APPENDIX: SOUND EXAMPLES

Sound examples are available online at the following address.

http://www.ryoho.com/software/sinfba/

DAFX-157

https://developer.apple.com/swift/
https://developer.apple.com/swift/

	1 Introduction
	2 Force-based sound synthesis
	2.1 Analysis of a Reference Sound Source
	2.2 Distribution of Partials
	2.3 Attractive Force
	2.4 Repulsive Force
	2.5 Resistance
	2.6 Synthesis

	3 GPU-based parallel computing
	3.1 General-purpose computing on graphics processing units
	3.2 Metal API

	4 Implementations
	4.1 Attractive and Repulsive Forces
	4.2 Updating of Frequencies of Partials

	5 MIDI Input
	5.1 Preset Reference Spectra
	5.2 ADSR Envelopes
	5.3 Synthesized Result

	6 Conclusions
	6.1 Preparations
	6.2 Real-Time Processing
	6.3 Future works

	7 References
	8 Appendix: Sound Examples

