
Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5 - 9, 2016

PERCEPTUAL AUDIO SOURCE CULLING FOR VIRTUAL ENVIRONMENTS

Ali Can Metan, Hüseyin Hacıhabiboğlu

Graduate School of Informatics,
Middle East Technical University

Ankara, TR-06800, Turkey
canmetan@engineer.com, hhuseyin@metu.edu.tr

ABSTRACT

Existing game engines and virtual reality software, use various
techniques to render spatial audio. One such technique, binau-
ral synthesis, is achieved through the use of head-related transfer
functions, in conjunction with artificial reverberators. For virtual
environments that embody a large number of concurrent sound
sources, binaural synthesis will be computationally costly. The
work presented in this paper aims to develop a methodology that
improves overall performance by culling inaudible and perceptu-
ally less prominent sound sources in order to reduce performance
implications. The proposed algorithm is benchmarked and com-
pared with distance-based, volumetric culling methodology. A
subjective evaluation of the perceptual performance of the pro-
posed algorithm for acoustic scenes having different compositions
is also provided.

1. INTRODUCTION

Virtual environments create the perception of being physically pre-
sent in a non-physical world via the presentation of synthetic au-
diovisual stimuli. With today’s technology, creation of vivid en-
vironments require significant computational power. As such, op-
timisation of any existing process needs to make better use of the
limited resources.

Sound scenes encountered in virtual environments may con-
tain many sound sources. Spatialising all of these sources will
impose a performance penalty for the underlying hardware. This
problem is aggravated for computationally heavy spatialisation me-
thods such as binaural synthesis which is widely used in VR sys-
tems.

In order to deal with the performance implications, most game
engines and virtual environment software that are in use today,
employ volumetric culling [1]. For volumetric culling, volumes
(such as spheres or cubes) are defined for each sound source. Only
those sources for which the listener is in the active volume, are
rendered. While these methodologies are effective in reducing the
amount of sound sources, perceived richness of the resulting scene
may also be degraded as a result. Here, we define auditory richness
as the perceived quantity of sound sources in an real or virtual
acoustic scene.

There are also methodologies that incorporate various percep-
tual approaches. Some of these incorporate crossmodal effects
such as culling sound sources that reside outside the view frus-
tum of the listener [2]. This method is based on the assumption
that audiovisual correspondence will have a major affect on the
perception of sound sources. Other methods will cull or spatially
cluster sound sources according to their predicted audibility [3][4].

Figure 1: Overall pipeline for the culling algorithm

Majority of games and virtual environments include spatially
separated, high-energy, broadband sound sources which may also
be concurrently active. Explosions, gunshots, engine sounds and
other sound sources may render each other inaudible due to au-
ditory masking. If sources that are inaudible can be identified
and eliminated from the rendering pipeline, computational savings
may be made without degrading the overall quality of the rendered
scene. The aim of this paper is to present an algorithm which can
select a subset of all sources in the sound scene based on their
audibility. The audibility is calculated using an existing model of
simultaneous masking which also forms the basis of perceptual au-
dio coding. The sound sources are evaluated and selected accord-
ing to their perceptual salience due to monaural masking model
used in MPEG-1 Layer I. The sound sources selected by using the
proposed procedure can then be rendered without significant per-
ceptual degradation of the richness of the auditory scene.

This paper is organised as follows. Sec. 2 presents the pro-
posed algorithm. A performance analysis of the proposed algo-
rithm is given in Sec. 3. The results of a subjective evaluation
comparing the proposed culling method with volumetric culling is
presented in Sec. 4. Sec. 5 concludes the paper.

2. PERCEPTUAL SOURCE CULLING

The algorithm proposed in this paper, consists of two parts: of-
fline analysis and real time analysis. Extraction of the masking
properties of audio sources contained within a scene, is carried out
during the offline analysis. During real time analysis, information
extracted from the previous stage is used to determine whether a
given audio source will be rendered or not. Fig. 1 summarises the
algorithm.

DAFX-201

http://www.ii.metu.edu.tr

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5 - 9, 2016

2.1. Offline analysis

Offline analysis is performed prior to rendering the actual scene
on sound files which may be used in a scene. In this step, mask-
ing thresholds of sound source signals are calculated and stored
in persistent memory. The model used for calculating the mask-
ing thresholds is the MPEG-1 Layer I psychoacoustical model [5].
This application is similar to how the same model is applied in
sound synthesis [6]. Since the masking thresholds obtained this
way are additive, they need not be calculated at run-time. Details
of offline analysis is explained in the remaining parts of this sec-
tion.

2.1.1. MPEG-1 Audio Layer I Masking Model

MPEG-1 Audio Layer 1 is an audio coding standard incorporating
a psychoacoustical model to reduce the bitrate [5]. In the proposed
method, this psychoacoustical model is used to determine whether
a requested audio event will be audible inside the existing scene
or not. The model calculates the masking thresholds of individ-
ual sound sources by estimating their tonal and non-tonal compo-
nents [7]. After relevant maskers have been identified among these
components, local masking thresholds are calculated and stored.
Details of how the auditory masking thresholds are calculated, is
explained briefly below.

As a first step, samples from the audio signal are divided into
frames of 512 samples and each individual frame goes under psy-
choacoustic evaluation. Two separate frequency-domain repre-
sentations are used. The first representation uses a 32-channel
polyphase filter bank for emulating the frequency selectivity of the
auditory periphery. The second representation uses a 512-point
FFT to determine tonal and noise maskers. Each of the 32 chan-
nels generate frames of size 12 resulting in a total of 384 samples.
Appropriate time shifting is applied to correct the time delay in-
duced by the filter bank. The frequency resolution of the FFT for
a sampling rate of Fs = 44.1 kHz is 86.13 Hz. An overlapping
Hann window is used in the calculations for obtaining an estimate
of the power spectrum, X(k), k = 0 . . . N/2 of the frame.

Then, the sound pressure level (SPL) in subband l = 0 . . . 31
is computed with respect to a reference of 96 dB. The sound pres-
sure level, Lsb(l), is computed for every subband l and stored.

MPEG-1 Audio Layer I psychoacoustical model separates the
tonal and noise-like components of the audio signal. The reason
for this is the different spreading characteristics of simultaneous
masking by these different types of maskers.

The tonal components X(k), are identified based on the local
maxima which are determined as the peaks that satisfy the follow-
ing condition:

|X(k)| > |X(k − 1)| and |X(k)| >= X(k + 1)

Subsequently, for each critical band, the remaining noise-like
components are summed into a single non-tonal masker compo-
nent. A local peak is added to a list of tonal maskers if:

|X(k)| − |X(k + j)| >= 7 dB,

where j is chosen differently for different frequency bands such
that:

j = −2,+2 for 2 < k < 63
j = −3,−2,+2,+3 for 63 <= k < 127

j = −6, ...,−2,+2, ...,+6 for 127 <= k <= 250

The remaining spectral lines are identified as non-tonal compo-
nents.

Less powerful maskers are determined and eliminated in or-
der to obtain a global masked threshold. Two conditions are used
for this purpose: 1) tonal or non-tonal component which generates
masking thresholds that are below the absolute threshold of hear-
ing are eliminated as these components will not be audible [5], and
2) less powerful tonal components within the distance of less than
0.5 Bark from a powerful tonal masker are eliminated. This way,
components with the highest power are kept in the list of tonal
components and others are eliminated.

The global masking threshold for each frequency index is de-
rived from the individual masking thresholds of calculated tonal
and non-tonal maskers as well as hearing threshold in quiet.

After every frame has been processed, masking thresholds of
the 32 subbands are stored in a binary file. For a three second au-
dio signal that has a sampling rate of 44.1 kHz, output will have
b(44100 ∗ 3)/384c = 344 frames because of overlapping win-
dowing. This results in a file size of 86 KB for the storage of
this auxiliary information. This is approximately one fourth of the
original sound file. With contemporary hardware specifications,
storing this additional information on volatile memory would not
cause any issues.

Offline analysis is concluded by storing the masking thresh-
olds for each frame. Global masking threshold of the entire scene
will be calculated during the real time analysis.

2.2. Infeasibility of Precalculated Decision Making

One could argue that precalculating and storing global masking
threshold of a dynamic scene is also a feasible option. For a given
scene, masking can only occur after at least two concurrent sound
sources are played, which is what is of interest. While at least
two sources are necessary for masking to occur, there is no the-
oretical upper limit on the number of sound sources that can be
played at a given time. Even if such a limit is imposed on the
number of distinct sound files/sources in order to limit the number
of different combinations, since the same sound file can be played
infinitely many times, infinitely many possible combinations exist
for a given scene. Also, each sound event would have a different
onset making precalculation infeasible.

Let there be a scene with 30 sound files that are 4 seconds long
each. There are b(44100/384)∗4c = 459 frames per sound file. If
there are only two unique sound files played at a time, there would
be

(
30
2

)
∗(459+459−1) = 398 895 possible combinations just for

two overlapping sound sources. In this calculation, onsets of each
sound event are constrained to align with the starting pointer of a
frame. If there are only three unique sound files played at a time,
there would be

(
30
3

)
∗ (459 + 459 − 1)2 = 6 828 018 680 com-

binations. This analysis excludes the possibility that same sound
source (e.g. a gunshot sound) can be activated more than once in
the given duration.

The possible combinations are increasing exponentially and
the memory required to store all number of concurrent sound sour-
ces becomes infeasible with the contemporary hardware.

2.3. Real-Time Analysis

After the offline analysis is performed on the audio sources con-
tained within the scene, and the masking data stored in memory,
real-time analysis can be performed during the program execu-
tion. The main purpose of the real-time analysis, is to calculate

DAFX-202

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5 - 9, 2016

Figure 2: Overall pipeline for the real time analysis

the global masking threshold for the dynamic scene on the fly and
identify whether a new sound event will be audible or not given the
existing events already being rendered. Determining this allows
culling inaudible sound sources, which in turn reduces the com-
putational overhead due to rendering spatial audio. At the offline
stage simultaneous masking thresholds are calculated for monau-
ral listening conditions. However we assume that the global mask-
ing threshold, which is an attribute of monaural hearing is also an
indicator of the perceptual salience for binaural hearing. Visual
representation of the real time analysis, for handling an auditory
event is shown in the Fig. 2.

Real-time analysis involves several stages: Firstly, when an
auditory event is triggered, the event manager (EM) does the pre-
liminary operations required to handle this event. EM then places
or re-prioritizes this event in the decaying event priority queue
(DEPQ) in order to reduce hard drive access delay. After the data
is successfully stored in the heap, timed circular buffer (TCB) at-
tenuates masking thresholds according to their distance and adds
their masking values to the global masking threshold. Then, the
audibility ratio of the individual audio source is calculated. If this
ratio is larger than a selected threshold value, that audio source is
culled.

2.3.1. Concept of Sound Events and Event Manager

For the proposed algorithm, the audio rendering component of the
game engine needs to be encapsulated. For every spatial audio
render request, sound events are generated, later to be handled by
the sound event manager (EM). Each audio event includes:

• An audio identifier which denotes both the actual audio
file path and the binary file which contains the masking in-
formation.

• Distance from the listener position

The event manager that was mentioned above has two respon-
sibilities: 1) handling sound event requests, and 2) handling end-
of-audio events received from the game engine. Event manager
runs on its own thread with a single mutex that locks each time an
event is received. Receiving end-of-audio events require the same
mutex lock acquisition as receiving an auditory event. Hence
they are synchronized, even if multiple threads call them simul-
taneously. One key difference between them is that, receiving an
end-of-audio event is a blocking operation whereas sound event
handling is not. Details of each operation are explained below.

Sound Event Handling: Whenever a sound event is triggered,
the event manager tries to acquire the thread lock (via the only

mutex it has). If it fails to acquire the lock, it simply returns
without doing any operations and the audio will be rendered. If it
acquires the lock, meaning that this is the only running real time
analysis, it checks whether the masking information for the given
audio signal exists or not. If there is no masking information pre-
sent, audio will be automatically rendered, without doing any fur-
ther operations. This could be the case, for example, for back-
ground music which should not be subject to culling or for sources
which are marked as immutable by the game audio designer.

If the lock is acquired and the audio/masking data are valid,
event manager proceeds with the remaining operations. After all
the operations and calculations are carried out and the decision
is made, the event manager releases the thread lock and returns
the result to the calling thread. After that, if the audio is marked
as inaudible, it will be culled and no further operations will be
necessary. If the audio is marked as audible, game engine proceeds
with spatial binaural audio rendering. A visual representation of
the workflow is displayed in Fig. 3.

End-Of-Audio Event Handling: End-of-audio events are sig-
nals that indicate that a single audio file has finished playing, and
the information of which audio file is finished is not conveyed.
These events are required in the execution of the circular masking
threshold which will be explained below.

When an end-of-audio event is received, lock must be acquired.
After the program counter is in the critical section, event manager
decrements the active audio count. If there is no active sound in
the scene, timed circular buffer is notified and the lock is released.
When all sound events have finished playing, TCB is purged. A
visual representation of the workflow is displayed in Fig. 4.

2.3.2. Decaying Event Priority Queue

As explained above, auditory masking information for each sound
is stored in persistent data storage such as HDDs or SSDs. Com-
pared to the data that was allocated dynamically from heap or
stack, accessing data is significantly slower from these resources.
In order to counteract this effect, the retrieved auditory masking in-
formation is temporarily stored in a decaying event priority queue
(DEPQ).

DEPQ is a dynamically allocated priority queue that stores a
fixed amount of past auditory event information. Priorities for each
event are set according to their arrival order. As the name suggests,
priorities for each event are decremented every time a new event
comes. When the queue is full and an event that is not stored in
queue arrives, the event with the lowest priority (the least active
event) is replaced with the newer one.

DAFX-203

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5 - 9, 2016

Figure 3: Event manager workflow for handling auditory events

2.3.3. Timed Circular Buffer

Timed circular buffer (TCB) contains the global masking threshold
and incorporates new masking values into it. All of the masking
values come from binary files that are stored during the initial of-
fline analysis stage. TCB also decides whether a given sound will
be audible or not by calculating audibility level as a ratio of the
number of audible frames to the number of inaudible frames of the
audio signal to be played. TCB then returns its assessment to the
event manager. The timed circular buffer is a variation of circular
buffer with four additional variables besides the size of the buffer
and the buffer itself:

1. Start Index, inclusive; Points to the first valid data of the
buffer. Updated according to time, stored as unsigned inte-
ger.

2. End Index, exclusive; It points to the first empty index of
the buffer. Stored as unsigned integer.

3. Valid Index, exclusive; This points to the end of previous
sound data and index from which the array needs to be
cleared from. One could also say it is this first index af-
ter the last valid data. Stored as unsigned integer.

4. Audibility Percentage; For a given audio and an existing
scene, determines how much of the given auditory event
will be audible.

Details of how each index works in conjunction with the algo-
rithm is explained below:

MPEG-1 Layer I uses 12 samples per subband and there are
32 subbands as explained above. Size of the buffer, in the case that
the buffer will store 5 s1 of masking information, can be calculated
as follows:

bufferSize = Size of buffer for 5 seconds

+ 1 extra empty frame

= floor(5000 / Frame Time) * 32 + (32)

= floor(574.21875) * 32 + 32

= 18400 Doubles

1Size of buffer is not constrained to 5 seconds and can be shorter or
longer depending on user requirements.

Figure 4: Event manager workflow for handling end-of-audio
events

where the duration of a single frame of audio is given as:

Frame Time = (Frame Size * 1000 ms) / Sampling Rate

= (384 * 1000 ms) / 44100 ≈ 8.7 ms

The start index is only modified by the actual time difference.
It is updated every time a new auditory event arrives. Calculation
of start index, when requested, is implemented as follows:

startIndex += b elapsedTime / frameDuration c / 32;

startIndex = startIndex % circBfrSize;

Prior to calculating the global masking values for the dynamic
scene, the individual masking values are attenuated according to
distance using the inverse-square law.

∆Lp = 10 log(
r1
r2

)2 dB

While determining the audibility for a given audio event, a
threshold value called audibility ratio is defined:

Audibility ratio =
number of audible frames

total number of frames

To determine whether a frame is audible or not, masking val-
ues are first compared with the current global masking values. If
the given masking value is greater than the existing global mask-
ing threshold for any of the 32 subbands, that frame of the audio
will be considered audible.

When handling masking values, TCB follows the following
steps of execution:

1. Update starting frame according to time,

2. Determine estimated end index and clear deprecated data,

3. Attenuate masking values according to source distance,

4. Calculate the audibility ratio within the existing scene,

5. If audibility ratio is greater than a preset threshold, add
these masking values to TCB and return.

DAFX-204

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5 - 9, 2016

3. PERFORMANCE ANALYSIS

The primary purpose of the proposed algorithm is to provide a
performance advantage with minimum perceptual degradation. As
such, the computational cost of real time analysis should be lower
than synthesizing binaural audio. Performance of the proposed al-
gorithm, as well as factors that affect analysis duration is explained
below.

3.1. Algorithmic Complexity of Real-Time Analysis

Real time analysis consists of three components: event manager
(EM), decaying event priority queue (DEPQ), and timed circular
buffer (TCB). All operations of the event manager have a compu-
tational complexity of O(1), and the algorithmic complexity de-
pends on the other two components, DEPQ and TCB. In this sec-
tion, we will assume that the size of the priority queue is m and
the size of the masking value sequence is assumed to be n.

Decaying event priority queue (DEPQ) has two main function-
alities; handling sound events and handling end-of-audio events.
End of audio events are of complexity O(1). Handling audio
events on the other hand, not only requires interaction with the
queue itself but also the auditory masking values in the file sys-
tem. Firstly, if the size of the queue is m, searching through the
queue has a complexity of O(m). Secondly, fetching the masking
values from the file system and placing them into the queue has a
complexity of O(n).

For the timed circular buffer (TCB), the sequence of input val-
ues is traversed twice. Once for attenuating the masking values
according to distance and second time for adding the masking val-
ues to the global masking threshold. So the complexity of this
operation is O(n).

Three factors determine the computational cost of the analysis
stage:

1. Length of the sound signal:

(a) In the case that the file is not already stored in DEPQ,
read time (excluding the seek time) is proportionate
to the length of the offline analysis file.

(b) Each frame coming from the analysis file are com-
pared to the global masking threshold in the TCB to
determine whether a given audio is audible or not.
Hence number of frames affects the duration of the
real-time analysis.

2. Type of persistent data storage: Retrieval from a physical
drive takes longer in comparison with a solid-state drive.

3. Storage in DEPQ: If data is not stored in the program stack,
time costs of seek time, data transfer rate, and rotational
latency (for HDDs) are added to the time cost of finalising
the analysis. [8]

A limiting factor in the applicability of the proposed method
is the type of persistent data storage from which offline analysis
data is retrieved. HDDs incur spin-up delays, seek time delays and
slow data transfer rates compared to SSDs. In a system that highly
depends on time, such issues may render the system useless due
to hardware delays. If the end user were to use HDDs, increasing
DEPQ size and storing the whole masking information into the
queue would be a feasible option.

3.2. System Performance

An assessment of the performance of the proposed method is pre-
sented in this section. Time values listed here are hardware depen-
dent. In order to smooth out peaks due to higher-priority operating
system processes, the metrics presented in this section use an av-
erage of 10 runs.

The hardware used in the calculation of the reported values in-
cludes Intel i5-3570K CPU running at 3.40GHz, 8GBs of RAM,
120GBs of SSD, 500GBs of HDD and a GeForce GTX 670 graph-
ics card.

3.2.1. Performance of Real Time Analysis

The time it takes to complete real time analysis is affected by how
the pre-calculated data is accessed. Different storage media have
different data transfer overheads which in turn affects the duration
of real time analysis. This section describes the individual cost of
the culling algorithm, including any delays associated with it but
excluding the cost of the subsequent (binaural) rendering opera-
tions. Table 1 shows the average times to reach a decision, based
on the conditions listed.

Different hardware architectures would have different results.

Table 1: Average time required to complete real time analysis

Input Size Storage in DEPQ Memory Type Delta Time
1 Frame Stored RAM ≈ 0 ms

574 Frames Stored RAM 0.51 ms
1 Frame Absent HDD 15.626 ms

574 Frames Absent HDD 15.918 ms
1 Frame Absent SSD ≈ 0 ms

574 Frames Absent SSD 0.53 ms

3.2.2. Performance Gained by Culling a Single Audio Source

For a sound signal that was stored in DEPQ, average time it takes
to render a 5 second audio is 0.51 milliseconds. During this time,
a single CPU core is fully utilized. We can express the total cost
of a program execution as:

CostOfExecution = AverageCPU Utilization ∗
T ime InMilliseconds

Since audio rendering incurs a performance penalty in the be-
ginning of each frame, over the time of execution, we can see
whether this methodology is profitable or not. Since we are not
considering the memory delay for retrieving the actual audio data
from memory, we are not considering the retrieval of the masking
values from memory either. For an audio signal that is already in-
side the DEPQ, and for audio data that was already stored in RAM,
the performance metrics are listed in Table 2.

Table 2: Execution cost comparison

Input Size Culling Assessment Cost Of Execution
1 Frame No Culling Algorithm 9ms∗%0.44 = 3.96
1 Frame With Culling Algorithm 9ms∗%0.46 = 4.14

574 Frames No Culling Algorithm 5000ms∗%0.45 = 2250
574 Frames With Culling Algorithm 5000ms∗%0.49 = 2450

DAFX-205

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5 - 9, 2016

As shown in the table, the culling algorithm has 8% more
performance overhead compared to the existing audio synthesis
pipeline. However in the case that the audio will be culled, we
will save 92% of the clock cycles. In other words, in order for the
proposed algorithm to provide any computational gain, it should
cull at least 92% of all the frames. One disadvantage of the culling
algorithm, however, is that it will block a CPU core completely
until the analysis is done.

At the cost of degrading the overall composition of the scene,
a volumetric culling methodology would save %100 percent of the
clock cycles instead of our %92 but does not guarantee the reten-
tion of perceptually most prominent sources. While the proposed
methodology does not provide the best overall performance, it pro-
vides a good balance between perceived richness and performance
as will be shown in the next section.

4. SUBJECTIVE EVALUATION

Audio produced with sound source culling, regardless of the meth-
odology, is dependent on the user determined variables. Resulting
auditory richness produced by the aforementioned methodologies,
provide a crude approximation to the original scene. In order to
find out which parameters provide sufficient perceived richness, a
subjective evaluation was performed.

4.1. Chosen Test Methodology

The ITU-R Recommendation BS.1534, proposes proposes a sub-
jective evaluation method called "MUlti Stimulus test with Hidden
Reference and Anchor
(MUSHRA)" which is appropriate for assessing intermediate au-
dio quality [9]. While this paper is not directly related to audio
coding or quality, we use MUSHRA to test intermediate levels of
auditory richness given a hidden reference and anchor.

4.2. Test Procedure

4.2.1. Presentation of Stimuli

In the MUSHRA test method, a high quality reference signal, a
low quality anchor signal and other signals that fall in between
them in terms of quality are evaluated [9]. In any given test, there
is a single reference and a single anchor that the user is expected to
find. Each prerecorded sound can be played as many times as the
listener desires. Presentation of both the different experiments and
the stimuli contained within the experiments are randomized. So
not only each listener listens experiments in a different order but
each listener faces a randomized presentation order of the stimuli.
For the experiments, a MATLAB interface called MUSHRAM was
used [10].

4.2.2. Grading

The whole test procedure is comprised of giving ratings to test
signals which are displayed in random sequence. Listeners were
instructed to score the presented samples in comparison with the
explicitly provided reference signal. The scores that are given, can
range between 0 and 100. Listeners were asked to find and rate
the reference and the anchor signals as 100 and 0, respectively.
For any of the remaining stimuli, listeners were asked to give their

Table 3: Contents of Test Scenes

Experiment Contents (ss = sound sources)
Impulsive Scene 13 impulsive ss.

Impulsive + Speech
+ Music

6 impulsive ss., 6 speech ss.,
1 Music sound

Impulsive + Sound Effects
+ Music

6 sound effect ss., 6 impulsive ss.,
1 Music sound

Sound Effects + Speech 7 speech ss., 6 sound effect

scores according to the perceived richness. They were also en-
couraged to listen to the available reference signal, prior to giving
scores on the stimuli.

4.3. Experiment Details

The MUSHRA test applied for this paper is comprised of four dif-
ferent experiments. Each experiment involves a combination of
different sound sources of different categories: impulsive sounds,
music, static sound effects and speech signals. From these sound
sources, we arranged four different psychoacoustical experiments,
involving sounds under different categories. In each of these sce-
nes, there were a total of 13 sound sources in the case of reference
signals. The applied culling methodology served to reduce the
number of sound sources at each rendered scene. Composition of
each scene is given in the Table 3.

The test scenes were adjusted so that the maximum length of
a stimulus does not exceed 2 s.

4.3.1. Selection of Sound Source Locations

Since both systems need to be tested with the same conditions,
a scene that is appropriate to both culling methodologies was re-
quired. In order to achieve this, sound sources were distributed
along the horizontal plane of the listener. Assuming one source
will be directly in front of the listener, the axis needed to be di-
vided into 180/(13 − 1) = 15 degree segments. Listener was
placed at the coordinate location (700, 700), facing towards the
negative x axis.

We used Unreal Engine 4 to test the proposed algorithm. In or-
der to achieve a controllable volumetric culling methodology, each
of the sound sources were placed at a fixed radius away from the
listener. They were grouped into pairs and were placed at an equal
distance and symmetrical angles with respect to the front direc-
tion of the listener. Coordinates of sound sources were calculated
according to the formula:

X = r cos(θ) + 700 (cm)

Y = r sin(θ) + 700 (cm)

Top down view that demonstrates the positions of the sound
sources is given in Fig. 5.

For example, a sound source with a culling radius of 200 cm
will not be rendered when a listener is positioned 300 cm away
from the source. This way of adjusting test scene enables precise
control over which sound sources are going to be culled because
of the spherical culling radii. Note that these sources were not trig-
gered in the same time frame so that their onsets do not coincide.

DAFX-206

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5 - 9, 2016

Figure 5: Positioning of the sound sources for the tested scenes

4.3.2. Generation of Test Cases

There are nine stimuli in each experiment. The reference signal
includes all 13 sounds. The anchor signal involves only a single
sound source to achieve the lowest richness in a scene. The re-
maining signals are results of scenes with culling methodologies
applied. For the perceptual culling methodology, various audibil-
ity ratios were tested. For volumetric culling methodology, various
radii were tested. In total, there were 4 scenes with 9 culling set-
tings making a total of 36 test cases.

At each run, among the 7 stimuli, 4 of them were produced
with perceptual culling and 3 of them were produced with volu-
metric culling. For perceptual culling, %0, %10, %20 and %30
audibility ratios were used. For distance based culling, 650, 550
and 450 cm culling radii were used. Due to the configuration of the
scene, chosen auditory stimuli and culling methodology, test cases
that have 9 and 11 sound sources were only available to audibility
based culling methodology.

4.4. Statistical Analysis

Eleven participants participated in the test (7 male, 4 female). Fig. 6
shows the results of the scores from the test. As can be observed,
scenes that have 8, 10, 12 and 13 sources have results for both of
the culling methodologies.

In order to see whether the proposed methodology has any ad-
vantage over volumetric culling for a given scene, responses given
to scenes with the same number of sources but obtained using dif-
ferent culling strategies can be compared. Fig. 6

Independent-samples t-tests were performed to find out whether
mean responses given to stimuli obtained using different culling
methods are significantly different. Differences in mean values of
subjective responses for 8, 10, and 12 sound source scenes us-
ing different culling methodologies is statistically significant at
α = 0.05 level with auditory culling outperforming volumetric
culling for these cases. For the 8 source case, the difference be-
tween mean responses was statistically significant with t(75) =
2.965, p = 0.004 (Variances between groups is significant). For
the 10 source case, the difference between mean responses was sta-
tistically significant with t(152) = 2.767, p = 0.006 (Variances

Figure 6: Box plot of subjective scores from listening tests. Circles
denote outliers and stars denote extreme values with their corre-
sponding sample index

between groups is significant). For the 12 source case, the dif-
ference between mean responses was statistically significant with
t(59.268) = 2.270, p = 0.027 (Variances between groups is not
significant)2. For the 13 sources case, the differences between
mean responses were not significant. This result was expected as
no source was culled through culling methodologies for this case.

5. CONCLUSIONS

A perceptual sound source culling methodology based on mod-
els of simultaneous masking was proposed in this paper. The al-
gorithm uses a prioritisation approach based on the audibility of
sound sources and those sources which will be less audible than
the others are culled.

The algorithm was evaluated with respect to its computational
as well as its perceptual performance. Performance evaluations
showed that while the culling algorithm itself causes some compu-
tational overhead, it may still provide savings when it is realised
that culled sources are not processed further for binaural spatial-
isation and that binaural processing has a higher computational
overhead in general. The subjective evaluations involved a com-
parison of the proposed culling algorithm with volumetric culling
where sources are culled based on their distance from the listener.
It was observed that for the same number of sources culled us-
ing the auditory culling and volumetric culling methods, auditory
culling provided higher scores in terms of auditory richness.

While the computational and perceptual performance of the
proposed method for culling sources in more complex scenes in-
cluding a higher number of sources remains to be investigated, the
proposed culling algorithm provides a promising approach that

2In order to check for the normality assumption, Levene’s test was used.
The degrees of freedom of the test is modified in order to account for the
cases where the assumption that homogeneity of variances does not hold
and is called Welch’s t-test.

DAFX-207

Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5 - 9, 2016

could make it possible to render better spatial audio on low-end
devices.

6. REFERENCES

[1] Richard Stevens and Dave Raybould, Game audio implemen-
tation: A Practical Guide Using the Unreal Engine, Focal
Press, 2015.

[2] David Grelaud, Nicolas Bonneel, Michael Wimmer, Manuel
Asselot, and George Drettakis, “Efficient and practical
audio-visual rendering for games using crossmodal percep-
tion,” in Proceedings of the 2009 symposium on Interactive
3D graphics and games. ACM, 2009, pp. 177–182.

[3] Nicolas Tsingos, Emmanuel Gallo, and George Drettakis,
“Perceptual audio rendering of complex virtual environ-
ments,” in ACM Transactions on Graphics (TOG). ACM,
2004, vol. 23, pp. 249–258.

[4] S Spencer Hooks and Nicolas R Tsingos, “Encoding and ren-
dering of object based audio indicative of game audio con-
tent,” Aug. 6 2013, US Patent App. 14/414,877.

[5] ISO / IEC, Coding Of Moving Pictures And Associated Audio
For Digital Storage Media At Up To About 1.5 Mbit/S Part 3
Audio, June 1993.

[6] Mathieu Lagrange and Sylvain Marchand, “Real-time addi-
tive synthesis of sound by taking advantage of psychoacous-
tics,” in Proceedings of the Digital Audio Effects (DAFx01)
Conference, 2001, pp. 249–258.

[7] Davis Pan, “A tutorial on mpeg/audio compression,” IEEE
multimedia, , no. 2, pp. 60–74, 1995.

[8] Hamid D Taghirad and Ehsan Jamei, “Robust perfor-
mance verification of adaptive robust controller for hard disk
drives,” Industrial Electronics, IEEE Transactions on, vol.
55, no. 1, pp. 448–456, 2008.

[9] ITU-R, Method for the Subjective Assessment of Interme-
diate Quality Level of Audio Systems, bs.1534-3 edition, 10
2015.

[10] E Vincent, “Mushram: A matlab interface for mushra
listening tests,” Online] http://www. elec. qmul. ac.
uk/people/emmanuelv/mushram, 2005.

DAFX-208

	1 Introduction
	2 Perceptual Source Culling
	2.1 Offline analysis
	2.1.1 MPEG-1 Audio Layer I Masking Model

	2.2 Infeasibility of Precalculated Decision Making
	2.3 Real-Time Analysis
	2.3.1 Concept of Sound Events and Event Manager
	2.3.2 Decaying Event Priority Queue
	2.3.3 Timed Circular Buffer

	3 Performance Analysis
	3.1 Algorithmic Complexity of Real-Time Analysis
	3.2 System Performance
	3.2.1 Performance of Real Time Analysis
	3.2.2 Performance Gained by Culling a Single Audio Source

	4 Subjective Evaluation
	4.1 Chosen Test Methodology
	4.2 Test Procedure
	4.2.1 Presentation of Stimuli
	4.2.2 Grading

	4.3 Experiment Details
	4.3.1 Selection of Sound Source Locations
	4.3.2 Generation of Test Cases

	4.4 Statistical Analysis

	5 Conclusions
	6 References

