Proceedings of the 1 9" International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5-9, 2016

RT-WDF—A MODULAR WAVE DIGITAL FILTER LIBRARY WITH SUPPORT FOR
ARBITRARY TOPOLOGIES AND MULTIPLE NONLINEARITIES

Maximilian RestT*, W. Ross Dunkel *, Kurt James Werner®, Julius O. Smith *

*Center for Computer Research in Music and Acoustics (CCRMA), Stanford University, California, USA
TFakultﬁt Elektrotechnik und Informatik, Technische Universitéit Berlin, Berlin, Germany

m.rest@e-rm.de,

ABSTRACT

Wave Digital Filters (WDF) [1] are a popular approach for vir-
tual analog modeling [2]. They provide a computationally effi-
cient way to simulate lumped physical systems with well-studied
numerical properties. Recent work by Werner et al. [3, 4] enables
the use of WDFs to model systems with complicated topologies
and multiple/multiport nonlinearities, to a degree not previously
known.

We present an efficient, portable, modular, and open-source
C++ library for real time Wave Digital Filter modeling: RT-WDF
[5]. The library allows a WDF to be specified in an object-oriented
tree with the same structure as a WDF tree and implements the
most recent advances in the field. We give an architectural overview
and introduce the main concepts of operation on three separate
case studies: a switchable attenuator, the Bassman tone stack, and
a common-cathode triode amplifier. It is further shown how to
expand the existent set of non-linear models to encourage custom
extensions.

Index Terms— wave digital filter, software, real time, virtual
analog modeling, multiple nonlinearities

1. INTRODUCTION

There are numerous methods for virtual analog modeling of ana-
log audio circuits on a digital system. While some of them operate
in the Kirchhoff i—v domain with (non)-linear state space mod-
els [6, 7], the framework presented in this paper operates in the
wave domain.

Though historically developed for the design of digital im-
plementations of analog ladder/lattice filters, Wave Digital Fil-
ters (WDF) [1] have in recent years become a popular approach
to virtual analog circuit modeling [2]. WDFs benefit from well-
studied numerical properties and stability conditions. They have
been used to successfully model lumped systems, including me-
chanical systems, electromechanical systems, and especially elec-
tronic circuits.

Among other benefits, they are attractive to algorithm develop-
ers due to their modularity, and desirable numerical behavior [1].
The efficiency of WDFs make real time simulation a possibility.

In this paper, we present the modular Real Time Wave Digi-
tal Filter C++ software library: R7-WDF' [5]. This library allows
for more computationally efficient WDF simulation than existing
frameworks and, most importantly, incorporates the field’s recent
theoretical advances. The goal of this paper is not to exhaustively
document every feature of the library, but to introduce its main
principles of operation and demonstrate its application to repre-
sentative circuits. Full documentation accompanies the sourcecode
(see Section 8).

[chigi22, kwerner, jos]@ccrma.stanford.edu

The rest of the paper is structured as follows: Section 2 re-
views recent theoretical advances and existing circuit simulation
software packages. Section 3 gives an overview of the RT-WDF
library. Section 4 details the use of the library to simulate rep-
resentative circuits: a switchable attenuator, the Fender Bassman
tone stack, and a common cathode triode amplifier. Section 5 com-
pares the performance of the RT-WDF library with SPICE [8] and
Matlab [9], Section 6 concludes and presents an outlook on future
work.

2. PREVIOUS WORK

2.1. Recent Theoretical Advances

Recent work by Werner et al. [4] vastly expanded the class of
circuits that could be systematically modeled with WDF to in-
clude those with complex topologies as well as multiport linear el-
ements [3]. This approach has been successfully applied to model
op-amps at various degrees of complexity [10] and has recently
been extended to accommodate multiple non-adaptable linear ele-
ments [11].

These topological advances also yielded a general method for
handling circuits with multiple nonlinearities [4] with WDFs, pre-
viously restricted to a special case. In this formulation, the nonlin-
earities are solved via table lookup [4] or iteration. Properties of
Newton-based iterative approaches are studied in [12] and applied
to a complex preamplifier circuit involving four nonlinear triode
tubes in [13].

One of the main motivations for the creation of the RT-WDF
library was to provide a reference implementation of these theo-
retical advances, which are not represented in existing software
packages.

2.2. Existing Software Packages

Apart from generic signal processing environments like Matlab,
platforms for systematically implementing real time virtual ana-
log and physical modelling algorithms in the wave domain have
existed for more than a decade now. A review of some of the
packages mentioned here can be found in [14].

Even though it was not specifically designed for WDFs, Block-
Compiler [15] was one of the first environments which was used
for their implementation [16].

An approach more specifically tailored to WDFs was a pro-
gram called BCT with its own GUI to graphically arrange and con-
figure circuit elements in binary connection trees [17].

Both software packages are reviewed together with case stud-
ies in [16]. One advantage of BlockCompiler is its ability to gener-
ate optimized C-code of algorithms whereas an advantage of BCT

DAFX-287

Proceedings of the 1 9" International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5-9, 2016

< wdfTree

wdfAdptCap

[wdfRoot]

Q
/\

wdfAdptResVolt

[wdeadptSwitch [wdfTreeNode wdfAdptLeaf [wdfRootNL](>—[niSolver]<)—[nINewtonSoIver]
wdfUadptRes [wdfRootRtype I ?
wdfAdptConn wdfParallel [wdeootSimpIeI [diodeModel nIModel]
wdfPort
for each subtree [wdfRootSimple] processAscendingWaves() |
WETED] [licelicde] [VEITREE] [wdfRootNode] calculateDownB() |
initTree() createPorts() X
o recursion
é setSamplerate() (C)
adaptTree() adaptPorts()
rec. [wdfRootNL l processAscendingWaves() |
setValue() ¢
o pullWaveUp() [niNewtonSolver @ niSolve()
kel rec. g
2 cycleWave() ;I processAscendingWaves() | = evaluateModels()
£
rec.
getValue() [niModel] calculate() |
(b) (d)

Figure 1: General RT-WDF framework overview: (a) involved classes and their dependencies, (b) high level functions involved to initialize
and run a WDF structure, (c) call graph of a simple WDF root implementation, (d) call graph of a nonlinear root with iterative solver.

is its intuitive and user-friendly approach. None of them is fully
modular in terms of their supported elements, portable to different
computer architectures or supports arbitrary topologies and multi-
ple/multiport nonlinearities.

The first public WDF programming library was published in
[18] and features a modular, object-oriented class hierarchy written
in Matlab. It acted as a blueprint for the release of a first public
C++ implementation in the audio developer community around
the JUCE framework [19]. This library was later refined and pub-
lished by the same author as WDF++ [20]. It features architectural
modularity and portable code but necessarily could only reflect the
state of the art at the time of its development.

Other virtual analog modeling approaches operate in the Kirch-
hoff i—v domain. LiveSPICE [21] builds up on nonlinear state-
space models [22] and has support for common nonlinear multi-
port electrical elements. Another program, Signaldust ‘Salt’ [23],
is only available as a closed source preview within the audio DSP
developer community and was never fully published.

3. FRAMEWORK OVERVIEW

The framework presented in this paper comes in the form of a pub-
licly available library written in C++. This ensures compatibility
with popular frameworks for audio applications like JUCE [24]
and audio plugin APIs such as LV2, VST, AU and AAX. It also

allows for a structure of hierarchical classes that clearly reflect
WDF tree topologies and thus also serves an educational purpose
to access the field. Linear algebra functionality is supplied by
the third-party Armadillo library [25] and all example circuits (see
Section 8) are implemented in a standalone host written in JUCE.

An overview of the class structure is given in Figure 1a. Within
RT-WDF, the two main elements in all WDF structures are
wdfTreeNode and wdfRoot. Every WDF tree consists of one
or more subtrees that are formed by adaptors and leafs as exten-
sions of wdfTreeNode. These parallel (P), series (S) and rigid
(R) adaptors scatter the waves correctly between the root and the
leafs. The leafs represent linear electrical components such as re-
sistors, reactances and non-ideal sources which are the endpoints
of each branch. The other end of such a subtree is connected to a
wdfRoot embodying the unadapted circuit components. If these
unadapted elements have a closed-form wave domain description
they can be implemented as a wdfRootNode. Nonlinear ele-
ments without closed-form representations are implemented as an
nlModel which is solved iteratively using an n1Solver.

A particular WDF implementation of a circuit with all its adap-
tors, components and root elements is contained in a user-imple-
mented extension of the wdfTree class, the application specific
wdfApplTree. This class contains all elements and circuit val-
ues and provides the API necessary to operate the WDF towards
the host application. The required sequence and call graph of these
standard methods can be seen in Figure 1b. All functions are initi-

DAFX-288

Proceedings of the 1 9" International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5-9, 2016

ated from the host by calling methods on such a wdfApplTree
object as shown in Listing 1.

These methods clearly divide into setup and processing tasks.
The first step after instantiation of an wdfApplTree is initializa-
tion, accomplished by calling initTree (). This method itself
calls the recursive createPorts () function on the entry nodes
of the subtrees extending from the root node. This assigns each
tree node its up- and down-facing wdfPort object which keeps
track of wave values and port resistances. Setting the sample rate
is necessary for the next step, adaptPorts (), as the adaptation
of reactive elements depends on the sample rate f; = 1/7.

//create wdf
wdfApplTree myWdfTree();

1
2
3
4 //set up wdf

5 myWdfTree->initTree();

6 myWdfTree->setSamplerate(Fs);
7 myWdfTree->adaptTree();

8

9 //process samples

10 for (int n=0; n<numSamples; n++) {

11 myWdfTree->setInValue (inSample[n]);

12 myWdfTree—->cycleWave ();

13 double outSample[n] = myWdfTree->getOutValue();
14}

Listing 1: High level usage of a user-implemented WDF struc-

ture from a host.

Listing 2 illustrates the pattern of recursive function calls that tra-
verse a subtree from the root to the leafs by considering the exam-
ple of the adaptPorts () function.

The adaptation is carried out by first traversing down to the
leafs, calculating their up-facing port resistances and then succes-
sively passing them on to the parent nodes while keeping also these
parent nodes always adapted towards the root. Similar recursive
schemes are implemented for example in pullWaveUp () and
pushWaveDown () too.

| double wdfTreeNode: :adaptPorts(double T) {
for (wdfPortx dport : downPorts) {

dport->Rp = dport->connectedNode->adaptPorts(T);
}

upPort->Rp = calculateUpRes(T);

2
3
4
5
6
7 return upPort->Rp;
8

}

Listing 2: Recursive adaptation of the tree.

After initialization, processing of each audio sample in the WDF is
initiated by three function calls: setInvValue (), cycleWave ()
and getOutValue (). The first and the latter have to be over-
written by the user in wdfApplTree to correctly assign the in-
put value to the desired source component and collect the output
value correctly. Cycling the wave is readily implemented in the
wdfTree base class as shown in Listing 3.

This listing illustrates the concept of subtrees that hang off the
root and again utilizes recursive methods to push and pull wave
components to and from all of the leafs of the tree. The tree nodes
which are connected to the root are handled as subtree entry nodes
and act as the starting point of recursive traversals.

Between pulling and pushing, ascending wave components are
processed in the root as specified in wdfApplTree and the re-
sult is returned as descending waves. The different root configu-
rations are explained in detail with examples in Sections 4.1-4.3.
The object and method dependencies of a root with a single un-

adapted one-port (wdfRoot Simple) and one with multiple non-
linearities (wdfRootNL) are shown in Figure 1c/1d respectively.
Of course it is worth noting that all these function calls and their
dependencies are hidden from the host application and the user-
implemented application tree by using a strong hierarchical ap-
proach and exposing the internal behaviour of the library only via
a few generic high level functions and constructors.

void wdfTree::cycleWave () {

int treeNo = 0;
for (wdfTreeNodex subtree : subtreeEntryNodes) {
(xascWaves) [treeNo++] = subtree->pullWaveUp();

1

2

3

4

5 }
6

7 root->processAscendingWaves (ascWaves, descWaves);
8

9 treeNo = 0;

10 for (wdfTreeNodex subtree : subtreeEntryNodes) {
11 subtree->pushWaveDown ((*descWaves) [treeNo++]

12 }

13}

7

Listing 3: WDF cycle wave function.

4. EXAMPLES

This section contains three example circuits that have been mod-
eled using RT-WDF to create real time audio algorithms. The host
application is based on JUCE, which readily provides all audio in-
put and output functionality in a callback function by default and
allows the simple creation of graphical user interfaces.

The examples are chosen to highlight several modular con-
cepts of the framework and introduce the three available root types
in detail.

4.1. Switchable Attenuator

The first example illustrates the usage of the wdfRootSimple
object, which supports a single unadapted one-port element at the
root. The circuit under examination is a switchable attenuator (Fig-
ure 2a) that consists of a voltage source Vi, a resistive voltage di-
vider formed by R, & R, and a switch SW; to short the upper
resistor R;. This circuit could obviously also be modeled with
less sophisticated approaches than WDF but we chose it here to
introduce the library’s main concepts on a simple example.

To turn this circuit into its WDF representation, all indepen-
dent nodes and elements are first labeled with a letter and a digit
respectively. These nodes, elements and their interconnections are
transformed into a graph representing the circuit (Figure 2b). The
graph separation techniques of [26] are applied, after which the
graph is transformed into an SPQR tree (Figure 2c). This tree
directly yields the WDF representation of the circuit. It consists
of adaptors P; and S; that were introduced by the replacement
graphs and the circuit elements SW1, Viy, Ri and R, (Figure 2d).
Listing 4 shows the extensions of the wdf Tree class necessary to
model this particular circuit in RT-WDF'. Such a class always be-
gins with the declaration of pointers for all adapted tree nodes in-
volved, in this case for the resistors R, R», voltage source Vin! and
adaptors S; and P;. The switch SW; is a non-adaptable but linear

IPlease note that an arbitrary 1€ resistor in series with the voltage
source was necessarily introduced to yield a non-ideal, adaptable voltage
source that can serve as a leaf component of the WDF tree. It would al-
ternatively be possible to combine R, and the voltage source Vi, into a
non-ideal source and omit S7.

DAFX-289

Proceedings of the 1 9" International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5-9, 2016

’ 2
L SWiZ Ry 3
P1
via () \—Hv Vo c
s
< < @ 1 4
(a) (b) ©
| bl P S1 P |
SWh 4 ” —.— $AR2
| o e e |
4 v 4 v
T T
M- Vin
L Ri_| WV |
1Q
(@)

Figure 2: Deriving a WDF adaptor structure for the switchable
attenuator: (a) circuit, (b) graph, (c) SPOR tree, (d) WDF adaptor
structure.

WDF element, which has a closed-form reflection coefficient. It is
thus treated as a non-adaptable rootNode in this framework and
can be implemented using a wdfRootSimple

1 class wdfAttenTree :
2 {
3 private:

public wdfTree

4 wdfAdaptedResx* R1;

5 wdfAdaptedResx* R2;

6 wdfAdaptedResVSourcex Vres;

7 wdfAdaptedSeriesx* Sig

8 wdfAdaptedParallelx P1;

9 wdfUnadaptedSwitchx* SW1;

10 public:

11 wdfAttenTree () {

12 //treeNodes

13 Vres = new wdfAdaptedResVSource(0,1);
14 Rl = new wdfAdaptedRes(250e3);

15 R2 = new wdfAdaptedRes(250e3);

16 S1 = new wdfAdaptedSeries(Vres, R2);
17 Pl = new wdfAdaptedParallel(S1, Rl);
18 //rootNodes

19 SWl = new wdfUnadaptedSwitch(0);

20

21 subtreeEntryNodes.push_back(Pl);

22 root = new wdfRootSimple(SW1);

23 }

24 void setInValue (double voltageIn) {

25 Vres->Vs = voltageln;

26 }

27 double getOutValue() {

28 return Res2->upPort->getPortVoltage();
29 }

30 void setParams(std::vector<double> params) {
31 SWl->setSwitch((int)params[0]);

32 }

33 };

Listing 4: Switchable attenuator tree.

type root. A pointer for the switch is declared as a private member
of the class.

The constructor of the class begins with the creation of the
tree and root nodes. Adapted elements are created and initialized
according to their physical parameters and the unadapted switch
is initialized to be ‘open’. The next step is conceptually impor-

tant: the pointer to the single subtree entry node needs to be stored
in a wdfTree base class member, subtreeEntryNodes. It
is used to initiate recursive calls that traverse the subtrees as de-
scribed in Section 3 and Listing 3. The pointer to the root node
SW1 is handed over to the root’s constructor to register it as the
root element. The pointer to this root is stored in another member
of the base class, the root pointer.

The initialization of the WDF elements is followed by the re-
quired definitions of the functions set Invalue () and
getOutValue (), virtual methods of the wdfTree base class.
They are used to set and get the input and output samples. In-
put samples can usually be directly set as voltages or currents of
sources. Output samples are retrieved as (a combination of) port
voltages or currents for which the port object holds a
getPortVoltage () and getPortCurrent () function. In
this case the voltage from the up-facing port of Res2 is collected,
which is the voltage across resistor R,. The last method demon-
strates the ability to further extend the base class to manipulate in-
dividual circuit elements: setParams () implements the switch-
ing functionality of our circuit. It can be called at runtime between
samples to effectively configure the reflection coefficient of the
root element on the fly. This functionality is necessary to model the
circuit in Figure 2a in RT-WDF. The resulting wdfAttenTree
class can now be operated as shown in Listing 1 as a real time
algorithm.

4.2. Bassman Tone Stack

The second example makes use of the wdfRootRtype class,
which allows multiport adaptors with arbitrary topologies in the
form of an R-type adaptor at the root. The Fender Bassman tone
stack circuit is taken as an example as it is well studied [27] and has
arigid topology that has only recently been supported in WDFs [3].
The circuit’s schematic as well as graph-, tree- and WDF-repre-
sentations are shown in Figure 3. The same process as in the first
example is carried out to transform the circuit into an SPQR tree?.
The additional step here is to capture the rigid connections be-
tween the subtree ports of the R-type adaptor in a scattering matrix
S using instantaneous Thévenin port equivalents [3] and modified
nodal analysis (MNA) [28].

Listing 5 shows an excerpt of the implementation of the cir-
cuit. The setup of the tree nodes is similar to the previous example
and not repeated here. Three extra steps must be carried out to
set up the R-type root: in contrast to the former example, this
time six subtrees need to be registered with their respective en-
try nodes. These are pointers to the six elements that are directly
connected to the R-type adapter at the root, namely Vin_R3m,
S2, S3, C2, R4 and C3. Secondly, the root object must be cre-
ated with the number of subtrees as a parameter. This ensures
sufficient memory allocation for the scattering matrix S within the
root. In the last step the setRootMatrData () function is over-
written. This is an empty function in the wdfTree base class and
needs to be implemented for specific root class types, including the
one used here. Within this function, a matData struct is config-
ured to hold the correct values for all required matrices in the root.
setRootMatrData () is called by adaptTree () if the cur-
rent root requires it. For the R-type root, the Smat member of this

2The R-type adaptor is chosen here as the root of the tree. It could also
reside further down as a tree node adaptor, but this requires an inherent
adaptation rule for the up-facing port that depends on the topology and the
down-facing port resistances. See [3] for an example.

DAFX-290

Proceedings of the 1 9" International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5-9, 2016

C1

Rit
Ry Vou
(72 }%1—
Vvin @) Ro
Cg R3+
Ra_
~
(@) (b)

R

1 10 8 9
6 7
(©)
R3T
AW
Vin T
4 v oy
+ 82 ’I Rl_
R3_ —— Rg% MW\~
T T T
| 4 v 4 v 3 4 v
> > S3 B Sy
C —— ——
|3 T e R ARl «H
4 v & v
T
e TR
L R4 s Lo LR14
(d)

Figure 3: Deriving a WDF adaptor structure for the Fender Bass-
man tone stack: a) circuit, b) graph, c) SPOR tree, d) WDF adap-
tor structure. Modified from [3]

struct needs to be correctly initialized to embody the scattering be-
haviour. Dynamic coefficients that depend on the R-type adapter
port resistances are supported and enable the user to vary compo-
nent values in the subtrees (thus affecting the circuit’s behaviour)
in real time during operation. This functionality is utilized in the
code resources of this example.

At the end of the listing, the composition of the output voltage
is shown in detail again to demonstrate the flexibility to collect
several voltages across circuit elements and adaptors.

1 class wdfTonestackTree :
2 {
3 private:

public wdfTree

4 // pointers for tree elements

5 000

6 public:

7 wdfTonestackTree () {

8 // create tree elements

9

10 // collect subtree entry points

11 subtreeEntryNodes.push_back(Vin_R3m);
12 subtreeEntryNodes.push_back(S2);

13 subtreeEntryNodes.push_back(S3);

14 subtreeEntryNodes.push_back(C2);

15 subtreeEntryNodes.push_back(R4);

16 subtreeEntryNodes.push_back(C3);

17 // create new root

18 root = new wdfRootRtype (numSubtrees);

19 }
20 int setRootMatrData(matDatax rootMats,

21 doublex Rp[]) {

22

23 // populate rootMats->Smat according to
24 // R-type scattering behaviour and subtree
25 // port resistances Rp[]

26

27 }

28 double getOutValue() {

29 return Rlm->upPort->getPortVoltage() +
30 S2->upPort->getPortVoltage() +
31 R3m->upPort->getPortVoltage ();
32 }

33

Listing 5: (partial) Bassman Tone Stack tree class with multiple
subtrees and root matrix data update function.

4.3. Common Cathode Triode Amplifier

The final example highlights the ability of the RT-WDF library to
handle multiple/multiport Kirchhoff-nonlinearities in circuits via
the wdfRootNL and n1Model classes. Here we model the com-
mon cathode triode tube amplifier shown in Figure 4a which has
been studied for example in [29] as well. The results of recent
WDF research [3, 4] to support arbitrary topologies enable us to
extend the model from [29] to include the parasitic capacitances
Cu, Cgp and Cy as well as continuously evaluated triode grid cur-
rent ;. Deriving the WDF adaptor structure is again accomplished
as in the previous two examples, the result of which is shown in
Figure 4b. The extension of the wdfTree class for this circuit
again implements all elements and their topology in the form of
tree nodes and registers all subtree entry nodes (not shown).

1 wdfCCTATree () {

2

root = new wdfRootNL (numSubtrees,
{12AX7_DW},
NEWTON) ;

3
4
5
6 }

7 int setRootMatrData(matData* rootMats,

8 doublex Rp[]) {

9

10 // populate rootMats->{Emat,Fmat,Mmat, Nmat }
11 // according to R-type scattering behaviour
12 // and subtree port resistances Rp[]

13

14}

15

Listing 6: (partial) Common Cathode Triode Amplifier tree
class with nonlinear root element and appropriate root matrix
data update function.

The root is created as a wdfRootNL object with the number of
subtrees, a vector to specify the nonlinear models and the desired

DAFX-291

Proceedings of the 1 9" International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5-9, 2016

Co Rq
Vout
1Q
R, = E
Vin
~
—Ri
- - M-
-
[| H — : 73+ |
»| |)
Cgp £ Lo
4 v 4 v 4 v 4 5
1 > 121 L L LSQ idl |
B, ||| |~ Ry
W- ¢ *Ck L & [‘
Ro— & ¥ g L 4 v 10
F_L HY LS P \ H L P S3
COT —— R, R; ” —— Vip
| [+ & | ¢ &
X v
T
I
L ¢,

(b)

Figure 4: Common Cathode Triode Amplifier: a) circuit, b)
WDF adaptor structure with Kirchhoff nonlinearity. Grey:
wdfRootNL; Dark Grey: 12AX7DwModel.

solver (Listing 6). In its current state the library supports a multi-
dimensional Newton Solver as described in [12] in detail. For this
type of root, the setRootMatrixData () method must config-
ure the root’s system matrices correctly [4]. These matrices im-
plicitly contain a w—K converter to transform the wave variables
into the Kirchhoff domain and back. All iterative nonlinear models
are currently evaluated in the +—v domain. For this circuit the ac-
tual nonlinearity is specified from a user expandable list of models
as 12AX7_DW, a triode model after Dempwolf et al. [30].

5
k=G- (log(l—i—exp(C-(i-vpk+vgk))) %) (1a)

: 1* .

ig = Gy - (log(l + exp(Cy - vgk)) . 6) + dg0 (1b)
e

ip = i — g (10)

The model is described by Equations (la)-(1c) with perveances
G, Gy, adaption factors C, C, and positive exponents v, £. The
nonlinear two port model is defined in terms of the port voltages
Upk = Vp — Uk, Ugk = Vg — Vi and port currents ip, i4. To be
used with the Newton solver in this library, it is desirable that the
modeling equations are continuously differentiable with respect to
their port voltages in a region around the solution and the Jacobian
must be invertible [12].

In general, these nonlinear model objects are managed by the
nlNewtonSolver as shown in Figure 1a/ 1d. They always con-
sistof a calculate () function that reflects the physical behav-
ior and a getNumPorts () method in the base class for house-
keeping.

12AX7DwModel : : 12AX7DwModel ()
: nlModel (2){

1

2

3

4}

5 void 12AX7DwModel::calculate(vec* fNL, matx JNL,
6 vecx X, intx port) {
7

8 double Vpk = x->at (*port);

9 double Vgk = x->at ((xport)+1);

10

11 // calculate triode currents & their derivatives
12 // and assign them to the vector / matrix entries
13

14

15 fNL->at (*port) = Ip;

16 JNL->at ((xport) , (xport)) = dIp_dvpk;
17 JNL->at ((xport), ((xport)+1)) = dIp_dvgk;
18

19 fNL->at ((xport)+1) = Ig;

20 JNL->at (((xport)+1), (xport)) = dIg_dvpk;
21 JNL->at (((*xport)+1), ((xport)+l)) = dIg_dvgk;
22

23 (xport) = (*port)+getNumPorts();

24 }

Listing 7: Implementation of the nonlinear 12AX7 triode
model.

Fa(v) = [zﬂ with v = {Ziﬂ 2

&

and its Jacobian matrix

dipy iy
v v
Ine = |: ob Bil;k:| . 3

Ovgk Ovgk

The Newton Solver iteratively evaluates its specified models for
each sample, converging towards a solution of the nonlinear sys-
tem within a certain tolerance. This solution is then transformed
back into the wave domain and returned as descending waves from
the root down into the subtrees.

It must be noted that modeling of any nonlinear part in a circuit
may introduce drastic aliasing and sufficient oversampling might
be necessary to achieve the desired spectral results in the output
signal [13]. Also, care must be taken that the selected physical
models meet certain criteria in the operating range of the circuit or
(fast) convergence of the Newton Solver is not guaranteed [12].

5. PERFORMANCE

All three example circuits from Sections 4.1-4.3 were also imple-
mented in the SPICE distribution LTSpice and a CCRMA-internal
object-oriented Matlab WDF framework. RT-WDF and Matlab
WDF simulations were performed at double precision and a sam-
ple rate of f; = 44100 Hz. LTSpice simulations were carried
out as a transient analysis with waveform compression disabled.
All parameters were left at their default values except . OPTIONS
numdgt=10 to enable internal double precision too. The maxi-
mum time step was set to tmax = 20 us ~= 1/ fs.

All processing times were captured on a laptop computer from
2013 with Intel i7 2,4 GHz CPU (4 cores) and 8GB RAM run-
ning OS X 10.11.4. The RT-WDF binaries were built with Apple

DAFX-292

Proceedings of the 1 9" International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5-9, 2016

quantity input RT-WDF SPICE Matlab
duration 8.717s 0.042s 15.498 s 252.120s
norm. dur. 1 0.005 1778 28.923 @
ratio - 1 369 6003
duration 8.717s 0.149s 31.172s 670.107 s
norm. dur. 1 0.017 3.576 76.874 @
ratio - 1 209 4522
duration 2.961s 0.272s 16.411s 324.652s
norm. dur, 1 0.092 5.543 109.643
ratio - 1 60 1192
duration 2.961s 1.035 50.014s 1279.034s
norm. dur. 1 0.350 16.893 431.960
ratio - 1 48 1235

@ switchable attenuator @ fender tone stack

triode amplifier triode amplifier @ 4 X f

Table 1: Comparison of processing times of WDF and SPICE cir-
cuit simulations for all case studies.

LLVM 7.1 at optimization level —O3 and ran with a single pro-
cessing thread without any other considerable applications in the
background.

The results of the benchmarking are shown in Table 1. The
first row of each simulation holds the absolute processing times
in seconds for all three approaches. For RT-WDF, the value de-
scribes the subsumed processing times of a block-wise operation,
for SPICE, the value is taken from the logfile. In Matlab, the time
to finish the sample processing loop is measured with tic and
toc. The second row shows the normalized times with respect
to the length of the input signal. This can be seen as an esti-
mate of CPU load for a real-time operation, as it describes the
relative amount of time needed by the simulation to process a cer-
tain amount of input samples. A normalized duration > 1 could not
catch up with the input signal at full CPU load and the algorithm
is thus not real-time capable. The last row correlates the perfor-
mance of all three approaches in terms of “X times slower than”
with respect to the least demanding candidate.

It is clear that for all case studies the RT-WDF simulation is by
far the most performant approach to model this circuit as a modu-
lar, physically informed algorithm. As indicated by the normalized
processing times, all of them could run in real-time applications,
even with x4 oversampling enabled for the common cathode tri-
ode amplifier’.

6. CONCLUSIONS

We presented the modular WDF C++ library RT-WDF [5] which
implements recent research advances in the field. It provides great
opportunities for both researchers and audio algorithm developers
to approach WDFs for analog modeling of lumped systems.

Due to its custom tailored codebase it greatly decreases com-
putational demands compared to other implementations and is port-
able to many hardware platforms. Many classic WDF elements
(such as resistors, capacitors, parallel and series adapters, etc.) are

3For the SPICE comparison of the x4 simulation, the maximum time
step was set to tmax = Hus ~ 1/(4 x fs).

already implemented in the library and future extensions can be
easily added due to its strictly modular, hierarchical approach.

The authors encourage and highly appreciate contributions to
the codebase to keep up with current research and further improve
the performance of the library.

7. ACKNOWLEDGMENTS

We would like to thank Michael Jgrgen Olsen for his investigation
of the application of Newton’s Method to WDFs. Maximilian Rest
likes to thank Christoph Hohnerlein for inspiring discussions and
CCRMA for supporting the development of RT-WDF.

8. RESOURCES

The GNU GPL licensed version of the RT-WDF library as well as
a reference documentation and examples can be found on GitHub
at

www.github.com/m-rest/rt-wdf

9. REFERENCES

[1] Alfred Fettweis, “Wave digital filters: Theory and practice,”
Proc. of the IEEE, vol. 74, no. 2, pp. 270-327, 1986.

[2] Giovanni De Sanctis and Augusto Sarti, “Virtual analog
modeling in the wave-digital domain,” IEEE Trans. on Au-
dio, Speech and Language Processing, vol. 18, no. 4, pp.
715-727, 2010.

[3] Kurt J. Werner, Julius O. Smith III, and Jonathan S. Abel,
“Wave digital filter adaptors for arbitrary topologies and mul-
tiport linear elements,” in Proc. of the International Confer-
ence on Digital Audio Effects. (DAFx-15), Trondheim, NO,
Nov. 30 — Dec. 3 2015.

[4] Kurt J. Werner, Vaibhav Nangia, Julius O Smith III, and
Jonathan S. Abel, “Resolving wave digital filters with mul-
tiple/multiport nonlinearities,” in Proc. of the International
Conference on Digital Audio Effects. (DAFx-15), Trondheim,
NO, Nov. 30 — Dec. 3 2015.

[5] Maximilian Rest, W. Ross Dunkel, and Kurt J. Werner, “RT-
WDF-a modular wave digital filter library,” Available at
www.github.com/m-rest/rt-wdf, 2016.

[6] David T Yeh, Jonathan S Abel, and Julius O Smith III, “Auto-
mated physical modeling of nonlinear audio circuits for real-
time audio effects—part i: theoretical development,” [EEE
Transactions on Audio, Speech, and Language Processing,
vol. 18, no. 4, pp. 728-737, 2010.

[7] Kristjan Dempwolf, Martin Holters, and Udo Zélzer, “Dis-
cretization of parametric analog circuits for real-time simu-
lations,” in Proc. of the International Conference on Digital
Audio Effects (DAFx-10), Graz, AU, Sep. 6 — Sep. 10 2010.

[8] Laurence William Nagel and Donald O. Pederson, SPICE:
Simulation program with integrated circuit emphasis, Elec-
tronics Research Laboratory, College of Engineering, Uni-
versity of California, Berkeley, 1973.

[9] MATLAB, version 7.10.0 (R2010a), The MathWorks Inc.,
Natick, Massachusetts, 2010.

DAFX-293

Proceedings of the 1 9" International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, September 5-9, 2016

(10]

(1]

[12]

[13]

(14]

(15]

[16]

(171

(18]

(19]

(20]

[21]

[22]

(23]

Kurt J. Werner, W. Ross Dunkel, Maximilian Rest, Michael J.
Olsen, and Julius O. Smith III, “Wave digital filter model-
ing of circuits with operational amplifiers,” in Proc. of the
24th European Signal Processing Conference. (EUSIPCO-
24), Budapest, HU, Aug. 29 — Sep. 2 2016.

Kurt J. Werner, W. Ross Dunkel, and Francois G. Germain,
“A computational model of the hammond organ vibrato/cho-
rus using wave digital filters,” in Proc. of the International
Conference on Digital Audio Effects. (DAFx-16), Brno, CZ,
Sep. 5 —Sep. 9 2016.

Michael J. Olsen, Kurt J. Werner, and Julius O. Smith III,
“Resolving grouped nonlinearities in wave digital filters us-
ing iterative techniques,” in Proc. of the International Con-
ference on Digital Audio Effects. (DAFx-16), Brno, CZ, Sep.
5 —Sep. 9 2016.

W. Ross Dunkel, Maximilian Rest, Kurt J. Werner, Michael J.
Olsen, and Julius O. Smith III, “The Fender Bassmann 5F6-
A family of preamplifier circuits—a wave digital filter case
study,” in Proc. of the International Conference on Digital
Audio Effects. (DAFx-16), Brno, CZ, Sep. 5 — Sep. 9 2016.

Julius O Smith III, “Keynote 2: Recent progress in wave
digital audio,” Nov. 30 — Dec. 3 2015, Available at
https://youtu.be/kUk35_WwTEQ.

Matti Karjalainen, “BlockCompiler: A research tool for
physical modeling and DSP,” in Proc. of the International
Conference on Digital Audio Effects. (DAFx-03), London,
UK, Sep. 8 — Sep. 11 2003, pp. 264-269.

Rudolf Rabenstein, Stefan Petrausch, Augusto Sarti, Gio-
vanni De Sanctis, Cumhur Erkut, and Matti Karjalainen,
“Block-based physical modeling for digital sound synthesis,”
IEEE Signal Processing Magazine, vol. 24, no. 2, pp. 42-54,
March 2007.

Giovanni De Sanctis, Augusto Sarti, Gabriele Scarparo, and
Stefano Tubaro, “An integrated system for the automatic
block-wise synthesis of sounds,” in Proc. of the 5th European
Signal Processing Conference. (EUSIPCO-05), Antalya, TR,
Sep. 4 — Sep. 8 2005.

Udo Zolzer, Xavier Amatriain, and Daniel Arfib, DAFX:
digital audio effects, Ed. 2, John Wiley & Sons, 2011.

Maxime Coorevits, “Wave Digital Filter (WDF) with Juce,”
Available at http://www.juce.com/forum/topic/wave-digital-
filter-wdf-juce, Feb. 2013, accessed Feb. 17, 2016.

Maxime Coorevits, “WDF++ - new restructuration & project
(audio processor),” Available at http://www.juce.com/forum/
topic/wdf-new-restructuration-project-audio-processor, Jul.
2014, accessed Feb. 17, 2016.

Dillon Sharlet, “LiveSPICE: a real time SPICE simulator for
audio signals,” Available at http://www.livespice.org, Nov.
2013, accessed Feb. 18, 2016.

Dillon Sharlet, “How LiveSPICE works: nu-
merically solving circuit equations,” Available at
http://www.dsharlet.com/2014/03/28/livespice-numerically-
solving-differential-algebraic-equations-circuits, Mar. 2014,
accessed Feb. 18, 2016.

Teemu Voipio, “Signaldust “Salt’,” Available at
http://www.kvraudio.com/forum/viewtopic.php?f=246&t=
398728&hilit=vst+circuit+design, Dec. 2013, accessed Feb.
18, 2016.

[24]
[25]

[26]

[27]

(28]

[29]

(30]

DAFX-294

“JUCE framework,” Available at http://www.juce.com.

Conrad Sanderson, “Armadillo: An open source C++ lin-
ear algebra library for fast prototyping and computationally
intensive experiments,” 2010.

Dietrich Frinken, Jorg Ochs, and Karlheinz Ochs, “Genera-
tion of wave digital structures for networks containing mul-
tiport elements,” IEEE Trans. on Circuits Systems I: Regular
Papers, vol. 52, no. 3, pp. 586-596, 2005.

David T. Yeh and Julius O. Smith III, “Discretization of the
’59 Fender Bassman tone stack,” in Proc. of the International
Conference on Digital Audio Effects. (DAFx-06), Montreal,
CA, Sep. 18 — Sep. 20 2006, pp. 18-20.

Chung-Weng Ho, Albert E. Ruehli, and Pierce A. Brennan,
“The modified nodal approach to network analysis,” [EEE
Trans. on Circuits and Systems, vol. 22, no. 6, pp. 504-509,
1975.

Stefano D’ Angelo, Jyri Pakarinen, and Vesa Vilimiki, “New
Family of Wave-Digital Triode Models,” IEEE Trans. on
Audio, Speech, and Language Processing, vol. 21, no. 2, pp.
313-321, Feb. 2013.

Kristjan Dempwolf and Udo Zolzer, “A physically-motivated
triode model for circuit simulations,” in Proc. of the In-
ternational Conference on Digital Audio Effects. (DAFx-11),
Paris, FR, Sep. 19 — Sep. 23 2011, vol. 11.

