
Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

A TOOLKIT FOR EXPERIMENTATION WITH SIGNAL INTERACTION

Øyvind Brandtsegg

Department of Music,
Norwegian University of Science and Technology

(NTNU)
Trondheim, Norway

oyvind.brandtsegg@ntnu.no

ABSTRACT
This paper will describe a toolkit for experimentation with signal
interaction techniques, also commonly referred to as cross adap-
tive processing. The technique allows analyzed features of one au-
dio signal to inform the processing of another. Earlier used mainly
for mixing and post production purposes, we now want to use it
creatively as an intervention in the musical communication be-
tween two performers. The idea stems from Stockhausen’s use of
intermodulation in the 1960’s, and as such we might also call the
updated technique interprocessing. Our interest in the technique
comes as a natural extension to previous research on live process-
ing as an instrumental and performative activity. The automatic
control of signal processing routines is related to previous work
on adaptive audio effects and automatic mixing. The focus for our
investigation and experimentation with the current toolkit will be
how this affects the musical communication between performers,
and how it changes what they can and will play. The program
code for the toolkit is available as a github repository1 under an
open source license.

1. INTRODUCTION

The Music Technology section at NTNU Department of Music
has researched live processing as an instrumental activity for mu-
sic performance, for example in the ensemble T-EMP (Trondheim
Ensemble for Electroacoustic Music Performance). In this ensem-
ble, new modes of improvisation and music making have been ex-
plored, utilizing the possibilities inherent in contemporary elec-
troacoustic instrumentation. One particularly interesting aspect of
this research is the manner in which live processing affects the
communication and interplay between performers. To enhance the
focus on possible interventions in this communication, we look
into a more direct signal interaction, where analyzed features of
one signal are used to control the parameters of processing for an-
other. The term interprocessing is derived from Stockhausen’s use
of intermodulation[1] in the 1960’s, and is here used to describe
any direct signal interaction where features of one signal is allowed
to affect the processing of another signal. Where Stockhausen’s
intermodulation was mainly applied as amplitude modulation, we
would like to expand the signal interaction to allow any kind of
processing technique, and also include a wide selection of ana-
lyzed features from the controlling signals as parametric inputs to
the process. With respect to the sonic interaction of two audio sig-
nals, this also ties into our earlier work on dynamic convolution [2]
and cross convolution techniques [3]. The objective is to find ways

1https://github.com/Oeyvind/interprocessing

of close interaction and sonic merging by enabling musical perfor-
mative actions of one performer to directly influence the sound of
other instruments in the ensemble. As a practical example, say
we would let the spectral characteristics of a banjo affect control
the immediate filtering of a saxophone, or the noise content of the
drums to affect the reverberation of the vocals. Combining ana-
lyzed features from several signal allows for a tightly interwoven
timbral ensemble interaction (see figure 1).
The toolkit utilize automated control of effect processing parame-
ters, where the automation is based on analyzed features of an au-
dio signal. In this respect it ties closely with the field of adaptive
audio effects [4], [5], adaptive modulation, [6], [7] and automatic
mixing via cross adaptive techniques [8], [9], [10], [11], [12]. In
terms of the instrumental control of the processing it also relates
to [13], [14] and [15].
In addition to the signal interaction potential, the toolkit also natu-
rally allows features of a signal to affect its own processing. This
can be useful a starting point of experimentation with the analysis
signal mappings, and can also be envisioned to yield useful adap-
tive effects control mappings for studio and post production type
effects. The analysis methods and the effect processing methods
used in the toolkit are well known from existing DSP literature,
it is the configuration as a tool for live and performative exper-
imentation with cross-adaptive effects control that constitute the
new or added value of the work. This is intended to allow the
mindset of the programmer to be set aside, focusing more on an
intuitive and empirical approach for musical experimentation with
the techniques. Such experimentation can also lead to a deeper un-
derstanding of the analysis techniques involved, and as such may
be useful practice for researchers within the field of audio analysis.

Figure 1: Distribution of analysis signals to several effects

DAFX-1

http://www.ntnu.no/musikk
mailto:oyvind.brandtsegg@ntnu.no

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

2. TOOLKIT REQUIREMENTS

The need for a software environment to host and facilitate this kind
of audio processing has been suggested by [10] and [16], the lat-
ter also providing an example solution within the framework of
Max/MSP. For the design of the current toolkit, we have looked
specifically at the integration of the cross adaptive techniques into
a standardized DAW so that it can easily be combined with other
techniques and workflows. The use of open source components
has also been preferred.
Since the use of extended signal interaction for live processing
touches on musically unfamiliar territory it seems reasonable to
make a toolbox for experimentation, and to enable it to be used
in such a way that allows the focus of experimentation to remain
on the aesthetics and musicality of live processed sound, both in
terms of the compositional and the performative. The toolkit is
not designed for the general music software end user at this point.
This is something that can be built later as a result of experimen-
tation on usability of the different signal interactions. To allow
for experimentation the toolkit should be very flexible with re-
gards to configuration and routing of the signals. It should also
allow for an intuitive workflow, despite the relatively high number
of possible parameter connections/mappings. The toolbox should
be easily integrated with other tools, so a method of interfacing
with a selection of regular DAWs is strongly preferred. Using a
regular DAW as a host program also provides "bread and butter"
functionality like a GUI, audio i/o, audio and cpu metering, and au-
dio routing. Methods for analysis of the input signal features has
been implemented, as well as routing and mapping of the analysis
signals. Integration with an existing set of effects processor imple-
mentations is to be preferred in our context, and we have looked
at methods to adapt existing effects to allow parametric control by
the analysis signals. A methods for integration with standard VST
effects has also been implemented. The toolkit is open source and
available on several platforms (Linux/Windows/OSX). The audio
programming language Csound2 was selected as the implementa-
tion language due to its extensive library of audio processing rou-
tines, and also since it fits the requirements of integration with a
DAW (via Cabbage3) and it is open source and cross platform. For
easy integration with a wide selection of DAWs, the toolkit has
been implemented with VST wrappers to allow the processors to
be used as regular VST plugins.

3. ROUTING

This section will look at possible options for signal routing as a
background for the currently chosen model. This relates to the
routing of both audio and analysis signals. In the signal interac-
tion, we have an affected signal and an affector signal. The af-
fected signal is the one where effects processing is being applied,
according to analyzed features of the affector signal. Following
the conventions of an audio mixer, we would route the signal to
be affected into a channel strip and apply an insert effect on this
strip. One thing to note here is that the affected signal can be seen
as a single source, but the affector signals may come from several
audio sources (i.e. using analyzed features of many sources to se-
lectively affect the processing). We can use the term modulation
sources for the signals resulting from the analysis of the affector

2http://www.csounds.com
3https://github.com/rorywalsh/cabbage/releases

signal. Similarly, we can use the term destination parameters to
refer to the parameters of the effect processing done on the affected
signal.

3.1. Sidechaining

Signal interaction can be found in a conventional audio produc-
tion signal chain in the form of sidechaining. Most commonly,
it is used for dynamic processing, for example the genre-typical
sidechaining compressor of electronic dance music. Here, the kick
drum is used to "duck" the synth pads (or a whole submix), creat-
ing a rhythmic pumping effect. Another well known application is
ducking of background instruments to give precedence to vocals.
A form of sidechaining is also used in de-essers, but in that case
the sidechain signal is not an independent audio input but a filtered
version of the signal being processed. As a general method for
our toolbox, sidechaining has the advantage that it is commonly
used and most audio mixers have functionality to provide the ap-
propriate signal routing. The disadvantage is that in general, the
sidechain input is a single source. The analysis of the sidechain
input will also have to be done in the effects processor for the af-
fected signal, possibly duplicated in other effects processors using
the same sidechain source. Due to these limitations, another rout-
ing model was needed.

3.2. Dual mono

A variant of the sidechain method would be to create special ef-
fects processors with dual mono inputs. One input would be the
affected signal and the other the affector signal. This method has
similar advantages and drawbacks as the sidechaining method. It
could be a viable solution where regular sidechaining is problem-
atic for some reason, but it would require a type of signal routing
that many would find counter-intuitive or downright complicated
(putting the effect on an aux track, using aux sends and panoramic
controls to route the two source signals accordingly). Both the
sidechaining and the dual mono configurations may be relevant
formats for plugins tailored to a specific set of signal interactions,
presumably something that might result from this initial phase of
experimentation. Such variants could have the analysis methods
inlined in the same plugin, potentially reducing the latency be-
tween a feature change in the affector signal and a processing
change in the affected signal. The analysis would however, in
general be limited to features from one single affector signal. A
practical solution would be to implement multichannel VST plug-
ins on multichannel tracks as for example available in Reaper4, that
would however greatly reduce the choice of DAW to use as a host.
The issue of duplicated efforts regarding the analysis stage also ap-
ply to this model, so it is not the most effective and flexible method
for routing and mixing of the control signals. For some traditional
spectral interaction techniques, like cross synthesis or cross con-
volution [3], this routing scheme may still be as good solution, due
to the necessity of synchronized frame-by-frame processing.

3.3. Control signal layer

If features of the same affector signal is to be used to control sev-
eral different affected signals, it might seem reasonable to keep all
signal analysis in one place to relieve the system of duplicated ef-
forts. This requires a method of sending analysis signals from one

4http://www.reaper.fm/

DAFX-2

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

Figure 2: Sending Open Sound Control messages to several net-
work ports on the same computer

process (e.g. audio track in the DAW) to another. Even though this
is not implemented as standard in any DAW (with the exeption
of using a simple envelope follower as a parametric automation,
available in Reaper and other hosts), it can be implemented with
relatively widespread tools of interprocess communication (Open
Sound Control, ZMQ, named pipes etc). The implementation of
a custom routing system as we have done in the toolkit allows for
combination of features from several affector signals, in scalable
proportions and mappings. With respect to control parameter map-
ping this is analoguous to the many to many mapping described by
Hunt et al in [17]. Combining features from several signals in
this manner opens up for fine tuned complex interactions between
musical signals, but will also require particular care in designing
appropriate and musically effective mappings. The provision of a
control signal layer to easily experiment with different mappings
is assumed to facilitate the design of appropriate settings. To mini-
mize the need for installing third party libraries, OSC was selected
as the communication protocol. As we want to distribute the anal-
ysis signals (from the affector) to several effects processors (af-
fected signals, also called destinations in the following) we needed
to devise a simple form of multicast for the OSC messages. Since
the destinations may well reside on the same computer, and the
OSC signals are transported via network sockets, we need to open
a separate network port for each destination, as only one process
can read from a network port at any given time. A somewhat crude
solution for this is to send all analysis signals (from all affectors) to
a pre-selected series of network ports. Each receiver (destination)
process will then scan for an available network port on startup,
opening the first available port (figure 2). Additional receivers will
scan similarly and open the next available port on startup. In this
manner, all analysis signals are available to all receiver plugins,
and we can use address filtering to select the signals to be actively
used in the effect processing of the affected signal. The method
also allows the analysis signals to be available as OSC messages
freely routable in the host DAW, and in this manner the toolkit
enables cross adaptive control of any VST plugin. The toolkit in-
cludes routines for scaling, shaping and mixing of the analysis sig-
nals (outlined in section 5), to use these routines in the mapping
to any standard VST effect, we provide a special translator plugin

(see section 8).

4. SIGNAL ANALYZER PLUGIN

The signal analyzer plugin provides a selection of analysis rou-
tines. In addition to the amplitude (rms) analysis, we have used
spectrally based analysis methods from the timbre toolbox [18] as
well as selection of pitch tracking methods. The timbral analy-
sis methods include centroid, spread, skewness, kurtosis, flatness,
crest and flux. The centroid represents the spectral center of grav-
ity, while the spread represents the spread of the spectrum around
its mean value. The spectral skewness gives a measure of the
asymmetry of the spectrum around its mean value, while kurto-
sis gives a measure of the flatness of the spectrum around its mean
value. These parameters (centroid, spread, skewness and kurto-
sis) are commonly referred to as the first four statistical moments
of the spectrum. Further, the spectral flatness measure is obtained
by comparing the geometrical mean and the arithmetical mean of
the spectrum, it gives an indication of the balance between tonal
and noisy components in the sound. Similarly, the spectral crest is
obtained by comparing the maximum value and arithmetical mean
of the spectrum. Finally, the spectral flux represents the amount
of variation of the spectrum over time. The timbre toolbox paper
(ibid.) also describes several other analysis measures. Selection
of the parameters to be used in our study here has been made in
part on the basis of which measures can be calculated in a real-
time streaming manner (on a frame by frame basis, without know-
ing the whole duration or evolution of the sound). An educated
guess about the expected usefulness and redundancy of the differ-
ent measures in our context has also affected the selection.

Figure 3: The analyzer plugin GUI

DAFX-3

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

The pitch tracking methods are partly borrowed from the reper-
toire of Csound, and an additional method has been implemented
based on epoch analysis [19]. The pitch tracking methods from the
Csound repertoire is ptrack, plltrack, and pitchamdf. The ptrack
method use a STFT method and extracts an estimated pitch for its
fundamental frequency, based on an original algorithm by M.Puckette
et. al [20]. The plltrack method use a phase-locked loop algorithm
based on [21]. The pitchamdf method uses an average magnitude
difference function [22]. The active pitch tracking method can be
chosen from the GUI of the analyzer plugin (figure 3), and the ef-
fective pitch tracking result can be monitored as a sine wave audio
output from the analyzer. The pitch monitor signal can be turned
on or off via a GUI control. To enable a stable pitch tracking out-
put, median filtering has been applied to the pitch tracker output.
The size of this median filter can be adjusted in the GUI (pitch fil-
ter size)

Figure 4: Transient detection, here used on kurtosis.
Arrows in red indicating transients that could be filtered out by
raising the parameter values

Transient indicators for amplitude, centroid and spectral kurto-
sis are extracted using rate of change analysis. The signals are con-
ditioned with an envelope follower filter and mapped to a percep-
tual scale (e.g. dB for amplitude) before transient detection. The
sensitivity of the transient detection can be adjusted with an attack
threshold parameter. To limit the amount of false trigging, some
filtering methods have been implemented. When a transient is de-
tected, the current signal level is recorded, and a decay threshold
sets the relative negative change needed in the input signal before a
new transient is allowed to be registered. The envelope filtering on
the signal to be analyzed has an adjustable decay time to smooth
out fluctuations after a peak in the signal, and this works in tandem
with the decay threshold to reduce the amount of false positives.
Finally, a timer is used as a secondary means to limit the rate of
transients, ensuring that a certain (double trig limit) amount of time
must pass after a transient has been recorded before another tran-
sient is allowed (figure 4). The transient detection algorithm has
been developed empirically by the author, inspired by numerous
sources over the last few years. It was originally devised for de-
tecting amplitude transients, but here adapted to also work on other
kinds of signals. The pitch transients has separate triggers for up-
wards and downwards pitch change. The aforementioned envelope
filtering is then duplicated to create the two different envelopes
needed. The detection parameters are the same for upwards and
downwards pitch transients, and the detection threshold is in semi-
tones (pitch change needed before issuing a trigger). However,

due to inherent weaknesses of the pitch tracking algorithms, the
transient detection parameters must be regarded as candidates for
empirical adjustment.

5. SCALING, SHAPING, TRANSLATION

5.1. Normalization

Due to the fact that the different analysis track can produce sig-
nals within widely varying ranges, normalization of the analysis
signal is done before it being sent from the analyzer plugin (fig-
ure 5). This allows signals to be interchanged and routed more
freely without too many surprises due to out of range values. The
analysis response will of course vary significantly on different in-
put sounds with widely differing characteristics, so the said nor-
malization is a trade off aquired by empirical testing. The purpose
of the normalization is as far as possible to keep the ranges of the
different analyzed features within the same range. Features like
skewness, kurtosis and flatness may still vary to an extent that no
all-purpose solution has been found. Special treatment is done on
the pitch tracking, where two versions of the signal are created.
One version is simply normalized by dividing by the max pitch
value, another is divided by the effective pitch range and offset
with the minimum pitch (so as to create a more full range 0.0-1.0
normalized signal). These signals are called "cps" and "pitch" re-
spectively. The normalized signals will be scaled to the appropri-
ate range for the destination parameters on the receiving side. As
an additional convenience, the raw pitchtracking values are avail-
able ("cps_raw" parameter) for straightforward routing of pitch to
e.g. filter cutoff frequencies. Use of the raw valued parameter se-
lectively bypasses normalization in the analyzer and also bypasses
autoscaling (see section 5.4) to the destination parameter range in
the receiver plugin.

Figure 5: Normalization, signal conditioning, mixing of different
modulation sources, offset and route to destination.

5.2. Filters

Some of the analysis tracks contains transient triggers (for ampli-
tude, pitch tracking, centroid and spectral kurtosis). Since these
signals are very brief pulses, an envelope generator is triggered in
the receiver plugin upon reception of these signals. The rise (at-
tack) and fall (decay) times can be set in the GUI (see figure 6 for
an excerpt showing a single destination parameter). For continu-
ous signals, a similar kind of filtering is implemented, making a
smoothing filter with separate rise and fall times. The algorithm
for the smoothing filter is lifted from Csound’s follow2 opcode,
which in turn attributes the algorithm to Jean-Marc Jot. The filter
is an exponential moving average, with different coefficients used
for rising and falling slopes. It can be described as:

DAFX-4

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

YN = XN + (C ∗ (YN−1 −XN))

where

C =

{
0.001(1/(τa∗fs)) if (XN > YN−1)
0.001(1/(τb∗fs)) otherwise

where τa is the rise time and τb is the fall time

Envelope generator or filter is selected automatically accord-
ing to signal type. The filtering is done prior to scaling, as the
scaling may invert the sign of the modulation signal and it was as-
sumed it would be more intuitive to control the rise and fall time
with respect to the input signal before the (possible) inversion.

5.3. Shaping

After filtering, the signal is shaped (also called warping in [23]) by
a curve parameter. This is to allow a dynamic and gradual change
between log/linear/exponential mappings. The shaping can be de-
scribed by this algorithm:

Y = (1− exp(X ∗ curve))/(1− exp(curve))

Where we use a range of -5.0 to 5.0 for the curve parame-
ter. A curve value of close to zero yields a linear mapping (no
shaping), but note that an actual curve value of zero will have to
be handled by an exception. A curve value of 1.0 approximates
an exponential mapping, while larger values provide increasingly
steeper curves. Similarly a curve value of -1.0 approximates a log-
arithmic mapping, with an increasingly steeper curve for higher
negative values.

5.4. Scaling and offset

Each modulator signal can be scaled to set the degree of modula-
tion to the destination parameter. The scaling is done on the re-
ceiving side, so that individual scaling can be set for each modula-
tion source to each destination parameter. The modulator range is
automatically scaled to the range of the destination parameter via
global variables for min and max, so that a normalized modulator
signal should be able to use the full range of the destination pa-
rameter. In special cases the modulator signal may have a smaller
range, depending on the characteristics of the analysis input signal.
For these cases, the scaling can be boosted by an additional switch
(x10). The offset for each parameter is normally in the same range
as the min and max values for the parameter. However, with some
routing/mappings, we might want to extend the offset range (e.g.
if the mapping of the affector signal constantly makes it go out of
range). For this purpose, additional switches has been added to the
offset setting, allowing it to extend its range to +/- 1x the original
range.

Figure 6: Example of destination parameter GUI

6. EXAMPLE PROCESSORS

Some example processors have been implemented to start work-
ing with the toolkit. Little is known as to what type of effects may
be musically useful for live cross-adaptive processing, which is
also part of the incentive for making a toolkit for experimentation.
Some effects has been chosen due to a clearly identifiable or ob-
vious relationship between parameter variations and sonic results.
For example stereo panner, tremolo/AM, and a lowpass filter with
distortion. Other effects has been chosen due to expectations of
musical expressiveness, like time modification (by means of phase-
locked vocoder processing5), stereo delays and reverb. Yet another
type is effects that has the potential of strongly imprinting sonic
characteristics (from the modulator) onto the processed sound, for
example convolvers and physical models. In this category, a sim-
ple waveguide was implemented, with the audio input to the effect
being used to excite the physical model. If the fundamental fre-
quency of the waveguide is modulated for example by the pitch of
the modulating signal, we get a tight sonic interaction between the
two audio inputs. Each of the above effects in and of itself may
provide less than exciting musical results, but the combination of
several effects modulated by several different characteristics of the
modulator signal seems to have the potential for a rich and multi-
dimensional sonic interaction.
The program code for these effects can be found in the github
repository6. In addition it may be useful to implement a selec-
tion of granular delays and transformation effects, flanger/chorus,
pitch modulation, spectral panners and other spectral modulations,
and dynamic convolver effects, to name a few.

7. ADAPTING EXISTING EFFECTS AND UPDATING
THE TOOLKIT

Making a script to automatically modify existing effects imple-
mented in Csound would be handy. However, if such a script
should be able to take any implemented effect and modify it to be-
come a signal-interaction-enabled effect we would have to make
assumptions about how the parameter control was implemented
in the effect to be modified. Rather than making such assump-
tions, we have made a Python script (codeUtility.py) that auto-
matically generates essential include files and also generates the
relevant parts of the GUI widget code. The code repository pro-
vides a template Csound file for this purpose. To modify an ex-
isting effect, one will have to make a list of the control param-
eters and their associated range. This can be entered as a list
into the python script codeUtility.py, and this script will gener-
ate the relevant code (when run with python codeUtility.py effect-
Name). The GUI code will have to be copied and pasted into the
new effect, and the header and score section of the file needs to
be modified according to the template effects file. The necessary
modifications has been marked with comments in capital letters
in the template.csd file. Python writes the GUI code to effect-
Name_gui_scratchpad.inc, from where it can be copied into the
csd. The GUI caption and plugin id (line 19 in the template.csd)
should also be edited to reflect the newly created effect. As the
toolkit is still in it’s early stages of development, it is highly prob-
able the parameter set of the analysis needs to be updated and
expanded. Additional analysis methods should be put in the an-
alyze_audio.inc file. The readme file in the repository provides

5http://www.csounds.com/manual/html/mincer.html
6https://github.com/Oeyvind/interprocessing

DAFX-5

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

additional details as to what components need to be updated to
allow the new parameter set to be picked up by the system.

8. CONNECTING TO STANDARD VST EFFECTS

The OSC messages from the analyzer can be used to control stan-
dard VST plugins or a host program parameter. Flexible modern
DAWs provide mapping options for OSC messages to any control
parameter in the host. To aid in mapping and scaling in relation
to the control of standard VST plugins, a special OSC translator
plugin was devised. This plugin provides the same signal con-
ditioning and mixing as the example effects in the toolkit. The
difference is that it will output its destination parameter value via
OSC, using the OSC address parmN with N being an integer in
range 1-8. Selection of network port is available in the plugin
GUI. This OSC message can easily be routed to any destination
parameter in the host. For more info on setting up OSC control
in Reaper there are details online 7, other hosts will have similar
methodologies. Some bandwidth issues were encountered when
using these OSC message for host automation (the parameter val-
ues in the receiving effect would choke and stop moving after a
short time). Apparently, the rate of transmission can overflow the
host OSC input buffer. A quick attempt was made to reduce the
rate of transmission without adding significant latency or jitter; By
quantizing values to be sent to the host (to 0.001 steps) and sending
only when the value changes, the host seemed capable of handling
the automation signal stably for a long time (> 1 hour).

9. CONCLUSIONS AND FURTHER WORK

We have shown a toolkit for experimentation with signal inter-
action as a technique for adaptive parameter control of audio ef-
fect processors. The system includes methods for audio analysis,
as well as routing, mapping and scaling of modulation sources.
A number of example effects processors has been implemented
as proof of concept and as a starting point for further investiga-
tion, and an interface to enable control of generic VST plugins
(or any host program automatable parameter) has been shown.
Some demonstration sounds of possible sonic interactions have
been published at the author’s Soundcloud page8. Initial experi-
mentation with the toolkit has shown it to be a useful and poten-
tially musically valid technique. First impressions also include the
potential to use the toolkit to familiarize oneself with the differ-
ent analysis concepts, as the mapping of analysis tracks directly to
changes in the processing of audio gives a very immediate feed-
back on the features tracked by the different forms of analysis.
Further work needs to be done on practical and musical explo-
ration of the technique, and the mapping between sound features
and effects controls can be developed further. The playability of
the expressional capabilities [14] of the system is of special in-
terest in this context, also a subject related to instrumental train-
ing for this specific music performance system. For extensions to
the mapping we may look at higher level sound descriptors and
feature combinations discussed in [23] as well as the relationship
between musical gestures and actions with regards to playability,
possibly touching on machine learning issues as discussed in [24]
and [15]. A series of specially designed effect processing methods
can also be envisioned, where the experiences from work with the

7http://www.reaper.fm/sdk/osc/osc.php
8https://soundcloud.com/brandtsegg/sets/interprocessing-demo-sounds

current toolkit can inform the design of effects that has modula-
tion parameters designed for cross-adaptive control, with an em-
phasis on the expected relation between musical gestures and the
processed sound (of another instrument). The incentive for the
toolkit has been to provide some means of experimentation, since
little is known about the actual musical usefulness of this kind of
interprocessing. The results of experimentation with the toolkit
may lead to implementation of more targeted effects processors.
In this case, the analysis may be implemented as an integral part
of the processor, relieving the need for inter-plugin communication
and enabling lower latencies and tighter signal interaction. Higher
level sound descriptors could be implemented, and a better inter-
face for live performance may be devised as a means of making
the tool accessible to a larger base of users of music software for
production and performance.

10. ACKNOWLEDGMENTS

I would like to acknowledge the suggestions, corrections and valu-
able discussions from the research environment around music tech-
nology at NTNU. In addition, significant input has come from the
Csound community and developers.

11. REFERENCES

[1] A. Moritz, “Introduction to hymnen,” http://home.
earthlink.net/~almoritz/hymnenintro.htm,
2003 (accessed May 19, 2015).

[2] Ø. Brandtsegg and S. Saue, “Experiments with dynamic con-
volution techniques in live performance,” Linux Audio Con-
ference, 2013.

[3] L.E. Myhre, A.H. Bardoz, S. Saue, Ø. Brandtsegg, and J. Tro,
“Cross convolution of live audio signals for musical applica-
tions,” in Proceedings of the 10th International Symposium
on Computer Music Multidisciplinary Research, 2013, pp.
878–885.

[4] V. Verfaille, U. Zolzer, and D. Arfib, “Adaptive digital audio
effects (a-DAFx): a new class of sound transformations,” Au-
dio, Speech and Language Processing, IEEE Transactions on
[see also Speech and Audio Processing, IEEE Transactions
on], vol. 14, no. 5, pp. 1817–1831, 2006.

[5] Vincent Verfaille and Daniel Arfib, “ADAFx: Adaptive digi-
tal audio effects,” in Proceedings of the COST-G6 Workshop
on Digital Audio Effects (DAFx-01), Limerick, Ireland, 2001,
pp. 10–4.

[6] Victor Lazzarini, Joseph Timoney, and Thomas Lysaght,
“The generation of natural-synthetic spectra by means of
adaptive frequency modulation.,” Computer Music Journal,
vol. 32, no. 2, pp. 9–22, 2008.

[7] Victor Lazzarini, Joseph Timoney, Jussi Pekonen, and Vesa
Välimäki, “Adaptive phase distortion synthesis,” DAFx 09
proceedings of the 12th International Conference on Digital
Audio Effects, Politecnico di Milano, Como Campus, Sept.
1-4, Como, Italy, pp. 1–8, 2009.

[8] E. Perez-Gonzalez and J. D. Reiss, “Automatic mixing,” in
Digital Audio Effects, Second Edition, U. Zoelzer, Ed., book
section 13, pp. 523–550. John Wiley & Sons, Ltd, Chich-
ester, UK, 2011.

DAFX-6

http://home.earthlink.net/~almoritz/hymnenintro.htm
http://home.earthlink.net/~almoritz/hymnenintro.htm

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

[9] J. D. Reiss, “Intelligent systems for mixing multichannel
audio,” in 17th International Conference on Digital Signal
Processing (DSP2011), 2011, pp. 1–6.

[10] Enrique Perez-Gonzalez and Joshua Reiss, “Improved con-
trol for selective minimization of masking using interchannel
dependancy effects,” in Proc. of the 11th Int. Conference on
Digital Audio Effects (DAFx-08), Sept. 2008.

[11] Brecht De Man and Joshua D. Reiss, “Adaptive control of
amplitude distortion effects,” in 53rd Conference of the Au-
dio Engineering Society, January 2014.

[12] Stuart Mansbridge, Saorise Finn, and Joshua D. Reiss, “An
Autonomous System for Multitrack Stereo Pan Positioning,”
in AES 133rd Convention, Oct. 2012.

[13] Cornelius Poepel and Roger B. Dannenberg, “Audio signal
driven sound synthesis,” in ICMC 2005 International Com-
puter Music Conference, Barcelona, Spain, September 2005,
ICMC, pp. 391–394.

[14] T. Todoroff, “Control of digital audio effects,” in Dafx: Dig-
ital Audio Effects, U. Zoelzer, Ed. John Wiley & Sons, Inc.,
New York, NY, USA, 2002.

[15] S. Fasciani, Voice-controlled Interface for Digital Musical
Instruments, Ph.D. thesis, National University of Singapore,
2014.

[16] M. Stabile, “Adapt: A networkable plug-in host for dynamic
creation of real-time adaptive digital audio effects,” M.S.
thesis, University of California, Santa Barbara, 2010.

[17] Andy Hunt, Marcelo Wanderley, and Ross Kirk, “Towards
a model for instrumental mapping in expert musical inter-
action,” Proceedings of the 2000 International Computer
Music Conference, pp. 209–212, 2000.

[18] G. Peeters, B. L. Giordano, P. Susini, N. Misdariis, and
S. McAdams, “The timbre toolbox: Extracting acoustic de-
scriptors from musical signals,” Journal of The Acoustical
Society Of America, vol. 130, pp. 2902–2916, 2011.

[19] B Yegnanarayana and S Gangashetty, “Epoch-based analysis
of speech signals,” Sadhana, vol. 36, no. 5, pp. 651–697,
2011.

[20] M. Puckette, T. Apel, and D. Zicarelli, “Real-time audio
analysis tools for pd and msp,” in Proceedings of the Inter-
national Computer Music Conference, 1998, pp. 109–112.

[21] U. Zolzer, S.V. Sankarababu, and S. Moller, “Pll-based pitch
detection and tracking for audio signals,” in Intelligent In-
formation Hiding and Multimedia Signal Processing (IIH-
MSP), 2012 Eighth International Conference on, July 2012,
pp. 428–431.

[22] M. Ross, H. Shaffer, A. Cohen, R. Freudberg, and H. Man-
ley, “Average magnitude difference function pitch extractor,”
Acoustics, Speech and Signal Processing, IEEE Transactions
on, vol. 22, no. 5, pp. 353–362, Oct 1974.

[23] Vincent Verfaille, Marcelo M. Wanderley, and Philippe De-
palle, “Mapping strategies for gestural and adaptive control
of digital audio effects,” Journal of New Music Research,
vol. 35, no. 1, pp. 71–93, 2006.

[24] E. Metois, Musical Sound Information: MusicalGestures
and Embedding Synthesis, Ph.D. thesis, Massachusetts In-
stitute of Technology, 1997.

DAFX-7

	1 Introduction
	2 Toolkit requirements
	3 Routing
	3.1 Sidechaining
	3.2 Dual mono
	3.3 Control signal layer

	4 Signal analyzer plugin
	5 Scaling, shaping, translation
	5.1 Normalization
	5.2 Filters
	5.3 Shaping
	5.4 Scaling and offset

	6 Example processors
	7 Adapting existing effects and updating the toolkit
	8 Connecting to standard VST effects
	9 Conclusions and further work
	10 Acknowledgments
	11 References

