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ABSTRACT
We present a Modified-Nodal-Analysis-derived method for devel-
oping Wave Digital Filter (WDF) adaptors corresponding to com-
plicated (non-series/parallel) topologies that may include multi-
port linear elements (e.g. controlled sources and transformers). A
second method resolves noncomputable (non-tree-like) arrange-
ments of series/parallel adaptors. As with the familiar 3-port se-
ries and parallel adaptors, one port of each derived adaptor may
be rendered reflection-free, making it acceptable for inclusion in a
standard WDF tree. With these techniques, the class of acceptable
reference circuits for WDF modeling is greatly expanded. This
is demonstrated by case studies on circuits which were previously
intractable with WDF methods: the Bassman tone stack and Tube
Screamer tone/volume stage.

1. INTRODUCTION

The Wave Digital Filter (WDF) concept [1] provides an elegant
framework for creating digital models of analog reference circuits
(or any lumped reference system). However, the class of reference
circuits which are tractable with WDF techniques is very small.
Specifically, reference circuits with complicated topologies (those
that can’t be decomposed entirely into series and parallel connec-
tions) and/or multiport linear elements (transformers, controlled
sources, operational amplifiers, etc.) are not accommodated in gen-
eral by known techniques.

In this work, we focus on expanding the class of tractable lin-
ear reference circuits to include these problematic cases. Although
these elements may be accomodated by known techniques in spe-
cific configurations, the situations where they are problematic are
not rare edge cases. For instance, bridged-T networks [2] are com-
monly present in guitar tone stack circuits [3, 4] and analog drum
machine circuits [5–7]. Operational amplifiers are often used in
complicated feedback arrangements which thwart WDF model-
ing except under specific circumstances [8]. This work addresses
a need for simple adaptor derivation procedures suitable for any
topology which may arise in a reference circuit. To that end, we’ll
emphasize methodical and even automatable “stamp” techniques,
well-known in Modified Nodal Analysis (MNA) [9–12].

Researchers have primarily targeted the well-known restric-
tion of WDFs to reference circuits with a single nonlinearity [13].
Since musical circuits in general may contain many nonlineari-
ties, physical modeling / virtual analog researchers have focused
on trying to extend this result to the case of multiple and multi-
port nonlinearities. However, we argue that limitations on WDF
reference circuit topologies are just as problematic. In a compan-
ion paper [14], we’ll review treatments of nonlinearities in WDFs
and show how the resolution of topological issues presented in

this paper enable novel treatments of reference circuits with mul-
tiple/multiport nonlinear elements.

In §2, we review relevant previous work. Two novel methods
for deriving adaptor structures are given in §§3–4. Case studies on
the Fender Bassman tone stack and Tube Screamer tone/volume
stage are given in §5. Both circuits have problematic topologies
which render them intractable with classical WDF techniques—
their simulation demonstrates the success of our methods.

2. PREVIOUS WORK

In the early 1970s, Alfred Fettweis formulated the WDF frame-
work as a technique for designing digital filter structures that mimic
the properties of analog reference circuits, which had well-studied
behavior and well-established design principles [15, 16]. The ana-
log reference circuits of interest commonly had ladder [17] or lat-
tice [18] structure. Hence, it is not surprising that when Fettweis
and Meerkötter formalized the concept of a WDF adaptor, they
focused on series and parallel connections [19].

When Fettweis published his omnibus 1986 article “Wave Dig-
ital Filters: Theory and Practice” [1], the WDF formalism had
reached a high level of maturity. This included extensions to the
multidimensional case which led to uses of WDFs as solvers of
partial differential equations [20]. Today, in physical modeling [21]
and virtual analog, WDFs are an active research area. Researchers
in these fields aim to mimic the behavior of musical circuitry, such
as guitar amplifiers and effect pedals. WDFs are attractive for this
application, but the range of reference circuits that the framework
can be applied to is significantly restricted.

Classical WDF methods are applicable only to circuits whose
topologies can be decomposed into series and parallel connec-
tions [19]. Although the significance of this limitation is only
rarely acknowledged, it was noted by Martens and Meerkötter as
early as 1976 [22]. Fränken et al. [23, 24] used formal graph-
theoretic methods to generate adaptor structures from circuits with
complicated topologies. Their work yields insights about the exis-
tence and implications of complicated topologies and ideal trans-
formers [23, 24], though without presenting a method for deriving
the actual scattering behavior of the resultingR-type adaptors.1

Recently, Paiva et al. studied operational amplifiers (op-amps)
in a WDF context [8], showing how circuits with an op-amp dif-
ferential amplifier topology can be treated as a feedforward cas-
cade of controlled sources—we can consider this an instance of
the “leaf–leaf connection” discussed by De Sanctis and Sarti [26].

1Meerkötter and Fränken furthermore propose techniques for factoriz-
ing scattering matrices to reduce computational costs [25], but again this
cannot be applied in a WDF context without knowledge of the scattering
behavior of these adaptors.
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Although it is clear that a generalization of their technique would
be applicable to some other op-amp topologies, there are cases
where the relationships among controlled sources will create inad-
missible feedback loops.

Some researchers have shown examples of circuits with com-
plicated topologies which, if we insist on only using classical 3-
port series and parallel adaptors, result in non-treelike (and hence
noncomputable) ring structures [2, 27]. Schwerdtfeger and Kum-
mert studied methods for iteratively resolving such ring structures
at runtime, based on contractivity properties of WDF elements [2].

3. METHOD ONE: MNA

Here we present a novel method, based on graph-theoretic views
of WDF adaptor structures, for finding the scattering matrix of a
WDF adaptor with arbitrary topology that may include absorbed
linear multiport elements. A special case without any linear mul-
tiport elements was briefly presented in [28]. Although this may
seem a violation of the modularity goal of WDFs, absorbing WDF
elements into adaptors to ease realizability issues is as old as WDFs
themselves—Fettweis’ resistive voltage (current) source [16] can
be considered merely a voltage (current) source and a resistor ab-
sorbed into a 3-port series (parallel) adaptor.

Given a reference circuit, which may contain linear multiport
elements and complicated topologies, the first step of our method
is to find a suitable WDF adaptor structure. It is possible to accom-
plish this by inspection, but more convenient to apply the method
of Fränken et al. [23, 24]. According to this method, a connected
graph representing the reference circuit is formed, where graph
nodes correspond to circuit nodes and graph edges correspond to
ports in the circuits, i.e., these graph edges correspond to bipole
circuit elements (resistors, capacitors, inductors, etc.) or ports of a
linear multiport element (transformer, controlled source, etc.).

Then, standard graph separation algorithms which find “split
components” are used to decompose the connected graph into a
tree structure: the SPQR tree. For realizability reasons, we must
ensure that these graph separation algorithms will not separate
edges that correspond to a multiport circuit element. This can be
avoided by pre-processing the graph structure with so-called re-
placement graphs before applying a separation algorithm [24].2

A minimal suitable replacement graph includes the addition of 3
fictitious nodes to each multiport element, and fictitious edges con-
necting each one of them to every original node in the multiport el-
ement; this is sufficient to ensure that graph separation algorithms
will not break apart the multiport linear element.

In the SPQR tree, nodes represent topological entities in the
graph with detected split components, and edges represent virtual
edges in the split components. S, P , and R nodes correspond di-
rectly to familiar Series adaptors, Parallel adaptors, and the less
well-known family of Rigid or “strongly connected” adaptors. Q
nodes correspond to single component ports. This process high-
lights the fact that series and parallel adaptors are not sufficient
to represent all linear circuit topologies, not even those without
multiport elements. A result of using replacement graphs, multi-
port linear elements will commonly “clump up” inside of R-type
nodes. The idea of sources absorbed into adaptors is not necessar-
ily new [26], but generalizing the concept in light of formal graph
decomposition methods is crucial to our approach.

2An example is given in §5.2.
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Figure 1: Instantaneous Thévenin port equivalent.

A suitable WDF adaptor structure follows from the derived
SPQR tree. The second step of our method is to find the scattering
behavior of each adaptor in the SPQR tree. The scattering be-
havior of series and parallel adaptors is well-known [19], but the
actual scattering behavior of R-type adaptors is not. We require
an easy-to-apply technique that yields this scattering behavior for
any R-type adaptor, even ones including absorbed multiport lin-
ear elements, and that allows us to make one port reflection-free to
ensure computability of the WDF structure.

Our novel method accomplishes these goals within the frame-
work of the Modified Nodal Analysis (MNA) formalism [9, 10].
Since MNA works in the Kirchhoff domain, we need to form an
equivalent circuit that corresponds to adaptor port definitions. We
call the circuit which produces a certain incident wave upon a port
an instantaneous Thévenin port equivalent.3 It is easily derived
by considering the relationships among a voltage source value e,
source current j, electrical resistance R, port voltage v, port cur-
rent i, port resistance Rp, incident wave a, and reflected wave b.

A single WDF port and its instantaneous Thévenin equivalent
are shown in Fig. 1. If we set R = Rp, the voltage source value
must be equal to the incident wave; e = a. In every case, we
can see that i = −j. This is identical to the classic derivation of
adaptation criteria for a resistive voltage source [1], but framing
it “backwards” shows us how to create a Kirchhoff-domain equiv-
alent to any topological entity including R-type adaptors. Such
an equivalent circuit is simply formed by, each port of an adap-
tor, attaching an instantaneous Thévenin port equivalent, setting
the electrical resistance equal to the port resistance, and setting the
voltage source value to the incident wave value.

From this equivalent circuit, we need to assemble a MNA sys-
tem. In general, a MNA system is set up as[

Y A
B D

]
︸ ︷︷ ︸
MNA matrix X

[
vn

j

]
=

[
is
e

]
, (1)

where X partitions Y, A, B, and D define the relationship among
node voltages vn, voltage source branch currents j, current source
values is and voltage source values e [9,10]. ForR-type adaptors
with no linear multiport elements, we will only employ resistor and
voltage source stamps, yielding a version of (1) where B = AT

and D = 0. In our context, we will also always have is = 0.
Finding X by inspection using, e.g., Kirchhoff’s Current Law

(KCL) is possible, but can be tedious—the use of element stamps
(sometimes called “MNA templates” [11,12] or MNA “by inspec-
tion” [10]) greatly simplifies this process, even to the point of be-
ing automatable. Using element stamps is simple. Every node in

3This is related to the augmented network described by Belevitch [29]
and has also been called the Wave Equivalent Thevenin Source in mi-
crostrip engineering [30].
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Table 1: Modified Nodal Analysis element stamps.
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the equivalent circuit is assigned an index, and then the contribu-
tion of each element is added into X one by one according to the
element stamps. A fine point of this process is that one node in the
equivalent circuit is chosen as the “datum” node, and neither its
row nor its column appear in X. Since the number of independent
KCL equations in a circuit is always one less than the number of
nodes [31], X would always be singular without this step.

Element stamps corresponding to a resistor, a voltage source,
and a voltage-controlled voltage source are given in Table 1. Other
stamps, corresponding to, e.g., transformers and other controlled
sources, are given in the MNA literature [9–11].

A populated MNA system can be used to derive the scattering
behavior of an R-type adaptor. Recall the standard WDF voltage
wave definition [1], applied to a vector of ports,

a = v + Rpi and b = v −Rpi , (2)

with vectors of incident and reflected waves a and b, and a diago-
nal matrix of port resistances Rp. Combining (2) yields

b = a− 2Rpi . (3)

Recall that in forming our equivalent circuit we imposed

e = a , R = Rp , and i = −j . (4)

Inverting X from (1) allows us to solve for j in terms of e:

j =
[
0 I

]
X−1 [0 I

]T
e . (5)

Combining (3), (4), and (5), yields

b = Sa , with S = I + 2
[
0 R

]
X−1 [0 I

]T
. (6)

This method is simple to apply and yields a scattering matrix
even for adaptors which have absorbed multiport linear elements.
In a WDF, we always need to be able to ensure that the port facing
towards the root of the tree is reflection free, i.e., the reflected wave
at that port does not depend instantaneously on the incident wave
at that port. This is accomplished just as in the traditional series
and parallel cases. For a port n that we must adapt, we simply
solve for the value of Rn which accomplishes snn = 0, where
snn is the diagonal entry of S corresponding to the contribution of
incident wave an to reflected wave bn.

We stress that the adaptors resulting from this process are fully
compatible with a standard WDF tree framework. It is well-known
that N -port series (parallel) adaptors can always be decomposed
into N − 2 cascaded 3-port series (parallel) adaptors [26]. This
property means that each adaptor in a Binary Connection Tree

Table 2: Srings stamps for series/parallel adaptors.

series connection parallel connection

ad
ap

to
r

bi. . .

ai
. . .

b j

. . .

a
j

. . .

ak . . .

bk
. . .

bi. . .

ai
. . .

b j

. . .

a
j

. . .

ak . . .

bk
. . .

st
am

p

1−γi −γi −γi
−γj 1−γj −γj
−γk −γk 1−γk




i j k

i

j

k

δi−1 δj δk

δi δj−1 δk

δi δj δk−1




i j k

i

j

k

γm = 2Rm
(Ri+Rj+Rk)

δm = 2Gm
(Gi+Gj+Gk)

Table 3: C stamps for port compatibility.
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(BCT) [26, 32, 33] always has one parent and two children. How-
ever,R-type adaptors cannot be decomposed into smaller adaptors
and haveN ≥ 6 ports. Hence they haveN −1 ≥ 5 children and a
connection tree including them can no longer be assumed binary.
To avoid a loss of generality for circuits with R-type adaptors,
we drop the “Binary” from the BCT concept, calling it rather the
“Connection Tree” (CT)—this does not require any further alter-
ation to standard WDF theory or terminology.

4. METHOD TWO: “RING” RESOLUTION

The method presented in §3 is simple and systematic and should be
applicable to deriving the scattering behavior of any WDF adap-
tor, including hitherto intractableR-type adaptors with or without
absorbed multiport linear elements.

In this section, we present an alternate derivation which com-
bines non-tree-like arrangements of standard 3-port series and par-
allel adaptors which are occasionally seen in the WDF literature [2,
27] into one larger R-type adaptor. These are usually noncom-
putable since they violate the assumption of a tree structure and
hence contain delay-free loops, though recent work achieves guar-
anteed convergence under runtime iteration [2]. As before, we can
render one of the ports in this adaptor reflection-free, making it
suitable for inclusion in a standard WDF tree.

We denote the incident and reflected waves at ports that are
internal to the noncomputable network as ai and bi and those that
are external as our normal wave variables a and b as before. In-
ternal ports face other adaptors within the noncomputable network
and external ports face the rest of the WDF structure. The whole
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Figure 2: Deriving a WDF adaptor structure for the Fender Bassman tone stack, as in §3.

noncomputable structure is described by the scattering description[
bi
b

]
=

[
S11 S12

S21 S22

]
︸ ︷︷ ︸

Srings

[
ai

a

]
. (7)

From this description, we need to find S as in (6). It is not difficult
to populate the Srings partitions S11, S12, S21, and S22. Since (7)
describes the behavior of an interconnected network of standard
3-port series and parallel adaptors (albeit a noncomputable one),
the local scattering behavior is known. Recall the scattering matri-
ces for unconstrained 3-port series and parallel adaptors, with three
ports i, j, and k, incident waves ai, aj , and ak, and reflected waves
bi, bj , and bk. The scattering at these adaptors is described by re-
sistance and conductance ratios γm and δm [26, 34].4 Hence S11,
S12, S21, and S22 can be populated by inspection. Taking inspi-
ration from the Wave Tableau (WT) technique [33], and to match
the simplicity of the MNA element stamp method presented in §3,
we introduce a two-part stamp method for populating these matri-
ces. We note that the WT technique is applied globally, while this
method leverages graph-theoretic perspectives [24] to restrict the
tableau to a minimal subtree. After assigning each port a numeri-
cal index, the stamps shown in Table 2 are used to populate (7).

At the internal ports, a port Compatibility matrix C describes
the relationship between ai and bi:

ai = Cbi . (8)

4Recall that conductance is the reciprocal of resistance: Gm = 1/Rm.
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Figure 3: Instantaneous Thévenin port equivalent to Fig. 2f.

C can also be populated by inspection; every internal incident
wave is equal to the reflected wave at the port it is connected to,
sometimes with a sign inversion if the polarities at that port don’t
match. C = CT on account of the reciprocity of port connections.
We abstract this process into another stamp procedure. Stamps for
direct connections and inverse connections5 are shown in Table 3.

5Sometimes known as “null” connections [35], this can also be consid-
ered the case of an adapted (Ri = Rj ) 2-port series adaptor [1].
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Figure 4: Bassman MNA system matrix—example resistor stamp in light shading, example voltage source stamp in dark shading.

Rearranging (8) as bi = C−1ai and substituting into the top
set of equations in (7) yields

C−1ai = S11ai + S12a . (9)

Solving for ai yields

ai = (C−1 − S11)−1S12a . (10)

Substituting into the bottom set of equations of (7) yields

S = S21(C−1 − S11)−1S12 + S22 . (11)

When it can be applied, this method gives identical results to
§3. An advantage is that it does not require any recourse to graph
theory. A disadvantage is that noncomputable adaptor structures
only arise from inspection—there is no known systematic proce-
dure for generating them. Unlike §3, this technique does not sup-
port cases involving multiport linear circuit elements.

5. CASE STUDIES

The results of this paper enable us to model linear circuits which
would previously have been off-limits as reference circuits for a
WDF. We present two detailed tutorial examples demonstrating
our techniques: the tone stack from the Fender Bassman amp and
the tone/volume stage from the Tube Screamer distortion pedal.

5.1. Fender Bassman Tone Stack

As a first example, we’ll study the tone stack from the Fender
Bassman amp6 (Fig. 2a), using each of the two methods derived in
§§3–4. Yeh and Smith studied the Bassman tone stack by deriving
its transfer function [4]. Although they suggested that it could po-
tentially be implemented as a WDF, that would have been a daunt-
ing task at the time, since the Bassman tone stack circuit (Fig. 2a)
can’t be decomposed into a tree of series and parallel adaptors.
Until now simulation of this circuit as a WDF would require the
use of component consolidation [3] or topological transformations
such as the Y –∆ (“wye–delta”) transformation [36].

What follows is a step by step walkthrough of how §3 can
be applied to model this circuit. First a graph representing this

6R1, R2, and R3 are high, low, and mid tone control potentiometers.
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Figure 5: Bassman magnitude responses, low and high poten-
tiometers at 50%, mid potentiometer at 20% increments.

circuit is formed (Fig. 2b). In this graph, nodes correspond to cir-
cuit nodes and are each assigned a lowercase letter. Graph edges
correspond to ports in the circuit and are each assigned an arabic
numeral. For this graph representation, we follow the procedure of
Fränken et al. [24] to find split components (Fig. 2c). This yields
four series connections and a 6-port R-type connection. We des-
ignate the voltage source (edge 1) as the root of the tree for real-
izability reasons—an ideal voltage source cannot be adapted and
must be a root element. From here, an SPQR tree can be formed
(Fig. 2d). A WDF adaptor structure follows by identity from this
SPQR tree (Fig. 2e). This adaptor structure contains one R-type
adaptor, corresponding to the R-type connection in Fig. 2c. In-
cident and reflected wave labeling details (each port is assigned a
lowercase letter) of this problematic adaptor are shown in detail in
Fig. 2f, and a rearranged version of Fig. 2a which highlights the
derived adaptor structure is shown in Fig. 2g.

We form an equivalent circuit to Fig. 2f by attaching instanta-
neous Thévenin port equivalents (Fig. 3). Each node is assigned a
circled arabic numeral. Using an MNA stamp (Table 1) for each
voltage source and resistor yields the system matrix X (Fig. 4).

Each stamp contributes to certain entries in the system matrix
and source vector. That is, multiple stamps can contribute to the
same system matrix entry. For instance, we can see this at play at
matrix entries ( 3 , 3 ) and ( 4 , 4 ) in Fig. 4.

DAFX-5



Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

C2

C3

R3−

+−

Vin

R4

C1 R1+

R1−
R2

R3+

(a) Circuit arranged using only series/parallel connections.

a11 b10
b11 a10

a9 b8

−1

b9 a8

−1

a2 b3

−1

b2 a3

−1

a4 b5
b4 a5

b 1
2

a
1

a
1
2

b 1

b 7
a
6

−1

a
7

b 6

−1

bF. . .

aF
. . .

aC . . .

bC
. . .

b A

. . .

a
A

. . .

b B

. . .

a
B

. . .

. . .

a
E

. . .

b E

. . .

a
D

. . .

b D

(b) Detail on noncomputable system of series/parallel adaptors.

Figure 6: Considering Bassman tone stack with only series/parallel adaptors, as in §4.

Plugging Fig. 4 into (6) yields the scattering matrix S of this
adaptor. Since portA is facing towards the root of the WDF tree, it
must be rendered reflection-free. This is accomplished by solving
for the value of RA which sets s11 = 0.

To verify this model, we compare a family of magnitude re-
sponse curves to “ground truth” SPICE simulations (Fig. 5). We
find the WDF magnitude responses by taking the FFT of an im-
pulse response that has sufficiently decayed to zero. The WDF
magnitude response shows a close correspondence to SPICE, ex-
cept for the expected frequency warping at high frequencies, a
known property of the bilinear transform (BLT) [21].7

We can also use the Bassman tone stack as an example of §4.
Rather than using the SPQR technique of Fränken et al., we create
(by inspection) an adaptor structure that only uses series and par-
allel adaptors (Fig. 6a). This is similar to Fig. 2e, but the R node
of Fig. 2e has been replaced by a noncomputable network of series
and parallel adaptors, shown in detail in Fig. 6b.

Denoting the length-6 vectors of external incident and reflected
waves as a = [aA, . . . , aF ]T and b = [bA, . . . , bF ]T and the
length-12 vectors of internal incident and reflected waves as ai =
[a1, . . . , a12]T and bi = [b1, . . . , b12]T, we apply the stamp pro-
cedures of §4. The matrix resulting from the stamp procedure (Ta-
ble 2) is given in Fig. 7. The compatibility matrix (8) relating ai

and bi is found according to the next stamp procedure (Table 3):

C =

0 0 0 0 0 0 0 0 0 0 0 1
0 0 −1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0




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Here light shading indicates one example of an inverse connection
and dark shading indicates one example of a direct connection.
Plugging Fig. 7 and (12) into (11) yields an identical S to that
obtained by the previous method.

7https://ccrma.stanford.edu/~jos/pasp/Bilinear_
Transformation.html

5.2. Tube Screamer Tone/Volume Stage

As a second case study, we derive a WDF from the tone/volume
stage of the Tube Screamer distortion pedal.8 This derivation is
similar to §5.1, although somewhat complicated by the op-amp.
In addition to showing a case where an adaptor “absorbs” a linear
multiport element, this demonstrates how these techniques can be
used for advanced and general op-amp modeling. Unlike [8], this
technique is not limited to differential amplifier arrangements.

In the circuit (Fig. 8a), the op-amp is treated as ideal, i.e., as a
voltage-controlled voltage source that relates the output voltage
to the differential input voltage v+ − v− by a large open-loop
gain AOL. A graph (Fig. 8b) is formed by the replacement graph
method of Fränken et al. [24]; nameless replacement graph nodes
and edges are indicated in gray. Detail on the resulting R-type
topology is shown in Fig. 8c; remaining standard series and paral-
lel structures are not shown. As before, the split component search
yields an SPQR tree (Fig. 8d) and corresponding WDF adaptor
structure (Fig. 8e). Notice in Fig. 8f that the controlled source has
been absorbed into the R-type adaptor. The R-type adaptor scat-
tering matrix derivation is done according to §3.

To verify this model, we compare a family of magnitude re-
sponse curves to “ground truth” SPICE simulations (Fig. 9). The
WDF magnitude response shows an excellent correspondence to
SPICE, except for BLT frequency warping as before.

6. CONCLUSION

We presented a method (§3) that leverages Modified Nodal Analy-
sis to derive the scattering behavior of WDF adaptors with compli-
cated topologies and even absorbed multiport linear elements. This
method is applicable to reference circuits involving any multi-port
linear elements with MNA descriptions, e.g., voltage- or current-
controlled voltage or current sources and transformers. A sec-
ond method (§4), applicable to non-tree-like combinations of se-
ries and parallel adaptors, involves algebraic wave domain ma-
nipulations. Both are based on simple stamp philosophies and
yield adaptors which are suitable for inclusion in standard WDF
trees. Combining these methods with the graph-theoretic insights
of Fränken et al. brings a high degree of generality to linear WDFs.

8R2 and R3 are tone and volume control potentiometers.
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Srings =

[
S11 S12

S21 S22

]
= . . .

δ1−1 δ2 0 0 0 0 0 0 0 0 0 0 δA 0 0 0 0 0

δ1 δ2−1 0 0 0 0 0 0 0 0 0 0 δA 0 0 0 0 0

0 0 1−γ3 −γ3 0 0 0 0 0 0 0 0 0 −γ3 0 0 0 0

0 0 −γ4 1−γ4 0 0 0 0 0 0 0 0 0 −γ4 0 0 0 0

0 0 0 0 δ5−1 δ6 0 0 0 0 0 0 0 0 δC 0 0 0

0 0 0 0 δ5 δ6−1 0 0 0 0 0 0 0 0 δC 0 0 0

0 0 0 0 0 0 1−γ7 −γ7 0 0 0 0 0 0 0 −γ7 0 0

0 0 0 0 0 0 −γ8 1−γ8 0 0 0 0 0 0 0 −γ8 0 0

0 0 0 0 0 0 0 0 δ9−1 δ10 0 0 0 0 0 0 δE 0

0 0 0 0 0 0 0 0 δ9 δ10−1 0 0 0 0 0 0 δE 0

0 0 0 0 0 0 0 0 0 0 1−γ11 −γ11 0 0 0 0 0 −γ11
0 0 0 0 0 0 0 0 0 0 −γ12 1−γ12 0 0 0 0 0 −γ12
δ1 δ2 0 0 0 0 0 0 0 0 0 0 δA−1 0 0 0 0 0

0 0 −γB −γB 0 0 0 0 0 0 0 0 0 1−γB 0 0 0 0

0 0 0 0 δ5 δ6 0 0 0 0 0 0 0 0 δC−1 0 0 0

0 0 0 0 0 0 −γD −γD 0 0 0 0 0 0 0 1−γD 0 0

0 0 0 0 0 0 0 0 δ9 δ10 0 0 0 0 0 0 δE−1 0

0 0 0 0 0 0 0 0 0 0 −γF −γF 0 0 0 0 0 1−γF


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Figure 7: Bassman loop resolution matrix—example parallel stamp in light shading, example series stamp in dark shading.
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(a) Tube Screamer tone/volume stage circuit.
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(b) Tube Screamer graph.
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(d) SPQR tree.
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(e) Corresponding WDF adaptor structure.
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(f) Circuit arranged to highlight WDF structure.

Figure 8: Deriving a WDF adaptor structure for the Tube Screamer tone/volume stage, as in §3.
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Figure 9: Tube Screamer magnitude responses, volume poten-
tiometer at 50%, tone potentiometer at 0%, 50%, 95%, and 100%.

In general, adapted n-port scattering matrices involve n2 −
1 multiplies. One-multiplier realizations of 2- and 3-port adap-
tors are well known [1, 3]. Even without exploiting any structural
knowledge of scattering matrices, it may be possible to reduce re-
alization cost with matrix factorization [25]. Future work should
seek canonic realizations of the adaptors presented in this paper.

We’ve focused on lingering issues of topology in WDF mod-
els of linear reference circuits. The presented methods are appli-
cable to the same situations in nonlinear circuits. Computability
concerns greatly heighten topological issues for WDF models of
reference circuits with multiple/multiport nonlinearities. A com-
panion paper [14] expands on the initial perspective of [28] and
shows how the methods in this paper can yield a novel framework
for considering WDFs with multiple/multiport nonlinear elements.
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