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ABSTRACT

Various ways to implement infinitely rising or falling spectral
notches, also known as the barberpole phaser and flanging illu-
sions, are described and studied. The first method is inspired by
the Shepard-Risset illusion, and is based on a series of several cas-
caded notch filters moving in frequency one octave apart from each
other. The second method, called a synchronized dual flanger, re-
alizes the desired effect in an innovative and economic way using
two cascaded time-varying comb filters and cross-fading between
them. The third method is based on the use of single-sideband
modulation, also known as frequency shifting. The proposed tech-
niques effectively reproduce the illusion of endlessly moving spec-
tral notches, particularly at slow modulation speeds and for input
signals with a rich frequency spectrum. These effects can be pro-
grammed in real time and implemented as part of a digital audio
processing system.

1. INTRODUCTION

Shepard introduced in the 1960s the infinitely ascending chromatic
scale, which was produced with additive synthesis [1, 2]. Risset
expanded this idea by designing a continuously rising and falling
sweep [3, 4]. The spectrum of two instances of the Shepard tone
are shown in Figure 1. It is seen that the sinusoidal components are
equally spaced in the logarithmic frequency scale, as each compo-
nent is one octave higher than the previous one. A bell-shaped
spectral envelope function takes care of the fade-in and fade-out of
harmonic components. In addition to Shepard-Risset tones, other
auditory illusions have been discovered, including binaural para-
doxes [5] and rhythms which appear to be gaining speed in a nev-
erending manner [4, 6]. This paper discusses impossible-sounding
phasing and flanging effects inspired by the Shepard-Risset tones.

Flanging is a delay-based audio effect which generates a se-
ries of sweeping notches on the spectrum of a signal [7, 8, 9, 10].
Historically, analog flanging was achieved by mixing the output
of two tape machines and varying their speed by applying pres-
sure on the flanges—hence the effect’s name [7, 9, 10]. Adding a
signal with a delayed version of itself results in a comb filtering
effect, introducing periodic notches in the output spectrum. As the
length of the delay changes over time, the number of notches and
their position also changes, producing the effect’s characteristic
swooshing or “jet aircraft” sound [7, 9]. Wanderley and Depalle
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[11, 12] have found that a flanging effect is also produced when
a musician moves in front of the microphone while playing, as
the time delay between the direct sound and its reflection from the
floor is varied.

Phasing was introduced in effect pedals as a simulation of the
flanging effect, which originally required the use of open-reel tape
machines [8]. Phasing is implemented by processing the input sig-
nal with a series of first- or second-order allpass filters and then
adding this processed signal to the original [13, 14, 15]. Each all-
pass filter then generates one spectral notch. When the allpass filter
parameters are slowly modulated, the notches move up and down
in frequency, as in the flanging effect. The number and distribu-
tion of the notches are the main differences between phasing and
flanging, which can sometimes sound quite similar.

Bode developed a barberpole phaser in which the spectral
notches move endlessly in one direction in frequency [16]. The
name ‘barberpole’ stems from a rotating cylindrical sign, usually
white with a red stripe going around it, which have been tradition-
ally used in front of barber shops in England and in the US. As
the pole rotates, a visual illusion of the red stripe climbing up end-
lessly along the pole is observed, although the pattern is actually
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Figure 1: Spectrum of a Shepard tone with 10 harmonics (solid
lines), spaced one octave apart, and a raised-cosine spectral en-
velope (dotted line) [1]. The dashed lines show the harmonics a
short time earlier.
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Figure 2: Block diagram for the proposed network of M time-
varying notch filters Hm(z) for m = 1, 2, 3, ...,M . The center
frequencies of these filters are situated at one-octave intervals.

stationary. Barberpole phasing and flanging effects are currently
available in some audio software, but it is not known to us how
they are implemented [17, 18].

Related recent work has focused on virtual analog models of
vintage flanger and phaser circuits, such as the digital modeling of
the nonlinear behavior caused by the use of operational transcon-
ductance amplifiers [19] and bucket-brigade devices [20]. Eichas
et al. [21] have presented a detailed virtual analog model of a fa-
mous phaser. Furthermore, some research has focused on under-
standing how flanging, phasing, and other audio effects processing
is recognized by humans [22] or by the computer [23].

In this paper we investigate ways to implement barberpole
phasing and flanging effects. The inspiration for this comes from
inverting the Shepard-Risset tone, i.e. replacing the spectral peaks
with notches, to create a new impossible audio effect. In the end,
we found that there are at least three different principles to obtain
this effect. This paper is organized as follows. Section 2 discusses
the basic cascaded notch filter technique to simulate the barber-
pole phasing effect. Section 3 introduces a novel flanging method
using a pair of delay lines. Section 4 describes a third method,
derived from that of Bode, which has its roots in single-sideband
modulation. Finally, Section 5 provides some concluding remarks.

2. CASCADED TIME-VARYING NOTCH FILTERS

The illusion of endless rising or falling sweeping notches, simi-
lar to that of the phasing effect, can be achieved using a network
of cascaded time-varying notch filters (see Figure 2). To do so,
we follow the design of the Shepard tone and place the center fre-
quencies of the filters at one-octave intervals. This design choice
translates into notches uniformly distributed along the logarithmic
frequency axis. The amount of attenuation caused by each filter is
determined using an inverted version of the raised-cosine envelope
originally proposed by Shepard [1] (see Figure 1).

Considering the case of a rising notch sweep, as the center fre-
quencies of the filters move up the spectrum, notches approaching
the Nyquist limit (fN ) will gradually disappear. Similarly, notches
coming from the low end of the spectrum will increase in depth
as they reach the middle frequencies. Since the one-octave in-
terval between notches is preserved at every time step, the center
frequencies of the filters will eventually reach twice their initial
value. At this point, we say the system has completed one full cy-
cle. If the filter parameters are continuously reset one time step
before the system completes a cycle, the illusion of an infinite fil-
ter sweep is generated. Therefore, to implement the illusion we
only need to derive the center frequencies and their respective gain
values for a single cycle. These parameters can then be stored in a
table and read indefinitely during implementation.

To compute the necessary initial parameters, we begin by
defining a system of M cascaded notch filters and denote the rep-
etition rate of the effect, in Hz, by ρ. The total number of center

frequencies (denoted by K) each filter will go through before it
completes a full cycle is the same for every filter and is determined
by

K = bFs/ρc , (1)

where Fs is the sampling rate of the system. The kth center fre-
quency for the mth filter can then be computed from

fc(m, k) = f02[K(m−1)+k−1]/K (2)

for k = 1, 2, 3, ...,K and m = 1, 2, 3, ...,M . The parameter f0
is the center frequency of the first filter at the beginning of a cycle.
Next, the kth center gain of the mth filter is defined as

Lc(m, k) = Lmin +
(Lmax − Lmin)(1− cos[θ(m, k)])

2
, (3)

whereLmin andLmax are the minimum and maximum attenuation
levels in dB, respectively, and Lmax < Lmin < 0. The function θ
is defined as

θ(m, k) = 2π
(m− 1)K + k − 1

MK
. (4)

In summary, we must implement M notches that sweep uni-
formly throughout K frequencies, each with its own attenuation
level. In order to achieve this amount of control for each filter, we
can use a parametric equalizer (EQ) filter structure [24]. This type
of second-order IIR filter is commonly used in graphic equalizers,
since it allows users to increase (boost) or reduce (cut) the gain of
a specific frequency band.

The z-domain transfer function for the cutting case of the para-
metric equalizer filter is given by

H(z) =

(
1+Gβ
1+β

)
− 2

(
cos( 2πfc

Fs
)

1+β

)
z−1 +

(
1−Gβ
1+β

)
z−2

1− 2

(
cos( 2πfc

Fs
)

1+β

)
z−1 +

(
1−β
1+β

)
z−2

, (5)

whereG is the scalar gain at the center frequency fc (i.e. 10Lc/20)
and β is defined as

β =

√
G2
B − 1

G2 −G2
B

tan

(
∆ω

2

)
, (6)

where ∆ω is the width of the filter at gain level GB [24]. Figure
3 illustrates the relationship between these three parameters for a
filter with arbitrary center frequency f Hz.

Now, the definition of ∆ω is rather ambiguous in this case.
It is generally taken to be the width of the filter 3 dB below the
reference level (i.e. G2

B = 1/2). In our case, since notches near
DC and fN may not reach this level of attenuation, this particular
definition is inadequate. For this reason, we instead define the filter
bandwidths in terms of their Q factor

Q =
2πfc
∆ωFs

⇔ ∆ω =
2πfc
QFs

. (7)

Maintaining a constant Q for every filter, rather than a constant
∆ω, will ensure the notches are equally wide on the logarithmic
axis. Otherwise, notches near DC would be much wider than those
near fN . Finally, we define G2

B to be arithmetic mean between a
reference gain of 1 and G, yielding

G2
B =

1 +G2

2
. (8)
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Figure 3: General form of the magnitude response of the paramet-
ric EQ filter in cut mode.

Figure 4 shows the magnitude response of the proposed sys-
tem at its initial state. This implementation was realized with pa-
rameters M = 10, ρ = 0.1 Hz, f0 = 20 Hz, Q = 15, Lmax =
−20 dB and Lmin = −3 dB. A sampling rate Fs = 44.1 kHz was
used for this and the rest of the examples in this paper. As we can
see from the spectrum, the envelope of the notches resembles an
inverted version of its Figure 1 counterpart. As expected, keeping
the value of Q constant produces a fairly uniform notch distribu-
tion.

Figure 5 shows the spectrogram of a 30-second simulation of
the barberpole illusion with the same parameters as in Figure 4 and
white noise as the input signal. For this spectrogram and all those
presented in this paper, a 1024-sample Chebyshev window with
100 dB of sidelobe attenuation, along with 512 samples of overlap
were used. To increase image resolution at low frequencies, this
particular signal was oversampled by a factor 10. The points in
time where each cycle begins are marked with the three markers
on top of the figure. Overall, in Figure 5 we can appreciate how, as
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Figure 4: Magnitude response of a network of 10 cascaded para-
metric notch filters. The gain (attenuation) at each center fre-
quency is determined by the raised-cosine envelope.
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Figure 5: Spectrogram of a barberpole phaser illusion imple-
mented using white noise filtered with M = 10 cascaded time-
varying notch filters and ρ = 0.1. Starting points of the cycles are
indicated with triangles.

the notches increase in frequency and approach the Nyquist limit,
new ones begin to appear. Additionally, notches around the lower
and upper ends of the spectrogram are clearly less dark, which
translates into less attenuation. This system implementation re-
quires f0 and M to be chosen appropriately in order to ensure the
last filter in the chain ends as close to the Nyquist limit as possible.

When implementing this illusion using a software routine, one
additional consideration must be made. Once any given filter m
reaches its Kth center frequency, it must reset to k = 1 at its
next step. However, at this first time step of the new cycle the EQ
filter requires the state variables of the previous filter m − 1 to
correctly compute the output [25]. Therefore, the two final outputs
and values of the delay state variables of each filter, which occur
when k = K − 1 and k = K, must be passed on to the next
filter. Failing to do so will introduce transients at the output of the
network which will translate to audible clicks at the end of every
cycle [25]. This would reveal the cyclic nature of the system and
break the illusion.

Overall, this implementation of the barberpole phaser illusion
works best for input signals with a dense and nearly flat magnitude
spectrum, e.g. pink noise or noisy drum loops. Additionally, its
parameters must be tuned differently for each input type. In terms
of suitable values for ρ, numerous tests revealed that the illusion
works best for values below 0.3 Hz. At higher rates, the cyclic
nature of the design is also revealed and the illusion fails. This
issue is also inherent to both the Shepard scale and the Shepard-
Risset glissando which only work at slow playback rates.

Sound examples for this section can be found online at the
accompanying website1.

1http://research.spa.aalto.fi/publications/
papers/dafx15-barberpole
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Figure 6: Block diagram of a basic digital flanger effect.

3. SYNCHRONIZED DUAL FLANGER

In the barberpole phasing approach discussed in the previous sec-
tion, the number of notches remains constant throughout every cy-
cle. This behavior is different to that of flanging, where the number
of notches, along with their position, varies over time.

A barberpole version of the flanger effect can be implemented
following the typical structure of a flanger in the digital domain,
shown in Figure 6. In this system, the input is delayed by D sam-
ples, scaled by a gain factor g that controls the depth of the effect,
and combined with the original signal. The length of the delay line
is modulated by a sinusoidal or triangular low-frequency oscillator
(LFO). Typical LFO rate values range between 0-3 Hz, while the
maximum delay introduced by the delay line can be of up to 15 ms
[9]. As the length of the delay line oscillates over time, the num-
ber of notches introduced and their position along the spectrum
changes.

To implement the barberpole illusion, we first need to ensure
the displacement of the notches is unidirectional. One possible so-
lution is to use a sawtooth waveform for the LFO, which would
ensure the length of the delay line is reset after every cycle. A triv-
ial sawtooth LFO s(n) can be synthesized for this purpose using a
modulo counter [26]

s(n) = (Dmax −Dmin)[(n∆) mod 1] +Dmin, (9)

where n is the time step index, Dmin and Dmax are the mini-
mum and maximum delay lengths (in samples), respectively, and
∆ = ρ/Fs is the phase increment. As before, ρ is the rate of
the effect. Since this waveform resembles an ascending ramp,
the length of the delay line will gradually increase until it reaches
Dmax. In the frequency domain this represents an increasing den-
sity of notches that move towards the lower end of the spectrum
as they distribute themselves uniformly along the linear frequency
axis. This effect is perceived as a descending filter sweep, con-
trary to the ascending nature of the LFO. To implement the effect
in the opposite direction we just need to flip s(n) horizontally, i.e.
s′(n) = (Dmax +Dmin)− s(n).

The abrupt transition from the maximum to the minimum de-
lay lengths and vice versa can be described as a “hard reset” of
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Figure 8: Waveforms for three cycles of (a) delay-line length con-
trols LFO 1 (solid line) and LFO 3 (dashed line) and (b) gain con-
trols g1 (solid line) and g2 (dashed line) of the synchronized dual
flanger for the ascending flanger case, showing the 90◦ phase off-
set between pairs of oscillators. Cf. Figure 7.

the delay lines. This reset will generate a sudden change in the
frequency content of the output signal that does not support the
illusion of an infinitely ascending/descending sweep. To fix this
issue the design can be extended to incorporate a second delay line
at the output of the first one and use cross-fading to switch between
them. The second delay line will have the same characteristics as
the first one but its instantaneous length will be controlled by a 90◦

shifted version of the modulating LFO.
Figure 7 shows the block diagram of the proposed system.

Two new LFOs (LFO 2 and LFO 4) have been added in order to
modulate the gain blocks at the output of each delay line. The basic
concept behind this design is to avoid the hard resets by switching
between delay lines as they approach their maximum/minimum
delay length. Triangular LFOs with a rate of ρHz can be used, for
example, to implement a linear cross-fade. These new oscillators
must be synchronized with the delay line modulators. Therefore,
LFO 4 should also have a 90◦ phase shift in relation to LFO 2.
Figure 8 shows the waveforms for three cycles of the four LFOs
suggested for the design (ascending flanging case).

In order to make the notches travel smoothly in frequency the
design can be expanded to incorporate fractional delay filters [27,
28], since modulation of the delay lengths will most likely require
fractional delay lengths. Naïve implementations usually resort to
rounding off these values, making the notches sweep in a step-like
manner and introducing the well-known “zipper noise”.
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g 
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z
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Figure 7: Block diagram of the proposed synchronized dual flanger system.
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Figure 9: Spectrogram of white noise processed by the system de-
scribed by Figure 7 and parameters ρ = 0.1 Hz, Dmax = 66 and
Dmin = 44. The triangular markers atop the spectrogram indi-
cate the points where the first delay line begins its cycle.

Figure 9 shows the spectrogram for a 30-second simulation
of the effect using white noise as an input. For this example,
the system parameters were set as ρ = 0.1 Hz, Dmax = 66 and
Dmin = 44. Additionally, a third-order Lagrangian fractional de-
lay filter was used to accommodate fractional delay lengths. As
we can see from the spectrogram, the two flangers cross-fade over
time and generate the illusion of a continuous sweep. The blurred
portions on the spectrum represent the points were the two flangers
meet. At high frequencies, the spectrogram shows the notch sweep
is not as uniform as at low frequencies. This can be attributed to
the lowpass response of the fractional delay interpolator and can
be minimized using a higher order filter. Ideally, Dmin should be
higher than half the value ofDmax. Otherwise, it becomes difficult
to hide the hard resets and the illusion is broken. As before, this
effect also works best at low rates.

Overall, this implementation can be heard on virtually any in-
put signal. This can be attributed to the larger number of notches
that can be easily achieved with considerably fewer operations per
sample compared to the approach discussed in Section 2. How-
ever, the effect is still clearly more dramatic on signals with a rela-
tively dense spectrum e.g. distorted guitars or drum loops. A real-
time implementation of this effect can be easily achieved using
circular buffers.

4. SINGLE-SIDEBAND MODULATION

A commonly known historical technique of producing barberpole-
like phasing or flanging effects is to employ single-sideband (SSB)
modulation, also known as frequency shifting. This technique
was first described by Harald Bode [16]. The modulated signal
is mixed with the un-modulated signal, producing notches in the
combined spectrum which move at a rate dictated by the amount
of frequency-shift applied. Feedback may be applied around this
structure to strengthen the effect.

This effect initially seems counter-intuitive, as it contradicts
our usual experience of combining two identical waveforms with

x[n]    –D

1/2
z Frequency 

Shift y[n]

ρ

Figure 10: Block diagram showing generalized SSB-modulation
based barberpole effect, capable of producing linearly spaced
moving notches.

differing frequencies. Given an ideal frequency shifter operating
on a sinusoid, with the frequency shifted sinusoid being mixed
equally with the original sinusoid, we can write an expression de-
scribing the combination as a single sinusoid with time-varying
amplitude and phase-shift:

sin(ωt) + sin(ωt+ ωot) = A(t) sin[ωt+ φ(t)], (10)

where ω gives the angular frequency of the sinusoid, ωo gives the
amount of frequency shift, and t denotes time. A(t) and φ(t) give
the amplitude and phase of the combined waveform. With some
manipulation and application of trigonometric identities, we can
write an expression for the amplitude as:

A(t) =
√

2 + 2 cos(ωot). (11)

This expression seems to confirm our initial intuition, that com-
bining two signals separated by a constant frequency offset should
produce frequency independent beating. This is not consistent
with the effect described by Bode and others. However, if a time
delay between the shifted and un-shifted signals is added, the re-
sult is quite different. Given a time delay of τ , we have

sin(ωt) + sin[(ω + ωo)(t− τ)] = A(t) sin[ωt+ φ(t)]. (12)

Solving for A again, the following is produced:

A(t) =
√

2 + 2 cos(ωot− ωoτ − ωτ). (13)

The addition of the time delay means that the phase of the am-
plitude variation with time for a particular frequency is offset de-
pending on the frequency. If we assume linearity of the frequency
shifter and delay, we can extend this result to an arbitrary input sig-
nal. Equation (13) then describes a set of notches in the frequency
response of system, spread linearly over the frequency range and
moving constantly in either the positive or negative frequency di-
rection over time. The number of notches is related to the time
delay, τ , and the rate and direction of movement is set by the fre-
quency shift amount, ωo.

The system described by Bode does not contain an explicit
delay element. However, it relies on a ‘dome filter’—a parallel
system of two chains of allpass filters with a relative phase de-
lay difference of π

2
. The allpass filter chains themselves introduce

some (frequency-dependent) delay to the signal, therefore no ad-
ditional delay element is needed to produce the effect.

Given the knowledge gained so far, we can design a gener-
alised SSB-modulation based barberpole flanging effect with the
structure described in Figure 10, where the rate (in Hz) and direc-
tion are controlled by ρ = wofs/2π. The length of the delay line
D = τfs is related to the number of notches M by M = D/2.

In our generalised system, the design of the frequency shifter
block is assumed to be based on the common method of quadrature
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Figure 11: Spectrogram of white noise processed by the structure
given in Figure 10. The delay is 32 samples, and the amount of
frequency shift is 0.1 Hz. The markers on top indicate when the
system starts a new cycle.

modulation of the real and imaginary parts of the analytic signal
[29]. The analytic signal is produced via applying a Hilbert trans-
form, which can be implemented in a variety of ways—as an FIR
[30, 31] or IIR filter [32], as a digital version of the ‘dome-filter’
approach [33] taken by Bode, or via the use of an FFT. In this work
we use the Matlab implementation of the Hilbert transform, which
is based on the FFT.

The output of the system of Figure 10 when used to process an
input of white noise is shown in Figure 11. The structure produces
an interesting barberpole phasing effect, but does not convincingly
produce the illusion of circularity given by the Shepard-Risset glis-
sando. For this, octave distribution of the notches is necessary.

4.1. Warping the distribution of notches

Referring again to (13), we can see that to vary the spacing of
the notches it is necessary to make the time delay, τ dependent
on the frequency, ω. This can be achieved by replacing the delay
line in the structure given in Figure 10 with a spectral delay [34],
which can be implemented using a chain of first-order allpass fil-
ters, given by

AD(z) =

(
a+ z−1

1 + az−1

)D
, (14)

x[n]
D

1/2
A (z) Frequency 

Shift y[n]

ρ

Figure 12: Block diagram showing SSB-modulation based bar-
berpole effect using a spectral delay filter, capable of producing
warped distribution of notches.
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Figure 13: Desired group delay 3 · 2−ω of the spectral delay fil-
ter (dashed line) and its approximation using a first-order allpass
filter with a = −0.5 (solid line).

where a is the allpass filter coefficient and D is the number of
stages. Spectral delay filters have been previously used for ex-
ample for spring reverb emulation [35, 36] and for modeling the
Leslie effect in Hammond organ synthesis [37].

The block diagram for the expanded configuration is shown
in Figure 12. As in the linearly distributed case, the number of
notches produced by this structure is given by M = D/2. The
group delay of a first-order allpass filter is given by [34]

τg(ω) =
1− a2

1 + 2a cosω + a2
. (15)

In order to achieve the ideal octave spacing of notches specified by
the illusion, τg(ω) ∝ 2−ω would be required for each allpass sec-
tion. This can be approximated by setting a to a moderate negative
value, for example a = −0.5, as shown in Figure 13. A better
fit could be produced by optimizing the individual coefficients of
the first-order allpass filters, or by applying a more generalized
method of fitting the desired group-delay curve [38].

The output of this system when used to process an input of
white noise is shown in Figure 14. Note that there are still 16
notches, as in Figure 11. Compared to the version of the sys-
tem with linearly spaced notches, this system produces a much
more convincing Sherpard-Risset glissando effect. Some cyclic-
sounding behaviour is audible in the very low frequencies, which
can be explained by the flattening of the group-delay curve in this
region (see Figure 13).

5. CONCLUSIONS

This paper has discussed three different ways to implement infinite
phaser and flanging effects, which are called barberpole effects.
These effects can be implemented in real time and incorporated as
parts of an audio processing environment.

The first proposed method can be interpreted as an inverted
version of the Shepard-Risset auditory illusion. Instead of pro-
ducing an infinitely sweeping tone, it produces infinitely one-way
sweeping notches using time-varying notch filters. This processing
technique can be used as a digital audio effect for rich-sounding
audio material, such as noisy sounds, drums loops, or distorted
guitars, to replace the traditional back-and-forth-going phaser.

The second method is a novel dual flanger structure, which
is based on a pair of cascaded feedforward comb filters with syn-
chronized modulation controls. Sawtooth waveforms are used to
control the length of the delay lines, making the displacement of
notches unidirectional. The LFOs used to modulate the second de-
lay line and its gain are in a 90◦ phase shift in relation to those of
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Figure 14: Spectrogram of white noise processed by the structure
given in Figure 12. The number of cascaded allpass filters is D =
32, the allpass coefficient a = −0.5, and the amount of frequency
shift is 0.1 Hz.

the first delay line. This results in a smooth cross-fading between
delay lines, minimizing the audibility of any abrupt changes in de-
lay lengths. This extension can be called a barberpole flanging
effect.

The third method is a digital version of the first barberpole-
like phasing effects described by Harald Bode, with a modification
proposed to make the notches more closely fit the distribution of
tones in a Shepard-Risset illusion. As with the other methods,
the effect sounds best with low modulation speeds and with rich
spectral content as the input.

In general terms, there are very subtle differences between
the proposed techniques. The three of them effectively recre-
ate the illusion of endlessly moving notches. The cyclic na-
ture of the effect is perhaps best hidden in the first implementa-
tion, where the notches on the low and high ends of the spec-
trum are not as audible as those in the middle region. How-
ever, this technique is severely restricted to signals with a quasi-
flat spectrum. The other proposed techniques are far more ver-
satile, they are not as restricted to a certain type of input. Ad-
ditionally, their implementation is considerably more economic.
For instance, the dual flanger approach can implement a high
number of notches without increased complexity. Overall, the
biggest limitation of the dual flanger and SSB-modulation meth-
ods comes from the fact that, if not properly tuned, their cyclic
nature can be easily given away. Audio examples related to all
three techniques described in this paper are available at the ac-
companying website http://research.spa.aalto.fi/
publications/papers/dafx15-barberpole.

6. ACKNOWLEDGMENTS

The authors would like to thank Dr. Stefan Bilbao and Dr. José
Antonio Belloch for their helpful comments during the elaboration
of this paper.

7. REFERENCES

[1] R. N. Shepard, “Circularity in judgments of relative pitch,”
J. Acoust. Soc. Amer., vol. 36, no. 12, pp. 2346–2353, Dec.
1964.

[2] R. N. Shepard, “Demonstrations of circular components of
pitch,” J. Audio Eng. Soc., vol. 31, no. 9, pp. 641–649, Sept.
1983.

[3] J.-C. Risset, “Pitch control and pitch paradoxes demonstrated
with computer-synthesized sounds (abstract),” in 77th Meet-
ing of the Acoustical Society of America, 1969.

[4] J.-C. Risset, Current Directions in Computer Music Re-
search, chapter ‘Paradoxical sounds’, pp. 149–158, M. V.
Mathews and J. R. Pierce (eds.), The MIT Press, Cambridge,
MA, 1989.

[5] D. Deutsch, “Auditory illusions, handedness, and the spatial
environment,” J. Audio Eng. Soc., vol. 31, no. 9, pp. 607–
618, Sept. 1983.

[6] D. Stowell, “Scheduling and composing with Risset eternal
accelerando rhythms,” in Proc. Int. Computer Music Conf.,
Huddersfield, UK, July 2011.

[7] B. Bartlett, “A scientific explanation of phasing (flanging),”
J. Audio Eng. Soc., vol. 18, no. 6, pp. 674–675, Dec. 1970.

[8] W. M. Hartmann, “Flanging and phasers,” J. Audio Eng.
Soc., vol. 26, no. 6, pp. 439–443, Jun. 1978.

[9] J. O. Smith, Physical Audio Signal Processing, W3K Pub-
lishing, 2010, online book. See subsection ‘Flanging’.

[10] J. D. Reiss and A. P. McPherson, Audio Effects: Theory,
Implementation and Application, CRC Press, 2015, See Ch.
2 ‘Delay Line Effects’.

[11] M. M. Wanderley and P. Depalle, “Gesturally controlled dig-
ital audio effects,” in Proc. COST-G6 Conf. Digital Audio Ef-
fects (DAFx-01), Limerick, Ireland, Dec. 2001, pp. 165–169.

[12] M. M. Wanderley and P. Depalle, “Gestural control of sound
synthesis,” Proceedings of the IEEE, vol. 92, no. 4, pp. 632–
644, Apr. 2004.

[13] M. L. Beigel, “A digital “phase shifter” for musical applica-
tions, using the Bell Labs (Alles-Fischer) digital filter mod-
ule,” J. Audio Eng. Soc., vol. 27, no. 9, pp. 673–676, Sept.
1979.

[14] J. O. Smith, “An allpass approach to digital phasing and
flanging,” in Proc. Int. Computer Music Conf., Paris, France,
Oct. 1984, pp. 103–109.

[15] V. Välimäki, S. Bilbao, J. O. Smith, J. S. Abel, J. Pakarinen,
and D. Berners, “Virtual analog effects,” in DAFX: Digital
Audio Effects, U. Zölzer, Ed., pp. 473–522. Wiley, Chich-
ester, UK, second edition, 2011.

[16] H. Bode, “History of electronic sound modification,” J. Au-
dio Eng. Soc., vol. 32, no. 10, pp. 730–739, Oct. 1984.

[17] O. Larkin, “Endless Series,” Software and sound examples
available at http://www.olilarkin.co.uk/index.php?p=eseries,
accessed June 4, 2015.

[18] C. Budde, “Barberpole Flanger,” VST effect plug-in
for Windows available at http://www.kvraudio.com/product/
barberpole_flanger_by_christian_budde, accessed June 4,
2015.

DAFX-7

http://research.spa.aalto.fi/publications/papers/dafx15-barberpole
http://research.spa.aalto.fi/publications/papers/dafx15-barberpole
http://www.olilarkin.co.uk/index.php?p=eseries
http://www.kvraudio.com/product/barberpole_flanger_by_christian_budde/
http://www.kvraudio.com/product/barberpole_flanger_by_christian_budde/


Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

[19] A. Huovilainen, “Enhanced digital models for analog mod-
ulation effects,” in Proc. Int. Conf. Digital Audio Effects
(DAFx-05), Madrid, Spain, Sept. 2005, pp. 155–160.

[20] C. Raffel and J. Smith, “Practical modeling of bucket-
brigade device circuits,” in Proc. Int. Conf. Digital Audio
Effects (DAFx-10), Graz, Austria, Sept. 2010.

[21] F. Eichas, M. Fink, M. Holters, and U. Zölzer, “Physical
modeling of the MXR Phase 90 guitar effect pedal,” in Proc.
Int. Conf. Digital Audio Effects (DAFx-14), Erlangen, Ger-
many, Sept. 2014, pp. 153–166.

[22] T. Wilmering, G. Fazekas, and M. B. Sandler, “Audio effect
classication based on auditory perceptual attributes,” in Proc.
AES 135th Convention, New York, USA, Oct. 2013.

[23] M. Stein, J. Abeßer, C. Dittmar, and G. Schuller, “Automatic
detection of audio effects in guitar and bass recordings,” in
Proc. AES 128th Convention, London, UK, May 2010.

[24] S. J. Orfanidis, Introduction to Signal Processing, chapter
‘IIR Digital Filter Design’, Prentice Hall International Edi-
tions, Englewood Cliffs, NJ, USA, 1996.

[25] V. Välimäki and T. I. Laakso, “Suppression of transients
in variable recursive digital filters with a novel and efficient
cancellation method,” IEEE Trans. Signal Process., vol. 46,
no. 12, pp. 3408–3414, Dec. 1998.

[26] V. Välimäki, “Discrete-time synthesis of the sawtooth wave-
form with reduced aliasing,” IEEE Signal Process. Lett., vol.
12, no. 3, pp. 214–217, Mar. 2005.

[27] H.-M. Lehtonen, V. Välimäki, and T. I. Laakso, “Canceling
and selecting partials from musical tones using fractional-
delay filters,” Comp. Music J., vol. 32, no. 2, pp. 43–56,
Summer 2008.

[28] T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine,
“Splitting the unit delay—Tools for fractional delay filter de-
sign,” IEEE Signal Process. Mag., vol. 13, no. 1, pp. 30–60,
Jan. 1996.

[29] D.E. Norgaard, “The phase-shift method of single-sideband
signal generation,” Proc. of the IRE, vol. 44, no. 12, pp.
1718–1735, Dec 1956.

[30] L. R. Rabiner and R. W. Schafer, “On the behavior of min-
imax FIR digital Hilbert transformers,” Bell Syst. Tech. J.,
vol. 53, no. 2, pp. 363–390, 1974.

[31] S. Disch and U. Zölzer, “Modulation and delay line based
digital audio effects,” in Proc. Second COST G-6 Workshop
on Digital Audio Effects (DAFx-99), Trondheim, Norway,
Dec. 1999, pp. 5–8.

[32] S. Wardle, “A Hilbert-transformer frequency shifter for au-
dio,” in Proc. First COST G-6 Workshop on Digital Audio
Effects (DAFx-98), Barcelona, Spain, Nov. 1998, pp. 25–29.

[33] R. Ansari, “IIR discrete-time Hilbert transformers,” IEEE
Trans. Acoustics, Speech, Signal Process., vol. 35, no. 8, pp.
1116–1119, Aug. 1987.

[34] V. Välimäki, J. S. Abel, and J. O. Smith, “Spectral delay
filters,” J. Audio Eng. Soc., vol. 57, no. 7–8, pp. 521–531,
Jul. 2009.

[35] V. Välimäki, J. Parker, and J. S. Abel, “Parametric spring
reverberation effect,” J. Audio Eng. Soc., vol. 58, no. 7–8,
pp. 547–562, Jul. 2010.

[36] J. Parker, “Efficient dispersion generation structures for
spring reverb emulation,” EURASIP J. Advances in Signal
Processing, vol. 2011, no. 646134, pp. 521–531, Mar. 2011.

[37] J. Pekonen, T. Pihlajamäki, and V. Välimäki, “Computation-
ally efficient Hammond organ synthesis,” in Proc. Int. Conf.
Digital Audio Effects (DAFx-11), Paris, France, Sept. 2011,
pp. 19–22.

[38] J. S. Abel and J. O. Smith, “Robust design of very high-order
allpass dispersion filters,” in Proc. 9th Int. Conf. Digital Au-
dio Effects (DAFx-06), Montreal, Canada, Sept. 2006, pp.
13–18.

DAFX-8


	1  Introduction
	2  Cascaded Time-Varying Notch Filters
	3  Synchronized Dual Flanger
	4  Single-Sideband Modulation
	4.1  Warping the distribution of notches

	5  Conclusions
	6  Acknowledgments
	7  References

