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ABSTRACT

Stencil operations are often a key component when performing
acoustics simulations, for which the specific choice of implemen-
tation can have a significant effect on both accuracy and compu-
tational performance. This paper presents a detailed investigation
of computational performance for GPU-based stencil operations
in two-step finite difference schemes, using stencils of varying
shape and size (ranging from seven to more than 450 points in
size). Using an Nvidia K20 GPU, it is found that as the stencil size
increases, compute times increase less than that naively expected by
considering only the number of computational operations involved,
because performance is instead determined by data transfer times
throughout the GPU memory architecture. With regards to the
effects of stencil shape, performance obtained with stencils that are
compact in space is mainly due to efficient use of the read-only data
(texture) cache on the K20, and performance obtained with standard
high-order stencils is due to increased memory bandwidth usage,
compensating for lower cache hit rates. Also in this study, a brief
comparison is made with performance results from a related, recent
study that used a shared memory approach on a GTX 670 GPU
device. It is found that by making efficient use of a GTX 660Ti
GPU—whose computational performance is generally lower than
that of a GTX 670—similar or better performance to those results
can be achieved without the use of shared memory.

1. INTRODUCTION

At the heart of many grid-based physics simulations is a stencil op-
eration approximating some differential operator of interest. In the
context of acoustics modelling based on the 3-D wave-equation [1],
the finite difference (FD) method with explicit time integration
(also known as finite difference time domain (FDTD)) is a standard
approach [2–4]. The stencil operation involved is typically regular
over a Cartesian grid and is easily parallelised, making the FD
method a suitable candidate for acceleration on graphics processing
units (GPUs). General programming on high-performance comput-
ing devices has been studied by many in the context of 3-D acoustic
wave equations [5–7], and more specifically for GPU-based 3-D
room acoustics simulations [8–17].

It is well-known that the simplest FDTD scheme suffers from
significant numerical dispersion errors. Mitigating such errors to
tolerable levels may require grid refinements that can dramatically
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increase the computational resources required. As such, there has
been much work in designing more accurate FDTD schemes, often
by taking into account more than the standard number of points
(seven in space and three in time); examples include explicit and
implicit schemes using 27-point stencils [15, 18–20], schemes that
make use of standard high-order spatial differencing [3, 21], and
high-order schemes based on modified equation methods [3, 21].

Of particular interest to this study is a general construction
for 3-D discrete Laplacians on the Cartesian grid recently pre-
sented [22] that allows for a general family of two-step FDTD
schemes utilising stencils of almost arbitrary size and shape. This
general construction is beneficial in that it provides a large set of
free parameters to be optimised for the purposes of minimising
dispersion or isotropy errors [22]. For example, an eight-parameter
125-point (5×5×5) stencil scheme was shown to have at most
two-percent absolute dispersion error over at least 85% of the nor-
malised wavenumbers simulated [22, Fig. 8], which is a significant
improvement over conventional 27-point schemes that meet the
same criterion over at most 40% of the normalised wavenumbers
simulated [20]. As such, by taking on linear increases in operations
over standard 7-point or 27-point schemes, one can meet any desired
accuracy (in terms of numerical dispersion) for a given application
without the usual cubic or quartic increases in computational costs
associated with grid refinement, thereby approaching the minimum
grid requirements dictated only by sampling considerations.

For the purposes of large-scale 3-D acoustics simulations, such
large-stencil schemes should also benefit from parallel implementa-
tions and memory caches on GPU devices. It is thus of interest, and
the purpose of this study, to determine how the size and shape of
such stencils affects processing throughput on a GPU device, where
performance is not necessarily determined by the number of oper-
ations, but rather by data movement. Related work, not specific to
acoustics simulations, can be found in [23–26]. We note that bound-
ary conditions become invariably more difficult as the stencil size in-
creases, but as this study is a preliminary one on GPU performance,
the boundary problem will not be addressed here. The organisation
of this paper is as follows. Section 2 presents the two-step schemes,
stencil operations, and compact stencils under study. Section 3
features the GPU kernels and testing procedures used. Results from
K20 GPU tests are presented in Section 4, followed by a brief com-
parison with shared memory approaches using a GTX 660Ti GPU.

2. BACKGROUND

2.1. Two-step finite difference schemes

In order to express the two-step finite difference schemes under
consideration, we define a fully-discrete Cartesian grid function
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(a) 7-point stencil (b) M = 2, leggy (c) M = 3, leggy (d) M = 4, leggy (e) 19-point, compact (f) 27-point, compact

Figure 1: Various stencils on the cubic lattice. These include (6M + 1)-point leggy stencils for M = 1, 2, 3, 4 and compact-in-space 19- and 27-point
stencils. Bounding boxes are rescaled for clarity.

uni = u(nT, iX), where n ∈ Z+, T is the time-step and X is the
grid spacing, and i = (ix, iy, iz) ∈ Z3 are discrete spatial indices.
In this case the Cartesian grid is simply XZ3. An arbitrary 3-D
stencil operation will be defined as:

δS,γu
n
i :=

K−1∑
k=0

γku
n
i+lk (1)

where S = {l0, . . . , lK−1} is a 3-D stencil (a set of K points
lk ∈ Z3) and γ = (γ0, . . . , γK−1) is a vector of non-zero scalar
coefficients (stencil weights). The stencil weights are generally
chosen to provide an approximation to a particular spatial operator
acting on u, such as, e.g., a direction derivative n · ∇u for n ∈ R3,
the 3-D Laplacian ∆ := ∂2

x + ∂2
y + ∂2

z , or the biharmonic ∆2.

This paper is concerned with two-step finite difference schemes
of the form

un+1
i = δS,γu

n
i − un−1

i (2)

where δS,γ is chosen such that the above is an approximation to the
3-D wave equation with a formal accuracy that is at least second-
order in time and space. Such two-step schemes require two states
to be stored in memory since un+1

i can overwrite un−1
i in place.

An example is the simplest scheme for the 3-D wave equation, in
which S and γ are:

S = {(0, 0, 0), (±1, 0, 0), (0,±1, 0), (0, 0,±1)}
γ0 = (2− 6λ2) , γk = λ2 , k = 1, . . . , 6

(3)

and λ := cT/X is the Courant number, which is generally bounded
for stability as λ ≤

√
1/3, and c represents the wave speed. This

scheme employs a seven-point stencil, as illustrated in Fig. 1(a). In
this simple scheme, one has that

1

T 2
(un+1
i − δS,γuni +un−1

i ) = ∂2
t u− c2∆u+O(T 2) +O(X2)

(4)
where t ∈ R+ is time. Thus, the scheme provides an approximate
solution u(t,x) to the wave equation at times t = nT and spatial
positions x = iX .

The seven-point stencil in Fig. 1(a) also belongs to the family
of (6M + 1)-point stencils, henceforth called “leggy stencils”, of
which examples are shown in Figs. 1(a)-1(c) for M ≤ 4. The
stencil weights for these leggy stencils can be chosen such that
the accuracy of the approximate solution is of order two in time
and 2M in space, i.e.,(2, 2M)-accurate. To this end, it is worth
expressing these leggy schemes in a more familiar form:

un+1
i = 2uni − un−1

i + λ2∑3
d=1

∑M
m=−M βM,m u

n
i+mêd

(5)

where êd are the standard unit vectors in R3. The coefficients
βM,m = βM,−m that provide 2M th-order accuracy in space for
the Laplacian in 1-D, and by extension for the 3-D Laplacian, can

be found in, e.g., [3, 21, 27] along with stability conditions for the
two-step schemes in [21]. Such schemes and stencils have seen use
in the room acoustics literature [11] and can be regarded as special
cases of the general family of schemes presented in [22]. In a more
recent study they are called “large-star stencil” schemes [16]. The
simplest seven-point scheme is a special case with M = 1 and
(β1,0, β1,1) = (−2, 1). Note that (5) is still of the form (2), since
one can set γ0 = 2− (λ2/3)βM,0.

Other approaches to improving FDTD schemes have focussed
on achieving isotropic error, initially with the goal of making use
of frequency-warping techniques [18]. This leads to the so-called
“interpolated schemes” [18–20], which employ 19- and 27-point
stencils that are compact in space [28, 29]. These stencils are illus-
trated in Figs. 1(e) and 1(f). For this study we will consider two
possible generalisations of such compact stencils, to be defined in
Section 2.2.

Before proceeding, it is important to note that the purpose of
this paper is not to determine optimal stencil weights, or to compare
the accuracy of various compact stencils or leggy stencils. The fo-
cus here is on computational aspects of stencil operations on GPU
devices. To this end, the performance metric used here will be the
“compute time per node” (CTPN), where a “node” is simply a grid
point. In other words, the CTPN is the time required to process a
single grid point, taken as an average over many grid points and
time-steps. It has been demonstrated in previous studies [13, 14]
that this measure of performance, which is simply the scaled in-
verse of the commonly used “Megavoxels per second” metric, is
more or less constant for different grid sizes within a fixed scheme,
provided that a significant proportion of GPU memory is used (i.e.,
as long as the occupancy rate is sufficiently high). From such per-
formance data, it is straightforward to predict final compute times
(neglecting specialised boundary updates) once stencil weights and
grid densities are chosen appropriately for a model problem.

2.2. 3-D compact stencils

In order to construct 3-D compact stencils—beyond the standard
27-point variants [18–20, 28]—we start with a description of shells
of points on the cubic lattice, Z3. Consider an integer-valued triplet
q = (q1, q2, q3) ∈ Q with the set Q defined as

Q := {q ∈ Z3 : q1 ≥ q2 ≥ q3 ≥ 0, q1 ≥ 1} (6)

and let P(q) be a function that returns the set of unique per-
mutations of (±q1,±q2,±q3). Letting |P(q)| denote the car-
dinality of the set P(q), it is straightforward to work out that
|P(q)| ∈ {6, 8, 12, 24, 48}. Each set of triplets P(q) represents a
shell of points on Z3, as illustrated in Fig. 2.

Consider now a set of P distinct triplets, Ω = {q1, . . . , qP },
representing a set of shells, and define the function S(Ω) as:

S(Ω) := (0, 0, 0) ∪
(⋃P

p=1 P(qp)
)

(7)
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(a) q = (1, 0, 0) (b) q = (1, 1, 0) (c) q = (1, 1, 1) (d) q = (2, 1, 0) (e) q = (2, 1, 1) (f) q = (2, 2, 1) (g) q = (3, 1, 1) (h) q = (3, 2, 1)

Figure 2: Various shells of points, P(q), on the cubic lattice and associated convex hulls. Bounding boxes rescaled for clarity.

Each output set S(Ω) represents a 3-D stencil on Z3. For ex-
ample, the (6M + 1)-point leggy stencils could be written as
S(l)
M := S(Ω

(l)
M ), where

Ω
(l)
M := {(1, 0, 0), . . . , (M, 0, 0)} (8)

There are obviously many combinations of triplets q that may
be used to build 3-D stencils. For this study, we consider a small
subset of the many possibilities, namely two possible generalisa-
tions of the aforementioned 27-point compact stencils. The first
generalisation will be called the “compact-in-space stencils”, which
are defined here as S(c)

R := S(Ω
(c)
R ), where Ω

(c)
R is a set of triplets

q defined as:

Ω
(c)
R := {q ∈ Q : ‖q‖2 ≤ R} (9)

Here, R is a positive integer and ‖q‖ denotes the Euclidean norm
of q. Each set Ω

(c)
R leads to a compact-in-space stencil S(c)

R whose
convex hull has a circumradius of

√
R. Some of these compact-in-

space stencils are displayed in Fig. 3, along with K = |S(c)
R |, the

number of points in each stencil. The sequence ofR values that per-
mit valid compact-in-space stencils can be found in [30, Table 4.3].
For example, the 7-, 19-, and 27-point stencils are, respectively, S(c)

1 ,
S(c)
2 , and S(c)

3 . It is well-known that such stencils (for K ≥ 19) can
provide isotropic error in approximations to the Laplacian [28, 29].
High orders of isotropy become easier to achieve with larger sten-
cils and more degrees of freedom [22], and subsequently can lead
to two-step schemes with high orders of accuracy (in both time and
space) through the use of modified equation methods [21].

As an aside, in regards to a recent study [16] it is impor-
tant to point out that, strictly speaking, the two-step leggy-stencil
(“large-star”) schemes ((2, 2M)-accurate) investigated in [16] are
not higher-order accurate for the wave equation (for all M ≥ 1);
in such schemes, the global accuracy remains second-order since
the temporal error (second-order) dominates in the limit of small
h provided that λ is fixed (such as, e.g., to the stability limit [16]).
This fact does not appear to be taken into account in [16] when
making practical comparisons to two-step schemes that are indeed
higher-order accurate ((2M, 2M)-accurate) derived using modified
equation methods [15, 31]. We also note that, contrary to what is
suggested in [16], the accuracy of a stencil, or more importantly, of
the scheme in which it is used, is not related to its size in points in
a simple manner under the modified equation framework; see [31].

Returning to the compact stencils, we note that by the nature
of the Euclidean norm, the compact-in-space stencils tend towards
a spherical distribution in space, as seen in Fig. 3. One could also
consider stencils that are “compact” with respect to a different
norm. For example, a stencil made up of a 125-point cube (5×5×5)
is not compact in the sense defined above, but can be seen as
“compact” in the sense that it compactly fills a cubic volume of
space (i.e., compact in a Chebyshev-type norm). As such, this
family of stencils, which also comprises the aforementioned 7-, 19-,

and 27-point stencils, will be referred to as “box-compact”. These
stencils can be defined as S(b)

q := S(Ω
(b)
q ) where Ω

(b)
q is defined as:

Ω(b)
q := {q′ ∈ Q : (q′1, q

′
2, q
′
3) � (q1, q2, q3)} (10)

Here, (q′1, q
′
2, q
′
3) � (q1, q2, q3) means that (q′1, q

′
2, q
′
3) precedes

or is the same as (q1, q2, q3) in a lexicographic ordering of the
set Q; i.e., (q′1, q

′
2, q
′
3) � (q1, q2, q3) iff (a) q′1 < q1 or (b) q′1 = q1

and q′2 < q2 or (c) q′1 = q1 and q′2 = q2 and q′3 < q3.
The set of compact-in-space stencils and the above-defined set

of box-compact stencils have some elements in common; e.g., S(c)
R

with R ∈ {1, 2, 3, 4, 5, 6, 8, 12, 13, 14} have equivalent counter-
parts S(b)

(q1,q2,q3)
, but otherwise they lead to different stencil shapes.

Some box-compact stencils are displayed in Fig. 4. Under this
notation, the aforementioned 125-point stencil would be S(c)

(2,2,2),
as seen in Fig. 4(a).

As mentioned previously, a general construction for discrete
Laplacians utilising any 3-D such stencil S(Ω) was presented
in [22], leading to a general family of two-step schemes of which
all of the examples mentioned in Section 2.1 are special cases. For
brevity, the full derivation is left out, since for GPU performance
comparisons (in terms of the number of grid points that may be
processed in a certain amount of time) the coefficients (non-zero)
are immaterial. We refer the reader to [22, Section VI] for the full
derivation of the discrete Laplacian operators.

3. GPU IMPLEMENTATIONS

The GPU device that is used for the majority of the testing is an
Nvidia Tesla K20 device (Kepler architecture), with error-correction
checking (ECC) turned off. This card has 5119 MiB of device RAM
(global memory) with a theoretical maximum memory bandwidth
of 208 GB/s, although using the STREAM benchmark [32], we find
that the peak copy rate is approximately 172 GB/s. The theoretical
compute performance of this card is 3.52×1012 floating-point op-
erations per second (FLOPS) (3.52 TFLOPS) and 1.17 TFLOPS
in single and double precision, respectively. The GPU device is
programmed to execute CUDA kernels.

3.1. Algorithm details

Before presenting the testing procedure and the kernels under test,
it is worth taking a moment to count the number of floating-point
operations (FLOPs) required for the stencil operation δS,γuni in (1).
At first glance it appears that (1) requires K multiplications and
K − 1 additions (2K − 1 FLOPs) per grid point. However, when
fused multiply-add (FMA) instructions are available, as is often the
case with GPU devices, the operation can be implemented using
K − 1 FMAs and one multiplication. Since a FMA counts as two
FLOPs and only one FLOP instruction, this gives 2K − 1 FLOPs
and K floating-point (FP) instructions (executed in K clock cycles)
per grid point.
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(a) S(c)
4 , K = 33 (b) S(c)

5 , K = 57 (c) S(c)
6 , K = 81 (d) S(c)

9 , K = 123 (e) S(c)
11 , K = 171 (f) S(c)

13 , K = 203 (g) S(c)
18 , K = 341

Figure 3: Some compact-in-space K-point stencils S(c)
R on the cubic lattice, reaching out a maximum squared distance R from the origin.

(a) S(b)
(2,2,2)

, K = 125 (b) S(b)
(3,1,0)

, K = 155 (c) S(b)
(3,1,1)

, K = 179 (d) S(b)
(3,2,1)

, K = 251 (e) S(b)
(3,2,2)

, K = 275 (f) S(b)
(3,3,3)

, K = 343

Figure 4: Some box-compact K-point stencils S(b)
q on the cubic lattice, defined by (10).

It is worth pointing out that for the discrete Laplacian opera-
tors, there are usually only P + 1 distinct stencil weights, where
P = |Ω|. In this case, the stencil operation could also be factorised
and written in the form:

δS,γu
n
i = γ0u

n
i +

∑P
p=1 γp

(∑
l∈P(qp)

uni+l

)
(11)

When carried out as suggested by the above formulation, this calcu-
lation amounts to K−P − 1 additions, P FMAs, and one multiply
(K + P FLOPs, K FP instructions) per grid point. These stencil
operations, (1) and (11), would perform identically on a GPU if the
performance was solely determined by the number of instructions
required. However, the time taken for data to travel throughout
the GPU memory architecture must also be considered. It is worth
noting that the former approach leads to a simpler generalised ker-
nel implementation (requiring only one for-loop) and it inherently
utilises more of the theoretical peak FLOPS rate from the GPU. In
both cases, the extra subtraction operation required for (2) adds a
single FP instruction. We also note that the FLOP counts presented
here differ from those recently presented [16, 17], since FMA in-
structions, which the tested GPUs would have invariably used, were
not taken into account.

In terms of memory reads and writes, the two-step update (2) re-
quires K+ 1 read operations and one write operation (not counting
reading lk and γ). As mentioned previously, the storage require-
ments of the scheme are 2N for a grid of size N , since un−1 can
be overwritten by un+1 after being read. The K read operations re-
quired for δS,γuni are not followed by overwrites, which allows for
the use of read-only data cache optimisations, as will be explained
shortly. There is also a requirement to store the K coefficients in γ,
or only the distinct P + 1 if so desired, but this storage is negligible
because, generally, N ≫ K.

The leggy-stencil family of schemes is also tested alongside the
compact stencils in order to determine if the varying shape of the
stencil plays a significant role in GPU performance. While these
leggy schemes are encapsulated by (2) and (1), a more specialised
kernel implementation is suggested by (5) that could lead to im-
provements in memory coalesced reads on the GPU. However, this
comes at the cost of a slight redundancy, since uni will be read and
operated on three times instead of one. This alternative calculation
for the stencil operation requires K + 2 FMAs, and one extra ad-
dition is required for the two-step update, for a total of K + 3 FP
instructions (2K + 5 FLOPs) per grid point.

3.2. Testing procedure

The first twenty stencils in each family of stencils (S(c)
R , S(b)

q , and
S(l)
M ) are tested for a box-shaped grid; the largest of these stencils

is S(c)
22 with K = 461. Since the K20 card is capable of perform-

ing single and double precision FLOPs, two sets of grid sizes are
used in order to use up all or half of the available memory. When
testing single precision floating point, the dimensions of the grid
(Nx ×Ny ×Nz) is either 928×800×750 or 720×640×560 and
when double precision is being tested, the dimensions of the grid
is 672×660×600 or 640×480×420. For each precision level, the
former grid size is called “medium” and the latter “large”. In each
case, the grid is supplemented by a halo of Nh ghost-points (the
minimum number required, i.e., the inradius of the bounding box
for a given stencil) that are not updated, and thus do not factor
into CTPN averages. The command-line profiler nvprof is used
to obtain accurate estimations of average kernel execution times
through the use of its kernel replay mode.

3.3. GPU Kernels

The first GPU kernel under test, KernelA, is a straightforward
and general implementation of the two-step update (2). It ap-
pears in Fig. 5. In this kernel implementation, the grid is of size
Nxh×Nyh×Nzh, which includes the Nh-thick halo of ghost points.
These integer values are defined using C-preprocessor pragma state-
ments (defined with # operator), along with K, the number of points
in the stencil, and ReaL, which can be defined (with #) as ei-
ther float or double. The arrays gamma (of type ReaL) and
offset (of type int) represent stencil weights and linear offsets
(linear decompositions of lk ∈ S), respectively. These arrays are
stored in the 64 KB of read-only constant memory available on
the chip and accessible to all threads. Since the stencil weights
and initial grid values are not important for performance analysis,
the two states (u0 and u1) and the stencil weights are assigned
random floating-point values in the setup CPU host-code, which is
also where the array offset is loaded with the appropriate linear
offsets for the stencil under test.

A maximum threading (3-D tiling) approach is employed in
this study, as implemented in lines 6-8 in Fig. 5, as opposed to,
e.g., a 2-D slicing or 2-D tiling approach (see [33] for more details).
In this case, the 3-D grid is decomposed in all three dimensions,
with each 3-D subset of the grid assigned to a CUDA 3-D thread
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1 __global__ void
KernelA(ReaL *u0, const ReaL * __restrict__ u1){

2 //u1 is read from read-only data (texture) cache
3 //Nh,Nxh,Nyh,Nzh,K are #-defined ints
4 //ReaL gamma[K] is stored in constant memory
5 //int offset[K] is stored in constant memory
6 int ix = blockIdx.x*blockDim.x + threadIdx.x + Nh;
7 int iy = blockIdx.y*blockDim.y + threadIdx.y + Nh;
8 int iz = blockIdx.z*blockDim.z + threadIdx.z + Nh;
9 //condition to prevent illegal memory accesses

10 if (ix<(Nxh-Nh) && iy<(Nyh-Nh) && iz<(Nzh-Nh)){
11 //get linear index of current point
12 int cp = iz*Nxh*Nyh + iy*Nxh + ix;
13 //read previous value from global memory
14 ReaL tmp = -u0[cp];
15 //general stencil operation
16 for(int k=0;k<K;k++){
17 tmp += gamma[k]*u1[cp+offset[k]];
18 }
19 //write final value back to global memory
20 u0[cp] = tmp;
21 }
22 }

Figure 5: KernelA: CUDA kernel for compact and leggy stencils. See
inline comments for implementation details.

block, with each thread operating on a single grid point. Enough
thread blocks are issued to cover the 3-D grid, not including the
halo of ghost points. The thread block size used for this test was
32×4×2, which generally provided high occupancy rates. The
conditional statement at line 10 in the kernel ensures that illegal
memory accesses are not encountered when the grid size is not an
integer multiple of the thread-block size.

It is important to point out the __const and restrict
qualifiers used for the variable u1, which represents uni . These
qualifiers signal to the compiler (nvcc) to make use of the read-
only data cache (texture cache) for the array u1, which can be
loaded directly from the L2 cache [34]. The L1 cache does not
cache global memory reads in the K20 GPU, but the L1 cache can
be configured as a shared memory unit. Shared memory implemen-
tations, while commonly used for leggy stencil schemes [5, 16], are
not directly explored in this study due to space constraints, although
more will be said about shared memory approaches in Section 4.3.

The second kernel under test, KernelB, appearing in Fig. 6,
is specific to the (6M + 1)-point leggy stencils and is meant to
resemble the specific formulation (5). In this kernel, Nh is equal
to M , and for consistency with the 3-D wave equation gamma[m]
would be equal to βM,m for m ≥ 1 and gamma[0] would be
equal to 2/3− λ2βM,0.

4. RESULTS AND DISCUSSION

4.1. Timings

The timing results from the tests are displayed in Fig. 7. Start-
ing with the compact stencils in Fig. 7(a), we note that, for the
most part, the average compute times per node (CTPNs) scale
linearly with the stencil size. As expected, single precision re-
sults in faster compute times than double precision, aside from the
27-point compact stencil which has similar performance in both
precisions. Also as expected, the CTPNs are relatively invariant
to the two grid sizes (medium and large), justifying the discussion
at the end of Section 2.1. Within each precision, we note that it
makes little difference whether the stencil is “compact-in-space” or
“box-compact”, aside from dips in the CTPNs in double precision

1 __global__ void
KernelB(ReaL *u0, const ReaL * __restrict__ u1){

2 //u1 is read from read-only data (texture) cache
3 //Nh,Nxh,Nyh,Nzh,K are #-defined ints
4 //ReaL gamma[K] is stored in constant memory
5 //int offset[K] is stored in constant memory
6 int ix = blockIdx.x*blockDim.x + threadIdx.x + Nh;
7 int iy = blockIdx.y*blockDim.y + threadIdx.y + Nh;
8 int iz = blockIdx.z*blockDim.z + threadIdx.z + Nh;
9 //condition to prevent illegal memory accesses

10 if (ix<(Nxh-Nh) && iy<(Nyh-Nh) && iz<(Nzh-Nh)){
11 //get linear index of current point
12 int cp = iz*Nxh*Nyh + iy*Nxh + ix;
13 //read previous value from global memory
14 ReaL tmp = -u0[cp];
15 //leggy stencil operation
16 for(int m=-Nh;m<=Nh;m++){
17 ReaL gamma_m=gamma[abs(m)];
18 tmp += gamma_m*u1[cp+m];
19 tmp += gamma_m*u1[cp+m*Nxh];
20 tmp += gamma_m*u1[cp+m*Nxh*Nyh];
21 }
22 //write final value back to global memory
23 u0[cp] = tmp;
24 }
25 }

Figure 6: KernelB: Alternative CUDA kernel for leggy stencils. See
inline comments for implementation details.

for the box-compact M ×M ×M stencils, S(b)
(M,M,M), which is

perhaps due to more efficient memory access patterns.
The leggy stencil CTPNs are displayed in Fig. 7(b) for the two

different kernels. It can be seen that for leggy stencils, KernelB
generally provides slightly faster CTPNs than KernelA. We also
note that there are dips in the CTPNs in double precision when
M is a multiple of eight, which may be due to increased memory
coalescing.

Fig. 7(c) presents a comparison of the compact stencils and
the leggy stencils (with KernelB) in single and double precision,
along with a prediction of CTPNs, stemming from increases over
the simplest 7-point scheme in memory reads or in FP instructions.
All of the obtained CTPNs are lower than what would be expected
from this somewhat naive prediction. Finally, we note that the
CTPNs vary slightly between leggy and compact stencils, but over-
all, the CTPNs are relatively invariant to the shape of the stencil.

In order to illustrate the utility of these timing results, it is
worth going back to the example comparison in Section 1 between
a 27-point scheme and a 125-point scheme. If a two-percent dis-
persion error were desired across some fixed bandwidth of interest,
it can be calculated that the 125-point scheme with the optimised
parameters used in [22] would require approximately 20× fewer
pointwise updates than a 27-point scheme.1 This outweighs the
increases in CTPNs that would be seen on the K20 GPU going from
a 27-point stencil to a 125-point stencil, which are 3.6× and 6.6×,
respectively for single and double precision. One can carry out this
type of calculation for other stencil sizes and associated schemes
after analysing their dispersion errors, following [22].

4.2. Memory throughput

In order to explain some of the timings observed, it is worth look-
ing deeper into the many kernel metrics that can be obtained from
Nvidia’s CUDA profiler, and in particular, a subset relating to

1The 27-point scheme would need to be oversampled by 85/40 ≈ 2.1
times that of the 125-point scheme and 2.14 ≈ 20.
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(a) Compact stencils, double and single precision, large and medium grid sizes, using KernelA. Right: Plot on left for K < 140 in order to show detail.
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sizes, and the two kernel implementations.
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Figure 7: Average compute times per node for compact-in-space, box-compact, and leggy stencils as a function of stencil size K, on Nvidia Tesla K20
GPU card in double and single precision, and for large and medium grid sizes. In Fig. 7(c) is the line CTPN7 × (K + 1)/8, where “CTPN7” is the compute
time per node for the 7-point stencil in either double or single precision. This line is what would be expected if compute-time increases were equal to the
increases in FP instructions or memory reads required.

memory throughput. As an aside, it is worth mentioning that the
following analysis will be more informative and rigorous than an
approach to performance analysis recently proposed in [17, Section
V], which does not make direct use of profiler metrics.2

Before continuing, it is worth explaining the ideal memory-
reading scenario (without utilising shared memory) within this
Kepler GPU memory architecture. Each stencil operation requires
K + 1 memory reads, but neighbouring points share many of these
values. In the ideal scenario, each thread would read u[cp] from
global memory (in coalesced reads) via the L2->L1 pipeline and
uz[cp] from global memory via the L2->texture pipeline, and the
remaining K − 1 grid points would be read directly from texture
cache. Once the calculation is finished, the final value would be
written via L1->L2 back to global memory to be stored at u[cp].
So in the ideal case, the global memory read throughput would be
equal to two times the global memory write throughput. However,
the texture cache is not unlimited in size (48 KB per SMX), so
in practice, grid values stored in texture cache that have not been
completely utilised may be overwritten and reloaded into the tex-
ture cache, fetched either directly from L2 cache or from global
memory, at a later stage in the stream. Thus, cache hit ratios will
be lower than the ideal 100%.

With that said, Fig. 8 displays the texture cache (read-only)
throughput, the L2 cache read throughput, the global memory
read and write throughputs, and the global memory bandwidth
used (global read + global write), for the compact-in-space (us-
ing KernelA) and leggy stencils (using KernelB) on the large

2We note the performance metric recently proposed in [17, Section V] is
based on an assumption that respective times spent on FLOPs and data trans-
fers are additive, but this assumption does not necessarily hold for a GPU
device. More importantly, the proposed metric assumes that all data trans-
fers make use of global memory bandwidth, however, as will be seen here,
data transfers in the GPU are more nuanced for such schemes—one must
consider the various levels of caches that connect the global memory to SMX
registers and the potential for stencil operations to make use of these caches.

grid sizes. It can be seen in Fig. 8 that the compact and leggy
stencils use up nearly all of the available texture cache (read-only
data cache) bandwidth (approximately 1.1 TB/s) in single precision,
and a large proportion of the available texture cache bandwidth in
double precision. However, the global memory read throughput is
greater than two times the global memory write throughput, so the
ideal scenario is not achieved. For the compact stencils, the global
memory read-to-write ratio is approximately three forK ≤ 27, and
is approximately four forK > 27. For the leggy stencils, it is much
higher, starting around three and going as high as 25, indicating a
low efficiency in terms of texture cache usage. The texture through-
put in double precision is about 60% that in single precision, which
is a consequence of the fact that the texture cache can store more
single-precision values than it can double-precision values.

The texture cache hit ratios and L2 hit ratios (from texture
reads) are plotted in Fig. 9 (for the large grid sizes). It can be
seen from Fig. 9 that the cache hit ratios are higher overall for the
compact stencils than the leggy ones, and the L2 hit ratios (from
texture reads) increase when the texture cache hit ratios decrease,
indicating that many of the data not found in the texture cache were
found directly in the L2 cache without having to read from global
memory. On the other hand, for the leggy stencils the texture hit
ratios are much lower and the L2 hit ratios (from texture reads) are
also low, which means that global memory was read more often.
Thus, we can conclude that the compact stencils make better use
of the texture cache than the leggy stencils, and the leggy stencils
are able to achieve similar performance (in terms of CTPNs) due
to an increased global memory read throughput.

Aside from the 7-point scheme, the global memory bandwidth
usage for compact stencils is a small fraction of the maximum the-
oretical bandwidth available (208 GB/s). Thus, the implemented
compact stencil operations are bound by texture cache bandwidth,
rather than by global memory bandwidth (aside from the 7-point
scheme). On the other hand, the implemented leggy stencil oper-
ations are bound by both texture and global memory bandwidths,
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Figure 8: Memory throughput for compact-in-space stencils (using KernelA) and leggy stencils (using KernelB) as a function of stencil size in points
for K ≤ 125. Left: single precision, right: double precision.
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Figure 9: Texture and L2 cache hit-rates for compact-in-space stencils (using KernelA) and leggy stencils (using KernelB) as a function of stencil size
in points for K ≤ 125.

since they use a large majority of both.
Although not shown in any figures, it is worth pointing out

that in all cases, occupancy rates were high (above 85%) and mul-
tiprocessor activity was nearly 100%. Also, the number of FLOPs
and FLOP instructions obtained from profiler metrics agreed with
the FLOP counts provided in Section 3.1. As such the FLOPS
usage was at most 8% and 15% of the theoretical peak FLOPS
in single and double precision respectively. Clearly then, the bot-
tleneck is data movement rather than compute. It is also worth
mentioning that the kernels were also tested without the use of
__cont restrict, utilising the L2->L1 pipeline, and perfor-
mance was significantly worse.

4.3. Comparisons with shared memory approaches

While shared memory approaches will not be directly investigated
in this study, a brief comparison will be made with recently pub-
lished results. In [16], leggy stencils up to M = 8 and a 27-point
scheme were implemented on a Nvidia GTX 670 GPU device3 fol-
lowing the shared memory approach of Micikevicius [5] for leggy
stencils, which was also adapted to the 27-point compact stencil,
although kernel codes were not provided. Texture cache was also
employed, presumably to load values into shared memory.

The testing procedure in [16] was essentially the same as the
one that has been used here, except that the dimensions of the
box-domain were specified in metres, so grid sizes varied for each
scheme with respect to specific choices of c, T,X appropriate for
the schemes. A GTX 670 device was not available for a direct com-
parison, but a closely-related, and lower performing, GTX 660Ti
GPU device was on hand. The GTX 660Ti has the same under-
lying chip (GK104) and the same compute specifications as the
GTX 670 (clock speeds, peak FLOPS, etc.), but the GTX 660Ti is
handicapped to 75% of the global memory bandwidth and L2 cache
available in the GTX 670, due to one of four memory controllers
on the GK104 chip being disabled.

3Although the GTX 670 device was not explicitly named in [16], its
use was confirmed through correspondence with the authors.

Table 1: Timings for “medium-sized room” tests conducted on GTX 670
with shared memory approach in [16] alongside timings obtained here on
GTX 660Ti using a maximum threading approach and pure texture fetching.

GTX 670 [16] GTX 660Ti
stencil grid dims CTPN (ns) CTPN (ns) ratio

leggy, M = 1 370×259×148 0.239 0.162 1.47
leggy, M = 2 321×224×128 0.270 0.256 1.06
leggy, M = 3 301×211×120 0.318 0.271 1.18
leggy, M = 4 290×203×116 0.347 0.366 0.95
leggy, M = 5 283×198×113 0.424 0.375 1.13
leggy, M = 6 278×195×111 0.471 0.441 1.07
leggy, M = 7 275×192×110 0.490 0.574 0.85
leggy, M = 8 272×190×108 0.430 0.567 0.76

27-point compact 642×449×256 0.725 0.294 2.46

With the GTX 660Ti, the __const restrict qualifiers
do not enable the read-only data cache loading behaviour as they
do with the Tesla K20 device [34], since the compute capability
of the GTX 660Ti is only version 3.0. As such, the kernels were
modified to make use of texture cache bindings. The block size
chosen for the GTX 660Ti was 32×8×4. Using KernelA, we
repeated the “medium-sized room” and “large room” tests with
the grid dimensions listed in [16, Table 3]. The timings obtained
on the GTX 660Ti for the medium-sized room are presented in
Table 1, alongside the results from [16], where the CTPNs were
calculated from the grid sizes and the “frames per second” values
in [16, Table 3]. Ratios between timings on the two cards are also
provided for comparison purposes. For brevity, the “large room”
performance results are left out because they do not vary signifi-
cantly from Table 1 in terms of compute times per node, both with
the GTX 670 timings reported in [16] and with the GTX 660Ti.

From Table 1 it can be seen that in all cases, the performance
obtained on the GTX 660Ti is at least 75% of the performance
obtained on the GTX 670 in [16], and for the most part, better per-
formance was achieved on the GTX 660Ti without the use of shared
memory. Most notably, the last row in Table 1 demonstrates a sig-
nificant speed-up (2.46×) for the 27-point compact stencil on the
GTX 660Ti in comparison to the GTX 670 timings reported in [16].
This suggests either that the shared memory implementation for
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the 27-point scheme in [16] was suboptimal, or that the 27-point
scheme cannot make efficient use of shared memory on these cards.

5. CONCLUSIONS AND FINAL REMARKS

In this paper, compact stencils on the 3-D cubic lattice and asso-
ciated two-step finite difference schemes were analysed on GPU
devices, as well as standard high-order (leggy) stencil two-step
schemes. It was found that GPU performance, measured in terms
of compute times per node, scaled linearly with stencil size, but
generally the increases were less than what would be expected from
increases in operation count over smaller stencils. It was found that
data movement, rather than compute, was the bottleneck, and as
such, the performance obtained can be attributed to the effects of
the L2 and texture caches on the Tesla K20 card. Performance, in
terms of compute times per node, varied little with respect to stencil
shape for a fixed stencil size.

While overall performance did not vary with shape, the usage
of memory bandwidths varied significantly between compact and
leggy stencils. Compact stencils were found to make more efficient
use of texture cache (higher hit rates) than leggy stencils, thus re-
quiring fewer reads from global memory. The leggy stencil schemes
required a significant portion of global memory bandwidth in order
to achieve similar performance as compact stencils of similar size
in points. Accordingly, it was seen that leggy stencils had relatively
low L2 and texture cache hit rates.

Finally, a brief comparison was made with recently reported
GPU timing results that used shared memory approaches for leggy
stencil schemes (M ≤ 8) and a 27-point compact stencil scheme.
It was found that similar or better performance to the GTX 670
results reported in [16] could be obtained for most of the leggy
stencil schemes considered, using a GTX 660Ti (with only 75% of
the memory bandwidth and L2 cache of the GTX 670) and without
the use of shared memory. For the compact 27-point scheme, a
speed-up of 2.46× was achieved on the GTX 660Ti card over the
reported timings from a GTX 670.

In future work, shared memory approaches could be investi-
gated in the context of larger compact stencils, since shared memory
presents many opportunities for performance. However, it is clear
from these results that good performance can be obtained through
pure texture fetching. It is worth recalling that the texture cache
is easily accessed in newer generation Nvidia cards through the
__const restrict qualifiers (or __ldg() intrinsics), which
enables simpler kernel codes than those that would make use of
shared memory (e.g., KernelA has, essentially, ten lines of code
and KernelB has thirteen; compare to, e.g., [5, Appendix A]).

Other avenues for future work, in terms of GPU implementa-
tions, include 2-D slicing approaches, varying the order of offsets
in the loop, unrolling stencil operations, and L1 caching of global
memory on more recent cards than the K20. Finally, we note
that maintaining good GPU performance overall with boundary
condition for such schemes, which constitutes an important open
problem, will present further challenges.

The C/CUDA codes used in this study are available at:
http://www2.ph.ed.ac.uk/~s1164563/dafx15.
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