
Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-1

 CSOUNDO FOR ANDROID TEMPLATES FOR DAFX-08, FINLAND, FRANCE

Rory Walsh, Conor Robotham,

Department of Music and Creative Media,

Dundalk Institute of Technology

Department of Music and Creative Media,

Dundalk Institute of Technology

Dundalk, Ireland Dundalk, Ireland
rory.walsh@dkit.ie conorrobotham@gmail.com

ABSTRACT

The Csoundo library combines the sound compiler Csound with

Processing, a java-based programming language for visual ap-

plets. The combination of the two provides a framework for the

rapid development of interactive audio-visual applications.

Csound and Processing have recently been ported to the Android

platform so these languages may now be used to develop appli-

cations directly for Android devices. However, at present,

Csound for Android has only been implemented with basic An-

droid Graphical User Interface(GUI) elements while Processing

for Android lacks support for external libraries, including its

established audio libraries. Csoundo for Android bridges the gap

between the two languages and allows developers to rapidly

build interactive audio applications without having to be con-

cerned about the inner-workings of Android development.

1. INTRODUCTION

The mobile devices market has been booming exponentially

year on year, and with this has come an increased interest in not

only the development of 'apps' themselves, but in the develop-

ment of IDEs for various mobile platforms. Mobile devices of-

fer new forms of interactivity including multi-touch screens and

various gestural sensors and accelerometers. The Android Plat-

form, developed by Google, is a huge player in this market and,

unlike Apple, it provides developers with the opportunity to de-

velop and distribute applications freely.

In recent years Csound[1] has been ported for use with a

number of mobile devices. At the same time Processing[2] is

continuing development on Android compatibility and now pro-

vides an interface to the latest Android Application Program-

ming Interface(API). The Csoundo[3] library caters for the call-

ing of Csound methods from a Processing program or so-called

'sketch' on a desktop computer. With the aforementioned ports in

place, an upgrade of Csoundo for development on Android de-

vices seemed like the next obvious step in the life-cycle of the

library. It provides what is likely the easiest method of develop-

ing an interactive Android audio-visual application. Not only

that, but whatever application is built using Csoundo will also

function on a desktop computer in the form of a Java applet.

This is ideal for testing because it means one can develop apps

free of having an Android device. The following sections outline

the various frameworks used in the development of Csoundo for

Android.

1.1. Csound for Android

In early 2012, Csound was ported to the Linux-based Android

operating system[4]. The Android Native Development Kit

(NDK) was employed to build a native shared library, libcsoun-

dandroid.so, composed of libcsound, libcsnd and libsndfile.

libcsound consists of the main Csound library; libcsnd contains

the SWIG-wrapped interface extensions as SWIG exports, to be

called by SWIG functions within JAVA classes; and lastly

libsndfile accommodates a range of different audio formats.

The native shared library must be called through JAVA for

the Android Dalvik compiler, as this is the main API language

for the Android OS. Therefore, the developed Java API used on

this system comprises of the wrapped Csound library, a modi-

fied version of the Csound interfaces library used for common

method calls, and some unique value cacheable classes which

simplify some of the Android-specific functionalities such as the

accessing data from accelerometers.

For audio IO on Android, Csound Android offers two distinct

possibilities. The first uses the standard AudioTrack interface,

while the second, default mode, employs the use of the OpenSL

which replaces the usual Csound IO modules such as portaudio,

alsa and jack[4].

1.2. Processing

Processing is a graphics generation language written in Java that

allows users to produce illustrative or interactive programmes. It

comes with a choice of rendering engines, and as of Processing

2.0, OpenGL has now been integrated into the core of Process-

ing. The benefits of which are that sketches can now be ex-

ported far easier to a wide variety of mobile devices. Processing

is developed as a "software sketchbook" to assist in the rapid

development of artistic concepts. Each 'sketch' contains a setup

and draw method which are used to initialize data and continu-

ally update it based on a frame rate respectively. In 2010 Proc-

essing was ported to Android. The upshot of this port is that us-

ers can now easily swap between Android Mode and Java Mode

without having to rewrite any of their code.

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-2

1.3. Csoundo

The original Csoundo library for Processing was developed by

Jacob Joaquin and released in the fall of 2010[7]. Csoundo takes

advantage of the Csound class provided by the wrapped Java

Csound library. In doing so it provides methods to compile and

send/receive messages to and from Processing from Csound.

Importing the Csoundo library and creating an instance of a

Csoundo object provides the developer with access to a range of

methods that make calls to the underlying Csound class. Events

can be triggered from the Processing environment by sending

values to an instance of Csound via the software-channel bus. At

the time of Csoundo's original development Csound had yet to

be ported to mobile devices. For the authors of this paper, ex-

tending the Csoundo library to take advantage of these latest

Csound developments seemed like the next logical step in the

library's life-cycle.

1.4. Other notable Android audio projects

It would be remiss of the authors at this point not to mention

some other notable audio for Android projects, in particular

libpd[5] and PureDataP5[6]. libpd is a Pure Data library for mo-

bile devices. It frees Pd of GUI dependencies and lets users

build their own interfaces using native methods while providing

them with all the audio processing power of Pure Data. Pure-

DataP5 combines libpd with Processing, allowing users to take

advantage of both frameworks. As of the time of writing this

paper, users wishing to use Processing and libPd for the devel-

opment of Android applications must use the Eclipse develop-

ment environment in order to deploy their apps to their Android

device. This is not the case with Csoundo for Android.

2. CSOUNDO FOR ANDROID

The following section provides an overview of the Csoundo for

Android library, beginning with a look at how Processing librar-

ies are organised and structured. Following this is a description

of the Csoundo class itself, and, finally, the steps involved in

modifying the Processing framework to accommodate external

libraries are outlined.

2.1. Processing Libraries

Libraries for Processing are quite straightforward to construct.

Each library must be housed in a self contained folder that must

be placed in the Processing sketchbook 'libraries' folder. When

Processing is run for the first time it will create a default

'sketchbook' folder within one's home directory. Within each li-

brary folder there will be a directory called 'libraries' which will

contain the relevant Java archive files for the Processing library.

In the case of Csoundo there are four .jar files in the libraries

folder:

Table 1: Libraries used in Csoundo.

Java Archive Features

Csnd.jar Java interface to both libcsound and

libcsnd. Needed for running Csoundo

sketches on a Desktop PC.

CsoundAn-

droid.jar

Android interface to Csound API, also

contains unique Android utility methods.

This library is needed for running

Csoundo sketches on Android.

Android.jar Interface to native Android methods.

Csoundo.jar Simplified Processing wrapper for func-

tions found in csnd.jar

2.2. The Csoundo class

Csoundo is the main class used in developing Csound sketches

with Processing, both in desktop and Android mode. The over-

loaded Csoundo constructors are defined as,

public Csoundo(PApplet theParent, Con-

text context)

public Csoundo(PApplet theParent, String

_csd)

The first constructor creates an object of type CsoundAndroid(),

while the second creates an object of type Csound(). You'll note

that the constructor for setting up a CsoundAndroid class gets

passed an object of type Context. This object is very important

as it provides access to some useful application-specific re-

sources and classes. It is through this object for example that we

can retrieve the full path to the .csd file to be compiled by

Csound. The one drawback to having overloading constructors

like this is that users will need to use one or the other depending

on their target platform. More eloquent ways of setting up

Csound are being investigated and it is hoped that a single

multi-target interface can be developed in the future.

The Csoundo constructor is the only overloaded method,

which means that all the other Csound API methods exposed by

Csoundo are the same whether the user is developing for An-

droid or desktop applications. Below is a list of most useful

methods found in the Csoundo:

Table 1: Useful Csoundo methods.

Method Summary

Csoundo(...) Main constructor

get0dbfs() Returns the 0dbfs value, set in the

orchestra header.

getChn(...) Returns the value of the specified chn

bus.

setChn(...) Sets the value of the specified chn

bus.

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-3

getPerfStatus(...) Returns the status of the Csound Per-

formance Thread.

ksmps() Returns the ksmps, samples per k

period

nchnls() Return the number of channels

tableGet(...) Returns a value from a table, deter-

mined by index

tableSet() Sets the value of a particular index in

a Csound table.

SetOptions(...) Overwrites CsOptions.

2.3. Modifying Processing

When users hit the 'Send to Device' button in Processing, Proc-

essing will export all files needed to a temporary directory be-

fore it pushes them across to the attached Android device. In the

case of Csoundo all the Csoundo Java files get distributed to this

temporary directory before being sent to the device. The one

problem is that as of the time of writing Processing does not

support external libraries when in Android development, so

while Processing specific libraries are supported, external An-

droid libraries are not. This represented a problem for Csoundo

as it is completely dependant on the presence of a Csound li-

brary, be that csnd.jar in desktop mode, or CsoundAndroid in

Android mode. As a result some simple modifications have had

to be made to the Processing Java archive file so that external

dependencies get referenced and included. The Android-

Build.java class file contained within the pde.jar archive is

where all the modifications took place. This class contains all of

the functions needed by Processing in order for it to export an

entire project to a temporary Android build folder on disk before

sending it to a device. In order to solve the issue of external li-

braries, the writeProjectProps() method needed to be slightly

altered. This method is responsible for writing the project prop-

erties files for the exported applications. In order for Csoun-

dAndroid to be pushed to the device it was necessary to add the

path to the CsoundAndroid folder via the project properties An-

droid.Library.Reference identifier. On Linux systems the

CsoundAndroid folder should be placed in ~/sketchbook so that

Processing can find it when it comes to exporting as an Android

app.

The next modification to the AndroidBuild class was to its

writeRes(File resFolder, String className) method. This

needed to be changed so that it would export the Csound file

associated with the Csoundo sketch, which is located by default

in the sketches 'data' sub-folder, to the Android package's

res/raw folder. Once in the resources raw folder the .csd file can

be accessed using the Android context method openRawRe-

source(). Once the file has been accessed, Csoundo will create a

temporary copy of the file in a known location, which can then

be passed to the Csoundo constructor in order to be compiled by

Csound.

The final modifications to AndroidBuild was to the copyLibrar-

ies(File libsFolder, File assetsFolder) method. This method cop-

ies all the relevant Processing libraries used in one's sketch to

the Android build folder's lib directory. This directory will con-

tain processing-core.jar and whatever other Processing libraries

your sketch uses. A conditional test was placed within this func-

tion to see what the export target platform is. If the target plat-

form is Android then there is no need to export csnd.jar as the

functions exposed in this library are all available in the Csoun-

dAndroid archive. Not only does this step prevent the wast of

valuable memory on one's Android device, it also prevents a se-

ries of messy compiler errors when porting your applications to

Android.

3. GETTING SETUP WITH CSOUNDO FOR ANDROID

In order to use Csoundo for Android you will need to have the

latest versions of both Csound and Processing downloaded and

installed on your desktop. Any recent version of Csound5 will

work fine, but you'll need to use version 2.0b.7 of Processing,

which as of the time of writing is the most current beta release

of Processing 2.

Following this you will need to install the Android SDK. Rather

than downloading the entire SDK it is better, and far quicker to

simply download the SDK manager and install the following

packages:

 Tools/Android SDK Tools

 Tools/Android SDK Platform-tools

 Android 2.3.3(API 10) / SDK Platform

 Android 2.3.3(API 10) / Google APIs

Users of 64-bit versions of Linux should also install 32-bit com-

patibility libraries using the following command:

sudo apt-get install ia32-libs

Once you have Processing working in Android mode you can

grab the latest source code for Csoundo from the following web-

site:

https://github.com/rorywalsh/Csoundo

Information on how to install Csoundo is provided on the afore-

mentioned github repository.

4. EXAMPLES

The following section presents two simple Csoundo sketches.

The first shows a simple sketch which illustrates how Process-

ing events can be used to trigger sound events in Csound. The

second shows how the opposite is possible, i.e., how to trigger

graphical events in processing from Csound. Please note that

these examples were written to be as simple and succinct as

possible. For more interesting and involved programs please

check out the Csoundo examples directory.

4.1. From Processing to Csound

This simple sketch uses the users finger position to control a

simple random event to draw lines to screen, while turning each

into a note being played with Csound. The code for the basic

Processing sketch is given below.

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

https://github.com/rorywalsh/Csoundo

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-4

Example 1.pde

import csoundo.*;

Csoundo cs;

void setup(){

size(displayWidth, displayHeight);

frameRate(10);

smooth();

cs=newCsoundo(this,

 super.getApplicationContext());

cs.run();

}

void draw() {

cs.setChn("mod", mouseX);

cs.setChn("car", mouseY);

}

The sketch's draw() method will get called 10 time per second,

and each time it is called the X/Y coordinates of the mouse, or

the users finger in Android mode, will get sent to an instance of

Csound. The data will be transferred on two named channels,

“mod”, and “car”. The Csound instrument is defined in the fol-

lowing code.

Example 1.csd

<CsoundSynthesizer>

<CsOptions>

-odac -+rtaudio=null -d -m0 -b512

</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 64

nchnls = 2

0dbfs = 1

gaSig init 0

instr 1

kmod chnget "mod"

kcar chnget "car"

amod lfo .1, kmod

acar oscil amod, kcar, 1

gaSig = acar

endin

instr 2

acombL comb gaSig*.1, 2, .3

acombR comb gaSig*.1, 2, .42

outs acombL*2, acombR*2

endin

</CsInstruments>

<CsScore>

f1 0 1024 10 1 0.5 .2

i1 0 [60 * 60 * 24]

i2 0 [60 * 60 * 24]

</CsScore>

</CsoundSynthesizer>

The most important parts of the above code are the two lines

using the chnget opcode. chnget is passed the name of the chan-

nel on which to listen for data from Processing. Finally, the

Csound score tells the two instruments to run for 24 hours,

which should be long enough for a single user session.

4.2. From Csound to Processing

The major issue with triggering graphical events in Processing

with Csound is that both system use completely different sample

rates. Therefore a lot of data being sent and accessed through

the chnget/chnset opcodes will be lost in transmission. To get

around this issue users can use a callback system that will trig-

ger Processing events each time Csound sends a message on a

particular channel. In order to do this we must set up a callback

method within our Processing sketch. The channel callback

method must use the following method prototype:

public void outvalueCallback(String chan,

double val)

Once you have defined this method it will be called every time

Csound updates a channel. Because the chnget/chnset opcodes

do not work via callbacks, users will need to use the outvalue

opcode instead. When using the out/in value opcodes, a regis-

tered callback will be triggered each time an out/invalue opcode

is called from within Csound. Users can then tell Processing to

draw something only when a channel message has been updated.

Example 2.pde

import csoundo.*;

Csoundo cs;

float xPos=0, yPos=0, ballSize=0;

void setup(){

//Java Mode

cs = new Csoundo(this,"Example2.csd");

cs.run();

background(0);

size(300, 300);

smooth();

noLoop();

frameRate(10);

strokeWeight(5);

}

void draw(){

fill(ballSize*255,(xPos*width)*255,

 (yPos*height)* 255);

ellipse(xPos*width,yPos*height,

 50*ballSize+10,

 50*ballSize+10);

fill(0, 0, 0, 10);

rect(0, 0, width, height);

}

public void outvalueCallback(String chan,

 double val){

if(chan.equals("xPos") == true)

 xPos = (float)val;

else if(chan.equals("yPos") == true)

 yPos = (float)val;

else if(chan.equals("ballSize") == true)

 ballSize = (float)val;

redraw();

}

The corresponding Csound instrument looks like this:

Example 2.csd

<CsoundSynthesizer>

<CsOptions>

-+rtmidi=alsa -m0d -o dac:hw:1,0

</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 1024

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

 DAFX-5

nchnls = 2

0dbfs = 1

instr 1

kFreq randh 1000, 10, 2

kAmp randh 1, 10, 2

kHarms randh 4, 10, 2

kTempo init 1

kGo metro abs(kTempo)+1

if(kGo==1) then

event "i", 10, 0, 3, kAmp, kFreq, kHarms

kTempo randh 5, 100, 2

endif

endin

instr 10

outvalue "xPos", (6-abs(p6))/6

outvalue "yPos", abs(p4)/1

outvalue "ballSize", (1000-abs(p5))/1000

aexp expon abs(p4)+.1, p3, 0.001

a1 buzz aexp/4, p5, p6, 1

outs a1, a1

endin

</CsInstruments>

<CsScore>

f1 0 1024 10 1

i1 0 3600

</CsScore>

</CsoundSynthesizer>

It is important to set your control rate to a relatively low value,

otherwise Processing will not be able to keep up with the high

frequency of updates and you may experience some audio drop-

outs. In the above code ksmps is set to 1024, which gives a con-

trol rate of 43Hz. This essentially sets Processing's max frame

rate to 43, some 10 or so frames higher than standard video.

5. CONCLUSION

The latest update to the Csoundo library has made development

of Csound sketches with Processing a very attractive option for

anyone looking to create audio-visual applications for Android.

On top of that it provides, for the first time, a truly integrated

development environment for Csound users wishing to develop

applications for Android devices. If users wish to develop stan-

dard interfaces to their apps they can do so using one of Process-

ing's GUI control libraries such as controlP5, which provides an

array of standards controls such as sliders, buttons, xypads, etc.

At the time of writing, all other development toolkits for An-

droid involve the use of an integrated development environment

such as Eclipse, which puts them beyond the reach of anyone

new to coding computer applications. However, Csoundo pro-

vides a far easier and more streamlined approach to developing

applications for Android.

It must also be noted that the Android 'mode' for Processing

2.0 (beta) is still very much under development, and it is not yet

clear if the developers will offer this development mode as stan-

dard, or as an optional add-on, or as a completely separate pack-

age. Until this becomes clear it is somewhat difficult to predict

how Csoundo will be packaged in the future. One option being

explored is a single Csoundo package that includes not only the

necessary JAVA archives for Csound, but the complete Android

development mode for Processing. Another option is to add a

new development mode, called 'Csoundo' to Processing, but the

maintenance of such a mode might prove to be somewhat pro-

hibitive. Whatever form Csoundo for Android eventually takes,

it's of the utmost importance that it be as simple as possible for

end-users to set up and get running.

Full source code, code examples and necessary libraries for the

current version of Csoundo are available at:

 https://github.com/rorywalsh/Csoundo

6. AKNOWLEDGEMENTS

Thanks goes to everyone on the Csound and Processing forums,

in particular Steven Yi whose insights and direction proved to

be invaluable to this project. The authors also wish to express

their sincere thanks to Jacob Joaquin. None of the developments

discussed in this paper would have come to fruition had it not

been for his willingness to share his work on the original

Csoundo library with the wider open source community.

7. REFERENCES

[1] ffitch, J. 2005. On The Design of Csound 5. In: LAC 2005

Proceedings: 3rd International Linux Audio Conference,

April, 2005, Karlsruhe. Karlsruhe: Zentrum fur Kunst und

Medientechnologie, pp. 37-42.

[2] Reas, C. and Fry, B. 2007. Processing: a programming

handbook for visual designers and artists. Cambridge:MIT

Press.

[3] Joaquin, J 2010. Csoundo — A Csound library for Process-

ing. [online] 2010, available:

https://github.com/jacobjoaquin/Csoundo [accessed 24 Jan

2013].

 [4] Lazzarini, V., Yi, S., Timoney, J., Keller, D. and Pimenta,

M. 2012. The Mobile Csound Platform. In: Marolt, M., Kal-

tenbrunner, M. and Ciglar, M. eds., Proceedings of the In-

ternational Computer Music Conference, September, 2012,

Ljubljana. San Francisco:

[5] Brinkmann, P. 2011. libpd, [online], available:

https://github.com/libpd/ [accessed 29 Jan 2013

[6] Esler, R. (2012). Libpd with Processing, Robert Esler,

[online], 20 January, available: http://robertesler.com/libpd-

with-processing/[accessed 3 August 2012].

[7] Joaquin, J. (2010). Announce: Csoundo Processing Library,

[online], 9 August, available:

http://csound.1045644.n5.nabble.com/Announce-Csoundo-

Processing-Library-td2268382.html/[accessed 13 December

2012].

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

https://github.com/rorywalsh/Csoundo

