
Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

DOPPLER EFFECTS WITHOUT EQUATIONS

Peter Brinkmann, ∗

peter.brinkmann@gmail.com

Michael Gogins,

Irreducible Productions
michael.gogins@gmail.com

ABSTRACT

We present a fast and robust method for approximating sound prop-
agation in situations where audio and video frame rates may dif-
fer significantly and positions of sound sources and listeners are
only known at discrete times, so that numerically stable veloci-
ties are not available. Typical applications include 3D scenes in
virtual environments where positions of sources and listeners are
determined in real time by user interaction. Our method employs
a computationally inexpensive heuristic that converges to the ex-
act solution for constant speeds and achieves convincing Doppler
shifts in general.

1. INTRODUCTION

We want to simulate the propagation of sound in a 3D scene in a
virtual environment. More formally, we have a listener with po-
sition q(t) at time t (measured in samples at sample rate f0) and
a sound source with position p(s) at time s. Sound travels at a
finite speed c, so that the time t at which the listener hears a sound
and the time s at which the sound was emitted are related by the
equation

s = t− γd(p(s), q(t)), (1)

where d(p(s), q(t)) is the distance and γ = f0
c

is the number
of samples per distance. This is the basic Doppler identity, and
differentiation with respect to t yields the familiar frequency shift
formula (see, for example, [1]):

f =
c+ vl
c+ vs

f0, (2)

where vl is the velocity of the listener and vs is the velocity of the
source.

So, in order to compute the sample heard at time t, we merely
have to solve Equation 1 for s and compute the sample emitted
at time s. Up to interpolation and possibly some filtering, we are
done.

Or are we?
We need to deal with several complications: Firstly, Equa-

tion 1 is nonlinear, so that solving it may be computationally ex-
pensive. Secondly, and more importantly, we don’t actually know
p(s) or q(t) at all times; we merely know those positions at dis-
crete points in time, so that we need to interpolate. Even worse,
those positions will generally be updated at the video frame rate,
and the typical time between video frames is an eternity from the
point of view of audio. As far as the audio is concerned, source and
listener just sit around for a long time, then they jump discontinu-
ously, then they sit around, etc. Hence, we need to find a suitable

∗ Current affiliation: Google Inc

interpolation scheme for source and listener positions, and then we
need to solve Equation 1 for this interpolation.

In spite of all that, we have found an approximate solution that
works well in practice. It was born out of the intuition that if we
have to fudge source and listener positions between video frames,
then we might just as well fudge things altogether. Our method
produces subjectively convincing Doppler effects without the need
to solve equations. Moreover, it is robust, computationally cheap,
and straightforward to implement.

2. RELATED WORK

Many libraries and software packages (e.g., OpenAL) implement
some version of Doppler shifts. However, all solutions that we
are aware of are based on Equation 2 rather than Equation 1, i.e.,
they require the velocity of source and listener to be known. In
the settings that we are interested in, such as interactive virtual
environments, source and listener positions are only known at rel-
atively sparse points in time, so that numerically stable velocities
are not available.

Moore’s space unit generator [1] approximates Doppler ef-
fects with an interpolated variable-length delay line, as does our
method. The crucial difference, however, is that we provide a nu-
merically stable way of determining where to tap this delay line,
i.e., our solution does not require numerical approximations of any
derivatives.

3. INTERPOLATION

We assume that the video frame rate is at least 24 fps; if it drops be-
low 24 fps, the graphics will be noticeably jerky and we don’t care
anymore. This means that the Nyquist frequency of position up-
dates is at least 12Hz, so that we can interpolate source and listener
positions by applying a low-pass filter with a cut-off frequency of
12Hz or less.

In practice, a discretization of an RC low-pass filter with a cut-
off frequency of 6Hz works nicely (Appendix A.2). Such a filter
is defined by the equation

yi+1 = yi + α(x− yi), (3)

where x is the current target value (Section 4) and α is the smooth-
ing factor

α =
1

1 + f0
2πfc

, (4)

where fc is the cut-off frequency of the filter.

4. THE METHOD

Audio rendering is driven by a callback that computes one frame
at a time. For each frame, we are given a buffer of new samples

DAFX-1

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

mailto:peter.brinkmann@gmail.com
mailto:michael.gogins@gmail.com

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

emitted by the source, as well as the position of listener and source
at the beginning of the frame.

Our audio renderer has a state consisting of the following pieces
of information:

• a queue of sample buffers and associated source positions,
waiting to be rendered,

• a low-pass filter that interpolates between positions updated
at the (video) frame rate and the audio sample rate (Sec-
tion 3),

• a relative index that measures the difference (in samples)
between the current time and the beginning of the current
source buffer, i.e., the buffer at the head of the queue,

• a current index that indicates the most recently processed
sample in the current source buffer, and

• an interpolator that computes samples for fractional indices.
Appendix A.3 shows a linear interpolator, chosen for brevity;
more sophisticated interpolation schemes can (and should)
be implemented with the same interface. Cubic interpola-
tion is a good choice.

When computing a new output buffer, we first append the new
source buffer and position to the queue, and we compute a new
target position, i.e., the source position at the head of the queue
relative to the current listener position. This target position will be
the input value for our low-pass smoothing filter, until we advance
to a new source buffer (and hence to a new source position). Then,
for each output sample, we compute the next output value of our
smoothing filter, obtaining an approximation of the next position
vector of the source relative to the listener.

The crucial idea behind our method is the heuristic that the
length of this approximate relative position vector will be close to
the exact (but computationally unattainable) distance d(p(s), q(t))
in Equation 1. We simply substitute this approximation of the dis-
tance into Equation 1 and obtain an approximation of the time s at
which our next sample was emitted, without having to solve any
equations.

More concretely, if j is the current relative index, y is the
current low-pass filter value approximating the distance between
source and listener, and i is the index of the desired source sample,
our heuristic yields

i = j − γy. (5)

If i is above the range of the current source frame, we subtract the
length of the current source frame from both i and j and advance
to the next source frame and position. If the index i is within the
range of the current source frame, we pass i to the interpolator to
obtain the the desired interpolated source sample. If i is negative,
then the beginning of the current source buffer hasn’t reached the
listener yet, and so we only render a zero sample in this case. Fi-
nally, we increment the relative index j, advance the low-pass filter
to the next value, and repeat the procedure for the next sample.

The low-pass filter updates determine how fast we step through
a source buffer, and the transition to the next buffer in the queue
advances the target position for the low-pass filter. In other words,
low-pass filter updates and source buffers leapfrog each other; fil-
ter updates drive the progression through the current source buffer,
and the progression through source buffers drives filter updates.
Appendix A.1 contains a C++ implementation of our method.

fv 24 fps 30 fps 60 fps 120 fps
q 0.50 0.57 0.74 0.86

Table 1: Maximum admissible velocity as a fraction q of the speed
of sound, for video frame rate fv , sample rate 44100Hz, and low-
pass cut-off 6Hz.

Figure 1: Frequency spectrum of a Doppler-shifted 440Hz sine
wave emitted by a source traveling at a speed of 20m/s, with a sam-
ple rate of 40960Hz, audio buffer size of 128 frames, and smooth-
ing filter cut-off 8Hz.

5. DISCUSSION

Figure 1 shows the frequency spectrum of a Doppler-shifted 440Hz
sine wave emitted by a source traveling at a speed of 20m/s as re-
ceived by a stationary listener, with a sample rate of 40960, an
audio buffer size of 128 frames, and a smoothing filter cut-off fre-
quency of 8Hz.

The main peak of the signal is at 466Hz, the desired frequency
of the Doppler-shifted signal according to Equation 2. The remain-
ing peaks are artifacts that are caused by our approximation of the
Doppler shift. Note, however, that for the purposes of illustration
we deliberately chose parameters that would render those artifacts
visible in the spectrum. With a smaller buffer size, for example,
the artefacts would be much less pronounced.

Our approach converges exponentially to the correct Doppler
shift if source and listener move at constant speed relative to each
other, and it produces subjectively convincing results as long as
the speeds involved are not too large.

Mathematical analysis (Appendix B) yields an upper bound on
admissible relative velocities of source and listener (Table 1). For
typical parameters (sample rate 44100Hz, low-pass cut-off 6Hz,
video frame rate fv = 60 fps), this bound is roughly 74% of the
speed of sound, which should be sufficient for most applications.
These upper bounds on meaningful velocities are a consequence
of two limitations of our approach.

One limitation is that our method does not allow for negative
frequency shifts. (In theory, it is possible to hear a symphony
backwards by flying away from the orchestra at twice the speed
of sound.) If the listener moves at supersonic speed, our method
will just fall silent because each source sample is processed exactly
once and will not be revisited.

Another limitation is that due to its exponential nature, our
low-pass filtering approach to position interpolation may overshoot
its target when the relative speed of source and listener is around
the speed of sound or larger. In particular, when the source moves
away from the listener at the speed of sound, our method will not

DAFX-2

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

render audio at half the stationary rate (which would be the desired
behavior). Instead, our source times will decrease at the beginning
of each frame, causing a moment of silence, followed by a period
of catching up at a rate that is slightly higher than desired.

In spite of the possibility of dropouts at high velocities, our
method is robust in the sense that it will not get out of control
when objects move too fast. When velocities return to the feasible
range, rendering will continue normally, potentially obviating the
need to check for excessive speeds.

Our approach of queuing audio input buffers implicitly cre-
ates delay line that dynamically grows or shrinks as needed. While
this is often a desirable feature, it may consume too much mem-
ory when distances between sources and listeners are too large.
This is easily remedied through distance culling: If the queue be-
comes too long, we cease to append new source frames and ap-
pend dummy frames instead. Alternatively, one may modify our
approach to employ a fixed-length delay line.

6. IMPLEMENTATIONS

The original implementation of our method is contained in the
class DelayPath. java of the visualization and sonification package
jReality[2].1 In addition to the simulation of Doppler effects dis-
cussed here, it includes support for distance culling, auxiliary sends
and returns for effects as well as location-dependent distance cues
[3], and rendering backends for spatialized rendering through Am-
bisonics [4] or vector based amplitude panning [5].

Another implementation of our approach will be part of future
versions of Csound2 and is currently available from the Csound
CVS repository. The sample code in Appendix A was adapted
from the Csound version.

7. CONCLUSION

Our method of simulating sound propagation in a scene has a num-
ber of appealing features: It is fast, physically accurate and subjec-
tively convincing as long as velocities do not get too close to the
speed of sound, and robust even if velocities approach or exceed
the speed of sound. Moreover, it does not require the computation
of velocities or Fourier transforms, and it is amenable to a number
of extensions such as position-dependent filtering, spatialization,
and resampling for improved sound quality. We believe that it
is a promising approach for audiovisual applications that require
Doppler shifts in real time.

Acknowledgments
We are grateful to Camille Goudeseune for encouragement and a
thorough critique of an early draft of this paper. Eric Lyon also
provided valuable feedback.

A. CODE

The C++ code in this section is a modification of the new doppler
opcode of Csound, currently available from the Csound CVS repos-
itory. While this implementation will compile and work as pre-

1http://www.jreality.de/
2http://www.csounds.com/

sented here (up to some boilerplate such as variable initialization),
it is only intended for illustration purposes.

Any real-world implementation of our method will include ad-
ditional functionality such as distance culling, support for distance
cues (e.g., distance-dependent attenuation), and multi-channel en-
coding (e.g., stereo or Ambisonics). For a full-featured example,
see the class DelayPath. java of jReality.

A.1. Main class

i n c l u d e <cmath >
i n c l u d e < l i s t >
i n c l u d e < v e c t o r >

c l a s s Dopple r {

p r o t e c t e d :
double speedOfSound ; / / m e t e r s / second
double s m o o t h i n g F i l t e r C u t o f f ; / / Hz
double sampleRa te ; / / Hz
double s a m p l e s P e r D i s t a n c e ; / / samp les / me te r
i n t f r a m e S i z e ; / / aud io frame s i z e i n samples

RCLowpassF i l t e r ∗ s m o o t h i n g F i l t e r ;
L i n e a r I n t e r p o l a t o r ∗ a u d i o I n t e r p o l a t o r ;
s t d : : l i s t < s t d : : v e c t o r <double > ∗>

∗ s o u r c e B u f f e r Q u e u e ;
s t d : : l i s t <double > ∗ s o u r c e P o s i t i o n Q u e u e ;
i n t r e l a t i v e I n d e x ;
i n t c u r r e n t I n d e x ;

p u b l i c :
void i n i t () {

/ / i n i t i a l i z e sampleRate , f r a m e S i z e ,
speedOfSound , s m o o t h i n g F i l t e r C u t o f f
depend ing on t h e a p p l i c a t i o n

/ / t h e r e m a i n i n g i n i t i a l i z a t i o n s are a lways
t h e same

s a m p l e s P e r D i s t a n c e = sampleRa te /
speedOfSound ;

a u d i o I n t e r p o l a t o r = new L i n e a r I n t e r p o l a t o r ;
s m o o t h i n g F i l t e r = 0 ; / / i n s t a n t i a t e l a t e r
s o u r c e B u f f e r Q u e u e = new s t d : : l i s t <

s t d : : v e c t o r <double > ∗ >;
s o u r c e P o s i t i o n Q u e u e = new s t d : : l i s t <double >;
c u r r e n t I n d e x = 0 ;
r e l a t i v e I n d e x = 0 ;

}

/ / t h e main aud io p r o c e s s i n g c a l l b a c k
void p r o c e s s (double s o u r c e P o s i t i o n , double

m i c P o s i t i o n , double ∗ a u d i o I n p u t , double
∗ a u d i o O u t p u t) {

/ / append t h e new sample b u f f e r and s o u r c e
p o s i t i o n t o t h e queue

s t d : : v e c t o r <double > ∗ s o u r c e B u f f e r = new
s t d : : v e c t o r <double >;

s o u r c e B u f f e r −> r e s i z e (f r a m e S i z e) ;
f o r (s i z e _ t i n p u t I n d e x = 0 ; i n p u t I n d e x <

f r a m e S i z e ; i n p u t I n d e x ++) {
(∗ s o u r c e B u f f e r) [i n p u t I n d e x] =

a u d i o I n p u t [i n p u t I n d e x] ;
}
sou rceBuf f e rQueue −>push_back (s o u r c e B u f f e r) ;
s o u r c e P o s i t i o n Q u e u e −>push_back (s o u r c e P o s i t i o n) ;

DAFX-3

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

http://www.jreality.de/
http://www.csounds.com/

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

/ / compute t h e new t a r g e t p o s i t i o n
s t d : : v e c t o r <double > ∗ c u r r e n t B u f f e r =

sou rceBuf f e rQueue −> f r o n t () ;
double t a r g e t P o s i t i o n =

s o u r c e P o s i t i o n Q u e u e −> f r o n t () −
m i c P o s i t i o n ;

/ / i n i t i a l i z e t h e smoo th ing f i l t e r i f
n e c e s s a r y

i f (! s m o o t h i n g F i l t e r) {
s m o o t h i n g F i l t e r = new RCLowpassF i l t e r () ;
s m o o t h i n g F i l t e r −> i n i t i a l i z e (sampleRate ,

s m o o t h i n g F i l t e r C u t o f f , t a r g e t P o s i t i o n) ;
}

f o r (s i z e _ t o u t p u t I n d e x = 0 ; o u t p u t I n d e x <
f r a m e S i z e ; o u t p u t I n d e x ++) {

/ / up da t e a p p r o x i m a t e r e l a t i v e p o s i t i o n
double r e l a t i v e P o s i t i o n =

s m o o t h i n g F i l t e r −>u p d a t e (t a r g e t P o s i t i o n) ;
double d i s t a n c e =

s t d : : f a b s (r e l a t i v e P o s i t i o n) ;

/ / compute d e l a y f o r r e l a t i v e p o s i t i o n
double sourceTime = r e l a t i v e I n d e x −

(d i s t a n c e ∗ s a m p l e s P e r D i s t a n c e) ;
i n t t a r g e t I n d e x = i n t (sourceTime) ;
double f r a c t i o n = sourceTime − t a r g e t I n d e x ;
r e l a t i v e I n d e x ++;

/ / p r o c e s s samples up t o t a r g e t i n d e x
whi le (t a r g e t I n d e x >= c u r r e n t I n d e x) {

/ / have we e x h a u s t e d t h e c u r r e n t f rame ?
i f (c u r r e n t I n d e x >= f r a m e S i z e) {

/ / y e s : r o l l back i n d i c e s . . .
r e l a t i v e I n d e x −= f r a m e S i z e ;
c u r r e n t I n d e x −= f r a m e S i z e ;
t a r g e t I n d e x −= f r a m e S i z e ;

/ / . . . and advance t o n e x t f rame
d e l e t e sou rceBuf f e rQueue −> f r o n t () ;
sou rceBuf f e rQueue −>p o p _ f r o n t () ;
s o u r c e P o s i t i o n Q u e u e −>p o p _ f r o n t () ;
c u r r e n t B u f f e r =

sou rceBuf f e rQueue −> f r o n t () ;
t a r g e t P o s i t i o n =

s o u r c e P o s i t i o n Q u e u e −> f r o n t () −
m i c P o s i t i o n ;

}
/ / p r o c e s s c u r r e n t sample
a u d i o I n t e r p o l a t o r −>p u t (

(∗ c u r r e n t B u f f e r) [c u r r e n t I n d e x ++]) ;
}

/ / compute o u t p u t sample
double c u r r e n t S a m p l e =

a u d i o I n t e r p o l a t o r −>g e t (f r a c t i o n) ;
a u d i o O u t p u t [o u t p u t I n d e x] = c u r r e n t S a m p l e ;

}
}

} ;

A.2. Low-pass filter

We use a discretized version of an RC low-pass filter3 for smooth-
ing out the difference between audio and video frame rates.

s t a t i c double p i = s t d : : a t a n (1 . 0) ∗ 4 . 0 ;

3http://en.wikipedia.org/wiki/Low-pass_filter

c l a s s RCLowpassF i l t e r {

p u b l i c :
void i n i t i a l i z e (double sampleRate , double

cu to f fHz , double i n i t i a l V a l u e) {
double t a u = 1 . 0 / (2 . 0 ∗ p i ∗ c u t o f f H z) ;
a l p h a = 1 . 0 / (1 . 0 + (t a u ∗ sampleRa te)) ;
v a l u e = i n i t i a l V a l u e ;

}

double u p d a t e (double i n p u t V a l u e) {
v a l u e += a l p h a ∗ (i n p u t V a l u e − v a l u e) ;
re turn v a l u e ;

}

p r o t e c t e d :
double a l p h a ;
double v a l u e ;

} ;

A.3. Interpolator

A number of interpolation schemes (e.g., linear, cosine, cubic) will
work in our setting. The only restriction is that we need to choose
a random access method [6], i.e., an interpolation scheme that will
give interpolated values for arbitrary fractional times. Recursive
fractional delay filters will not work in this context.

c l a s s L i n e a r I n t e r p o l a t o r {

p u b l i c :
L i n e a r I n t e r p o l a t o r () :

p r i o r V a l u e (0 . 0) ,
c u r r e n t V a l u e (0 . 0) {}

v i r t u a l vo id p u t (double i n p u t V a l u e) {
p r i o r V a l u e = c u r r e n t V a l u e ;
c u r r e n t V a l u e = i n p u t V a l u e ;

}

v i r t u a l double g e t (double f r a c t i o n) {
re turn p r i o r V a l u e + (f r a c t i o n ∗

(c u r r e n t V a l u e − p r i o r V a l u e)) ;
}

p r o t e c t e d :
double p r i o r V a l u e ;
double c u r r e n t V a l u e ;

} ;

B. MATHEMATICAL ANALYSIS

We want to compute the sample heard at time t = k, for k =
0, 1, 2, . . . Equation 1 tells us that the sample received at time k
was emitted at time

sk = k − γd(p(sk), q(k)).

For every index k, our method yields an approximation xk of
d(p(sk), q(k)), so that sk = k− γxk. Similarly, we have sk+1 =
k + 1 − γxk+1. By subtracting the first equation from the second
one, we obtain

sk+1 − sk = 1 − γ(xk+1 − xk).

The distances xk are the output of of a discretized RC low-
pass filter defined by the equation xk+1−xk = α(X−xk),where

DAFX-4

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

http://en.wikipedia.org/wiki/Low-pass_filter

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

α = 1
1+τf0

and τ = 1
2πfc

(Appendix A.2). X is the current target
position, and fc is the cut-off frequency of the low-pass filter. We
conclude that

sk+1 − sk = 1 − αγ(X − xk).

Our method will process each input sample exactly once, i.e.,
it does not revisit previously used samples. In order to avoid audio
dropouts, we require the forward propagation criterion

sk+1 − sk = 1 − αγ(X − xk) > 0.

This is equivalent to

αγ(X − xk) < 1.

Our goal is to find the largest velocity v with the property that
the forward propagation criterion is satisfied for all k ≥ 0.

Let N be the number of audio samples per video frame. Then
∆ = Nv

f0
is the distance that an audio sample travels during one

video frame.
We need to find an upper bound for X − xk. We may assume

that x0 = 0 and Xm = (m + 1)∆ is the target position after m
video frames (i.e., aftermN audio samples). By substituting these
values into our update equation, we see that X0 − x0 = ∆ and
X1 − xN = ∆(1 + βN), where β = 1 − α is the complement of
the low-pass filter coefficient. Induction shows thatXm−xmN =
∆(1 +βN +β2N + · · ·+βmN), and the geometric series tells us
that

X − xk <
∆

1 − βN

for all k ≥ 0. Hence, the forward propagation criterion is sat-
isfied if

αγ∆

1 − βN
< 1.

Substituting ∆ = Nv
f0

into this equation yields the desired
upper bound on our velocity:

v

c
<

1 − βN

Nα
.

Table 1 shows typical upper bounds for q = v
c

computed ac-
cording to this formula. Note that for constant speeds v, the lag be-
tween our target position X and our current position xk converges
exponentially to ∆

1−βN , so that on average, for constant speed, we
have exponential convergence to the correct frequency shift.

C. REFERENCES

[1] F. R. Moore, Elements of Computer Music, Prentice-Hall,
Inc., 1990.

[2] Steffen Weiß mann, Charles Gunn, Peter Brinkmann, Tim
Hoffmann, and Ulrich Pinkall, “jReality: a java library for
real-time interactive 3D graphics and audio,” in Proceed-
ings of the 17th ACM international conference on Multimedia,
New York, NY, USA, 2009, MM ’09, pp. 927–928, ACM.

[3] Richard W.E. Furse, “Spatialisation - Stereo and Ambisonic,”
in The Csound Book: Perspectives in Software Synthesis,
Sound Design, Signal Processing,and Programming, 2000.

[4] Michael Gerzon, “Surround sound psychoacoustics,” 1974.

[5] Ville Pulkki, “Spatial sound generation and perception by am-
plitude panning techniques,” Tech. Rep., Helsinki University
of Technology, 2001.

[6] Julius O. Smith, Physical Audio Signal Processing, December
2008 Edition, http://ccrma.stanford.edu/~jos/
pasp/, 2008, online book.

DAFX-5

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013

http://ccrma.stanford.edu/~jos/pasp/
http://ccrma.stanford.edu/~jos/pasp/

	1 Introduction
	2 Related work
	3 Interpolation
	4 The method
	5 Discussion
	6 Implementations
	7 Conclusion
	A Code
	A.1 Main class
	A.2 Low-pass filter
	A.3 Interpolator

	B Mathematical analysis
	C References

