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ABSTRACT
In this paper we propose a technique based on the phase
evolution of the Short Time Fourier Transform (STFT) for
increasing the spectral resolution in the time-frequency anal-
ysis of a musical signal. It is well known that the phase
evolution of the STFT coefficients brings important infor-
mation on the spectral components of the analysed signal.
This property has already been exploited in different ways
to improve the accuracy in the estimation of the frequency
of a single component. In this paper we propose a differ-
ent approach, where all the coefficients of the STFT are
used jointly to build a measure of how likely all the fre-
quency components are, in terms of their phase coherence
evaluated in consecutive analysis window. In more detail,
we construct a phase coherence function which is then inte-
grated with the usual amplitude spectrum to obtain a refined
description of the spectral components of an audio signal.

1. INTRODUCTION

Time-frequency analysis is a central tool in most of the ap-
plications of audio/music signal processing, Music Informa-
tion Retrieval algorithms [1] and audio coding systems. The
most common used tool for this purpose is the Short Time
Fourier Transform (STFT) [2] which is the non-stationary
counterpart of the Discrete Fourier Transform (DFT). The
STFT decomposes the discrete signal in partially overlap-
ping frames, and it expands each of these frames in the
discrete Fourier basis [3]. It thus provides a time varying
discrete-frequency content description of the signal. Usu-
ally, only the amplitude spectrum of the STFT is taken into
account. In some applications which require both good fre-
quency accuracy and good time localization, this may not
suffice. To overcome this issue, some additional processing
may be required to increase the frequency resolution (see
[4]) or to add a-priori information (see [5]). One possible
approach consists in using the phase of the STFT to improve
the frequency resolution. Some works in the literature pro-
pose specific techniques to refine the frequency estimation

by using the phase evolution of STFT coefficients [6, 7, 8].
These methods, however, operate on a coefficient-wise ba-
sis to improve the frequency estimation of a single sinusoid
in a local frequency interval. In particular they do not allow
a global exploitation of the full phase spectrum evolution
to blindly enhance the frequency analysis over the entire
range. This is instead the aim of other approaches based on
the reassignment method first proposed in [9]. This tech-
nique corrects the information contained in the spectrogram
by “moving” the energy in the time-frequency plane accord-
ing to phase information (see [10]) for more details.

In this paper, we propose a different approach where
phase information is used to assign a “coherence score” to
spectral amplitude components. As for other works based
on the phase evolution of the STFT, the underlying idea
goes back to Flanagan and Golden [11] (see [12, 13] for
recent advances). Here, however, we propose a technique
for combining the phase evolution of different coefficients
in order to obtain a function Xm(f), that we call Phase Co-
herence Function (PCF), which measures the likelihood of
the presence of a sinusoidal component at the unquantized
frequency f at time instant m. The function Xm(f) is com-
puted using only the phase information, and we then com-
bine it with the STFT amplitude spectrum to obtain a re-
fined spectral analysis of the signal. The main difference
between our method and other available techniques is that
our method does not try to move the components from one
frequency to another, but rather assigns coherence scores
to components. In particular, the function Xm(f) takes on
positive (respectively, negative) values for those f that are
likely (unlikely) to be present in the signal according to the
phase evolution of nearby coefficients of the spectrogram.
The “coherence score”, furthermore, is computed in a way
which inherently takes into account the issue of the phase
unwrapping which often constitutes a problem in many of
the methods mentioned above.

The paper is structured as follows. In Section 2 we give
the basic notions on the STFT and we introduce the key
idea of the phase coherence. In Section 3.1 we show how
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to combine the information given by different coefficients
to obtain the PCF. In Section 4 we present the experimen-
tal results and we discuss the possible applications of our
technique.

2. TIME-FREQUENCY ANALYSIS

2.1. Short Time Fourier Transform

As we mentioned in Section 1, the classic time-frequency
analysis is performed using STFT. The N -terms STFT, at
time frame m, of a discrete signal x[n] is defined as

Xm,k =
N−1∑
n=0

x[n+ τm] · w[n] · e−j2π k
N n, (1)

where k = −N/2 + 1, . . . , N/2, τ is the hop size (in sam-
ples) from two subsequent frames and w[n] is the window-
ing function. The STFT is a complex valued function which
can be equivalently described in terms of its amplitude |Xm,k|
and its phase

Φm,k = ]Xm,k. (2)

If x[n] is sampled at frequency Fs, the frequency resolution
of the STFT is given [14] by the expression

∆k =
Fs
N

(3)

that can be seen as the width of the frequency interval as-
sociated to each coefficient Xm,k ignoring the windowing
effects and thus it is related to the STFT accuracy in posi-
tioning the spectral components of the signal. In this paper
we assume, where not otherwise specified, Fs = 22050 Hz,
N = 4096 without zero-padding, τ = 1024 samples and
w[n] is the Hanning analysis window. We will see that,
under certain hypothesis on the structure of the analysed
signal, we can partially overcome this limit. If we are in-
terested in the detection of the frequency location of the
short term sinusoidal components in an audio signal, we
can exploit the phase evolution of two consecutive frames
of the STFT to increase the frequency resolution of a time-
frequency representation. This basic idea is shared by all the
frequency estimation methods that uses the phase spectrum.

2.2. Phase evolution of the STFT

In this section, we introduce the principle at the base of the
coherence measure that will be described in the next section.
The key point is in the phase evolution of the STFT coeffi-
cients of a pure sinusoidal signal. For the sake of simplicity,
we consider complex exponential functions; the effect on
real signals will then be intuitively derived from this anal-
ysis. Consider then a signal x[n] assumed to be a sampled

version of a signal x(t) = ej2πF0t at sampling frequency
Fs, that is

x[n] = ej2πf0n, (4)

where f0 = F0/Fs is the normalized frequency. In the
continuous domain, if we let X(F ) = F{x(t)}(F ) be the
Fourier transform of x(t), we know that

F{x(t+ t0)}(F ) = ej2πFt0F{x(t)}(F ). (5)

Since our signal is a pure exponential, however, its Fourier
transform is a Dirac delta function and thus we may as well
write

F{x(t+ t0)}(F ) = ej2πF0t0F{x(t)}(F ). (6)

Since the STFT is a sliding window discrete version of the
Fourier transform, intuition suggests that its coefficients in
(1) evolve for varyingm ruled by this property of the Fourier
transform. Since a pure sinusoidal function, in general, af-
fects different coefficients due to the windowing effect, one
may be induced to expect eq. (5) to hold rather than eq. (6).
This is not the case, however, since it is easily checked that

Xm,k =
N−1∑
n=0

ej2πf0(n+τm)w[n] · e−j2π k
N n (7)

= ej2πf0τm
N−1∑
n=0

ej2πf0nw[n] · e−j2π k
N n (8)

= ej2πf0τmX0,k. (9)

That is, the k-th coefficient evolves as a complex exponen-
tial function ofm with frequency f0, regardless of the value
of k.

This relation holds exactly for all k for a complex ex-
ponential signal x[n]. For a real sinusoidal function x[n] =
cos(2πf0n), one can use Euler’s relation to write x[n] as a
composition of exponential functions with frequency ±f0.
It is then seen that, if the windowing function w[n] has a
discrete transform that decreases sufficiently fast in k, the
above analysis shows that the k-th coefficient evolve as a
complex exponential in m with frequency ±f0 if k/N is
sufficiently close to ±f0. Since we always work with real
signals in the audio frequency range, we may only consider
the positive frequency f0.

So, in presence of a pure tone at frequency f0, one should
expect the coefficients with k/N in the neighbourhood of f0
to evolve as exponential functions of m with frequency f0.
It is this property that can be used to measure the likelihood
of having a sinusoidal component at some given frequency
by only considering the phase evolution of the STFT coef-
ficients. In the next section, we propose a method to jointly
perform such an analysis over different coefficients to “test”
different possible frequency components.

DAFX-2

Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-5, 2013



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-6, 2013

3. PHASE COHERENCE MEASURE

3.1. Coherence measure

The analysis in the previous section shows that in the pres-
ence of a pure sinusoid we can predict Xm,k from X0,k ac-
cording to (9). In practice, we will only need to consider
two adjacent frames in the STFT and in this case we can
say that, given Xm,k and τ , we can write the one step for-
ward prediction for Xm+1,k as

X̂m+1,k = Xm,k · ej2πf0τ . (10)

Equation (10) gives the ideal evolution of the k-th coef-
ficient when the signal is a pure esponential at frequency f0.
Since we do not know f0 but rather measure the true coef-
ficient phases, we can say that a frequency f0 is compatible
with the measured phase evolution if

Φm+1,k − Φm,k − 2πf0τ = 0 mod (2π). (11)

This equation is often used, with a fixed value of k, as a way
to extract the value of f0 from the knowledge of the other
terms. This approach has however some problems. First,
the fact that the equation only holds (mod 2π) leads to the
problem of the phase unwrapping. That is, the frequency
f0 is not certain even in the ideal case, since it can only be
determined up to multiples of 1/τ . Second, we should not
expect to have exact equality in (11), since our real signal
will not be an ideal sinusoid, but a combination of sinu-
soidal components usually affected by noise. Hence, when
considering (11) for different k values, different noisy es-
timates for f0 are obtained. Here, we suggest a different
approach that does not try to estimate one single f0 from
eq. (11), but rather uses that equation to test whether a
frequency f is compatible with the phase evolution of the
coefficient k. In our test, moreover, we chose to adopt a
“soft” approach defining a coherence measure that is func-
tion of three variables m, k and f . More precisely, setting
∆Φm,k = Φm+1,k −Φm,k, we define a coherence measure
as given by the expression

Cm,k(f) = cos(∆Φm,k − 2πfτ) ∈ [−1, 1]. (12)

It is easy to see that for all f that exhibit coherent phase evo-
lution we have Cm,k(f) = 1. Conversely, Cm,k(f) = −1
for all those f for which ∆Φm,k − 2πfτ = π mod (2π),
which means that we have phase opposition between the
predicted coefficient and the measured one.

It may be useful to note here that we can rewrite (12) in
terms of the cross-spectral components as follows

Cm,k(f) = <
{
X∗
m,k

|Xm,k|
· Xm+1,k

|Xm+1,k|
· e−j2πfτ

}
, (13)

where <{·} denotes the real part and (·)∗ the complex con-
jugate. Thus, our coherence function is a measure of the
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Figure 1: Cm0,k(f) for xt[n] at m0-th time frame. The
black solid line is the reference for f = 440

Fs
.

contribution given by the frequency bin k in the the “modi-
fied” cross-correlation between the two frames of the signal,
according to the fact that equation (6) holds in place of the
usual (5).

For the sake of simplicity we look at the coherence mea-
sure for a fixed m = m0 and k = k0. From (12), we know
that for a givenm and k, Cm,k(f) is a sinusoidal function of
the variable f with a “frequency” τ , since ∆Φm0,k0 = ∆Φ
is a constant value. This function has local maxima fM in

fM (n) =
n

τ
+

∆Φ

2πτ
,∀n ∈ Z. (14)

If we consider the maximum obtained for n = 0, we find
thatN ·fM (0) gives an instantaneous frequency in the range
[k0−1/2, k0+1/2] as defined in [11]. This is the frequency
which is usually selected by other methods based on the
phase evolution of the STFT. Here, however, we will not
select this frequency a-priori and we will instead use the
whole function Cm,k(f) over different values of k to test a
generic f value.

Considering a test signal defined as xt[n] = sin[2π 440
Fs
n],

the phase coherence measure of xt[n] at the time frame
m = m0 is shown in Fig. 1. We can easily see that at the top
of the graph there is a group of bins k in which Cm0,k(f)
shares the same phase, that suggest, as seen in Section 2.2,
that the neighbours of the STFT evolves with an identical
phase difference due to the presence of a stationary tone. In
this “coherence band”, the local maxima of Cm0,k(f) are
located corresponding to f = 440

Fs
.

3.2. Coherence function

Our aim is to refine the amplitude spectrum using the co-
herence measure in order to obtain a better resolution in the
localization of sinusoidal components. Intuitively not all the
values of Cm0,k(f) are of practical interest. More precisely,
for a given f = f0, it is clear that only the neighbouring
values of the discrete frequency k0 = N · f0 give a reliable
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phase coherence measure. The spreading of the frequency
components due to the windowing effects of the STFT, to-
gether with the propagation of the phase coefficients de-
scribed in Section 2.2, suggests in fact that in presence of a
component at frequency f0, in the neighbours of N · f0, the
coefficients evolve according to f0. Far from this region, in-
stead, the coefficients evolve independently from this com-
ponent. We automatically consider only the relevant coeffi-
cients by choosing a weighting procedure that uses the am-
plitude spectrum of the analysis window to weight the coef-
ficients of the phase coherence measure around a specified
k0. The weighting coefficients are calculated as the unity
energy amplitude spectrum of the analysis window modu-
lated at the normalised frequency f as follows

Wk(f) =

∣∣DFTNk [w[n] · ej2πfn
]∣∣√∑N−1

n=0 |w[n]|2
, ∀f ∈ [0, 12 ], (15)

where DFTNk [·] is the Discrete Fourier Transform using N
samples.

Now we can define the Phase Coherence Function (PCF)
as a weighted sum of the coherence measure as

Xm(f) =
∑
k

Wk(f) · Cm,k(f),∀f ∈ [0, 12 ]. (16)

The PCF is a phase coherence indicator between time
frame m and m+ 1 for all f . In Fig. 2 it is shown the PCF
around f · Fs = 440 Hz, for the test signal xt[n] previously
defined, at a given time frame m = m0.
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Figure 2: Plotting of Xm0(f) for xt[n] at the m0-th time
frame. The Frequency axis shows the non-normalized fre-
quencies in Hz.

By looking at Fig. 2, we can notice high values of co-
herence also in f · Fs 6= 440 Hz. This is due to the peri-
odicity of Cm0,k0(f); two local maxima are obtained near
f · Fs = 440 Hz at a distance Fs/τ since Cm0,k0(f) has
period 1/τ . However, the two local maxima show different
amplitudes since the weighting coefficients Wk(f) change
there with respect to the true central frequency.

The obtained function gives a measure of the likelihood
that the signal contains a pure sinusoidal component at each
frequency f by only considering the phase of the STFT.
Taking one step further, a more useful representation of the
signal is obtained by combining this phase information with
the amplitude spectrum. We define the Phase Coherence
Function Weighted Modulus (PCFWM) as

X̄m(f) =
∑
k

|Xm,k| ·Wk(f) ·Cm,k(f),∀f ∈ [0, 12 ]. (17)

The PCFWM is an amplitude spectrum-like representation
with improved localization of the spectral peaks of pure
tones. However, it is not strictly an amplitude spectrum be-
cause negative values of the PCFWM may occur. A nega-
tive phase coherence is measured when the phase difference
between two consecutive time frames approaches ±π.

The advantages of this combination can be seen in Fig.
3. The secondary peaks in the coherence function are strongly
attenuated by the amplitude since no spectral energy is present
there. Furthermore, the negative peaks of the coherence
function fall in a region where the spectrum does take rele-
vant values. Those negative values of the phase coherence
indicate that the energy contained in this coefficients of the
STFT is in some sense “spurious”, and this is due to pure
components in nearby frequencies.
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Figure 3: Amplitude spectrum (solid line) and X̄m0
(f)

(dashed line) of xt[n]. Plots are scaled to unit amplitude.

4. RESULTS AND APPLICATIONS

Our method find its main application in signal processing
tasks that requires blind but accurate frequency localization
of pure sinusoidal components of a signal. As shown in Fig.
3, in presence of a single component our method leads to
a sharper lobe in the frequency analysis, and it allows for
a more precise estimation of the peak position, if desired,
ensuring that the results of [6, 7, 8] are recovered. Fig. 4
shows then the advantage when more than one components
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Figure 4: Amplitude spectrum (solid line) and X̄m0
(f)

(dashed line) of xd[n] = sin[2π 440
Fs
n] + sin[2π 450

Fs
n]. Plots

are scaled to unit amplitude.

are present. Here, two pure sinusoids with very close fre-
quencies are analysed. Our method does not assume any
a-priori knowledge on the number of components.

Figure 5 and 6 show the effect of the parameter τ . Here,
we used a noisy synthetic sound with three sinusoids with
frequency 440 Hz, 445 Hz and 450 Hz. In these figures, the
amplitude spectrum, the interpolated amplitude spectrum
and the PCFWM are compared. The interpolated ampli-
tude spectrum is calculated using zero-padding during the
FFT in order to obtain the same frequency resolution of the
PCFWM.

It is important to keep in mind that a negative value
of the PCFWM at a frequency f indicates that a pure si-
nusoidal function at that frequency is very unlikely to be
present in the signal. Hence, the alternation of large positive
and negative peaks allows us to give a sharp estimation of
true peak positions. Due to the coherence measure adopted
according to equation (12), the value of τ determines how
fast this positive and negative peaks alternate. This however
also impacts on the number of peaks with a large positive
value that are generated around each single sinusoidal com-
ponent in the signal. Figures 5 and 6 show this trade-off.
The parameter τ sets a trade-off between how narrow the
peaks in the X̄m0(f) are and the number of “false positive”
peaks. In these examples τ = 1024 samples (50% of over-
lap) is a good compromise between resolution and “false”
peak detection.

5. CONCLUSIONS

In this paper we have introduced a novel technique that
combines the amplitude spectrum and the phase coherence
measure in order to refine the time-frequency representation
of musical signals. We have demonstrated how this method
can improve the frequency localization of short term sta-
tionary sinusoid in a audio signal. Since musical signal
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Figure 5: Comparison of amplitude spectrum, interpolated
(zero-padding) spectrum and X̄m0

(f) for different τ , calcu-
lated on a signal with three sinusoids at frequency 440 Hz,
445 Hz and 450 Hz plus noise with SNR = 10 dB. In this
example N = 2048 and Fs = 5513 Hz.
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Figure 6: Comparison of amplitude spectrum, interpolated
(zero-padding) spectrum and X̄m0(f) for different τ , calcu-
lated on a signal with three sinusoids at frequency 440 Hz,
445 Hz and 450 Hz plus noise with SNR = −10 dB. In
this example N = 2048 and Fs = 5513 Hz.
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are composed primarily by notes and tones, our technique
brings benefits for time-frequency analysis of this kind of
signals, when accurate frequency measures are needed.
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