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ABSTRACT

In this work, a new estimator of the fundamental frequencies (o)
present in a polyphonic single-channel signal is developed. The
signal is modeled in terms of a set of discrete partials obtained by
the Complex Continuous Wavelet Transform (CCWT). The fun-
damental frequency estimation is based on the energy distribution
of the detected partials of the input signal followed by an spec-
tral smoothness technique. The proposed algorithm is designed to
work with suppressed fundamentals, inharmonic partials and har-
monic related sounds. The detailed technique has been tested over
a set of input signals including polyphony 2 to 6, with high preci-
sion results that show the strength of the algorithm. The obtained
results are very promising in order to include the developed algo-
rithm as the basis of Blind Sound Source Separation or automatic
score transcription techniques.

1. INTRODUCTION

The perceptual property of pitch is one of the auditory attributes
of musical tones, along with duration, loudness, and timbre. Since
pitch may be quantified as a frequency, the automatic pitch detec-
tion has turned into the estimation of the fundamental frequency,
Fy. The single-F{ estimation is needed for example in speech
recognition and music information retrieval. Existing algorithms
for pitch estimation include, among others, the Average Magnitude
Difference Function [1], Harmonic Product Spectrum [2]], Paral-
lel Processing Pitch Detector [3]], Square Difference Function [4],
Cepstral Pitch Determination [5], Subharmonic to harmonic ratio
[6] and Super Resolution Pitch Detector [7].

Different techniques have been proposed for multiple Fp esti-
mation, associated with complex applications like automatic mu-
sic transcription or blind audio source separation. In these cases,
a multiple Fp estimator is needed. The difficulty of multiple-Fpy
estimation lies in the fact that sound sources often overlap in time
as well as in frequency due to the specific nature of the different
musical instruments or the characteristic of the environment (re-
verberation). Without any harmonic assumption, a sound can be
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mathematically defined [8] as:

z(tn) = Z Ai(tn)cos[0i(tn)] + e(tn) €))

where M is the total number of oscillators, ¢, is the (discrete)
time index, A;(t,) and 6;(¢,) are the (instantaneous) amplitude
and phase of the 3" oscillator and e(tr) is the noise component.
On the other hand, most of the existing multipitch detection
methods are based on harmonicity. In these methods, although as-
suming that some musical instruments (like piano) can have some
degree of inharmonicity, a note played by a musical instrument is
usually considered a harmonic sound source. The mixture of sev-
eral instruments playing different notes can be modeled [9] as:

z(tn) = Zhi(tn) + €' (tn) 2)

where N is the number of sources (polyphony), h; (¢, ) is the quasi-
periodic part of the i*" source (that is, sources are supposed har-
monic) and €’(t,) the non-harmonic or noisy part of the signal.
Two important (and difficult) problems to deal with are the model-
ing of the harmonic part of the source, h;(¢, ), and the decompo-
sition of the mixed signal into an unknown number N of sources.

Some existing techniques use the sum of amplitudes to ob-
tain a weight function capable of selecting the different F present
in the signal [[10]. Other methods propose the use of several com-
bined criteria in order to select the different Fp candidates [9]]. The
spectral smoothing technique [11], [12] is proposed as an efficient
mechanism in estimating the spectral envelopes of the detected
sounds.

Most of the proposed methods use the Short Time Fourier
Transform (STFT) to analyze the input signal in order to find the
sinusoidal components and hence the harmonic part of the sound.
In this work, a new approach will be used. Based on the Complex
Continuous Wavelet Transform (CCWT), we have developed an
analysis/synthesis algorithm, namely the Complex Wavelet Addi-
tive Synthesis (CWAS) algorithm [[13], [14]. As will be shown is
Section 2] the model of the audio signal proposed by the CWAS
algorithm can be written as:

2(tn) =Y Ai(ta) cos[®;(tn)] 3)

=1
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where A;(t,) and ®;(t,) are the instantaneous amplitude and the
instantaneous phase of each one of the n detected partials. Observe
the similarities between this expression and Equation (2). In our
model, we only have to extract the harmonic partials of the signal,
being the sum of non-harmonic partials considered as noise.

From this model, a set of criteria can be used to find Fg as the
best candidate. The spectral smoothness method is used to subtract
at least a part of the harmonic envelope of the detected source,
iterating the process in order to estimate the next Fy candidate. A
previous version of this estimation algorithm was presented in [[15]]
and used to separate the different mixed sources [14].

This paper is divided as follows: Section [2] provides a brief
introduction to the CCWT and the CWAS algorithm, including the
interpretation of their results and the additive synthesis process.
The proposed Fj estimator and its main blocks will be presented
in Section[3] The first accuracy results from polyphony 2 to 6 are
shown in Sectiond] Finally, the main conclusions and current and
future lines of work are presented in Section[3} This work has been
developed in MATLAB ®.

2. COMPLEX BANDPASS FILTERING

The analysis of the audio signal is carried through a discrete ver-
sion of the Complex Continuous Wavelet Transform (CCWT), the
Complex Wavelet Additive Synthesis (CWAS) algorithm [13]], [[14].
The most common mathematical definition of the CCWT for a cer-
tain input signal x(¢) can be written as [16]:

W) = [ w0 @

— o0

*

where * is the complex conjugate and U, ;(¢) is the mother or
atom wavelet, temporally shifted by a factor b and frequency scaled

by a factor a:
1 t—>b
U,p(t) = —=¥ 5
o0 = 2=w(20) ©
Therefore, the wavelet transform of a signal is equivalent to a
band pass filtering of the signal. We have developed an analysis
algorithm based on the Morlet wavelet:

2 .
U(t) ~ Ce 207 040 ©)

In the time domain, the Morlet wavelet is a complex expo-
nential modulated by a Gaussian of width 21/20, centered on the
frequency wo/a. Its Fourier transform is:

aw—wn)2
dolw) = e T 9

C and C’ are the normalization constants of the mother wavelet
in time and frequency domain, respectively [17]. Hence, the CCWT
is equivalent to filtering the signal through a bandpass filter bank
whose frequency response is given by Equation (7). The exact
shapes of Equations (6) and (7) are shown in Figure|[l}

In order to quantize the filter bank structure, we must use a dis-
crete scale parameter k rather than a continuous a. As proposed
by [16], [18]], we used a dyadic set of scale factors k. This fre-
quency division provides a logarithmic-resolution frequency axis.
A new parameter can be introduced, the number of divisions per
octave, D, which controls the resolution of the analysis. The set
of discrete scales are then obtained by:

kn = kmin2P,n=1,...,N-D ®)

Morlet wavelet
(@) Time domain
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Figure 1: The Morlet wavelet. (a) Time domain. In blue, real part.
In red (dashed), imaginary part. (b) Frequency domain.

If D = 1, the spectrum is divided into N octaves. The mini-
mum scale k,ir, is related to the maximum frequency of the anal-
ysiS, fmaxz, and fmas is related to the sampling rate fs by the
Nyquist criterion, fmaee = fs/2.

Hence, in Equation (/) the continuous scale factor a can be re-
placed for the discrete k,,, obtaining the quantized version of Mor-
let wavelet in the scale axis (k = w/wo), which can be expressed

as:
k

Ui, (k) = Cke’%(mfl) ©)

Due to the complex nature of the transform, the wavelet coef-
ficients can be written as:

IFFT22(k)n, (k)] ifk >0
Wa(kn,b) =S IFFT[2(0)¢y, (0)] ifk=0 (10
0 ifk <0

The result of filtering a signal through vy, is a matrix of com-
plex numbers (the wavelet coefficients), Wy (k,, b), where k,, are
the set of discrete scales of analysis and b is the discrete temporal
variable (from now t). These coefficients can be studied in modu-
lus and phase, being:

W (kns )| = /RIWa (ks 2 + S[Wa (ks )2 (11)
Qo (kn,t) = arg RWa(kn, )] + §S[Wa(kn,t)])  (12)

It is possible to obtain the instantaneous amplitude of the sig-
nal A(t) from Equation and its instantaneous phase ¢(t) from
Equation (T2). The instantaneous frequency of the signal evalu-
ated in the k; scale can be obtained from the temporal derivative
of Equation (12)), [19]:

1 d[q>r(kj7 t)]
Fins (ks t) = 2w dt (13)
One example of the modulus of W (kx,t), also called the
wavelet spectrogram, can be seen in Figure [J] (down), for a guitar
playing a 22 note. The bright zones are related with the detected
partials. The waveform of the input signal can be seen in the upper
part of the figure.
The sum over the time axis of the module of the wavelet co-
efficients represents the scalogram of the signal. The scalogram
presents a certain number of peaks, each one related to a detected

partial of the signal. In the model of the audio signal proposed in
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Figure 2: Up: Waveform of the analyzed signal. In this case, a
guitar playing a E2 note. Down: The wavelet spectrogram of the
signal (module of the CCWT coefficients). The bright zones are the
different detected partials.

the CWAS algorithm, we extend the definition of partial not ex-
clusively to the scalogram peaks, but to their regions of influence
[13]]: for each peak j of the scalogram, the partial P; contains all
the information located between an upper (u;) and a lower (I;) fre-
quency limits (which define the region of influence of the peak).
This complex function P;(¢) can be written as:

Uj
Pit)= Y Walkmgyt) Vi=1,..,n (14

m(j)=l;

where Wo (K, ;),t) are the wavelet coefficients related with the
it" peak (partial).

The scalogram of the guitar playing an E2 note (see Figure[2)
can be seen in Figure[3]

Scalogram example and assignation of partial bands.
Signal: Guitar E2
T

Energy (dB)
Lo - n e

L L L L 1 L L Il
20 40 60 80 100 120 140 160 180 200
Frequency scales (#band)

Figure 3: Scalogram of a guitar playing a E2 note. The location
of the energy peaks is marked with black circles. The scale zones
of influence for each partial are marked with red stars. The gray
rectangle is the zone of influence of the the second harmonic. The
scales or analysis bands are represented in the horizontal axis.

Studying the complex—valued function P;(t) in module and
phase using Equations (TT) and (12, we can obtain the instanta-
neous amplitude A;(¢) and the instantaneous phase ®;(¢) of each
detected partial. The instantaneous frequency of the partial can be
obtained through Equation (T3).

We can obtain the energy of each partial through its amplitude,
as:

Lj
Ej =Y [Pi(tm)l (15)
m=1

where t,,, is the m‘" sample of the temporal duration of the partial

7, (whose length is L;, in samples).

The original signal z(¢) can be resynthesized through a simple
additive synthesis process, performing the summation of whole set
of n detected partials:

z(t) =% (i Pj(t)) = iAj(t) cos[®@; (¢)] (16)

Comparing this expression with Equation (Z) we see that the
main difference is that in Equation (T6), the non-harmonic partials
(inharmonic or noisy either) are modeled as the harmonic ones.
To obtain the harmonic part of a sound, we use a Fj estimator
presented below.

That is, through the CWAS algorithm and for each detected
component, P;(t), of the input signal, we can obtain:

e Its instantaneous amplitude, A; (t), through Equation (LT).
e Its instantaneous phase ®;(t), through Equation (12).

e Its instantaneous frequency f;(t), through Equation .
e Its energy E;, through Equation (T3).

The CWAS algorithm calculates the wavelet coefficients in
frames of 4095 samples. The analysis of these coefficients is per-
formed over accumulated scalograms of 256 samples, tracking the
different partials. The multiple F estimation is calculated once
by scalogram, hence the accuracy of the proposed technique can
be measured along the signal duration.

3. MULTIPLE FUNDAMENTAL FREQUENCY
ESTIMATION

As was advanced in Section [I] an new algorithm of multipitch
analysis has been developed. In this work, we have considered
that a musical instrument cannot play more than one note simulta-
neously (that is, we work mainly with monophonic instruments). If
an instrument plays two or more notes simultaneously (polyphony),
the developed algorithm will consider that each note comes from
a different source. With such an approximation, the present funda-
mental frequencies Fp;, j = 1,..., N, become the natural param-
eter which will be used to calculate the number of sources present
in the signal. Figure [ shows a block diagram of the proposed
algorithm.

FRAME ANALYSIS
Spectral smoothing, subtraction & iterate

Energy
distribution

Harm. Analysis /.

Input signal CWAS
Thresholds
Eqy, 85, MNS

Figure 4: Block diagram of the fundamental frequencies estimation
algorithm. MIP is the most important (energetic) partial. The
output SHP#i is the set of the harmonic partials corresponding to
each detected source (i=1, ..., N). See text for details.

SHP #i
i=1,.., N

Selection criteria

As advanced before, the input signal is analyzed using the
CWAS algorithm, which each 256 samples provides the detected
partials, tracking them along the signal. As has been detailed, for
each partial P;(t) we know A;(t), ®;(t), f;(t) and E;. We can
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easily obtain the average value of the instantaneous frequency for
each partial, f;:

L; )
E:W:M (17

where L; is, as in Equation (T3), the length of the partial (in sam-
ples).

Using the mean frequency of each partial and its energy (Equa-
tions (T7) and (T3) respectively), the energy distribution of the sig-
nal versus frequency is obtained. This information is the clustered
representation of the scalogram of the signal around the discrete
set of detected partials.

In order to estimate the candidates to be the (first) fundamental
frequency of the signal, only the partials with energy greater than
a certain threshold (F.,=5%) will be considered in the search of
the harmonic sets associated with each source.

In Figure|§|we show the scalogram, between 20Hz and 700Hz,
of a frame corresponding to a 6 note polyphony signal (blue line).
The energy of all the detected partials is marked with red points
while the energetic partials (£; > FE,;) are marked with black
circles. The most energetic partial (MIP) will be used to estimate
the first [y candidate. In this case, the frequency of this partial is

f ~ 726.6Hz.

CWAS spectra. Smoothing process (step 0). Detail.
Signal polyphony: 6

| | | |
100 200 300 400 500 600 700
Frequency (Hz)

f =;42]5|; 6HZ i
e ® "?\/ ﬁ f\/ﬁ\/ﬁwi { \/{;ﬁ\\/f\/w\:
— Signal scalogram

— Original partial distribution
—o Important partials (E.,)
T T

. ]

Energy (dB)

Figure 5: Scalogram (spectrum) and energy distribution of a 6 note
polyphony signal. Detail (up to 700Hz). Blue gross line: original
scalogram data. Red dots: energy distribution of the discrete set of
detected partials. Black circles: set of important partials (used to
estimate the fundamental frequency). The most important partial
(MIP) is also marked (see text).

From the MIP, the harmonic analysis is then computed. Let
f; be the average of the instantaneous frequency of the MIP. It is
assumed that this partial can be harmonic of a certain fundamental
frequency Foy, that is:

Vk=1,2,...,Na (18)
In this work, we have taken N4 = 10. In other words, the
MIP will be at most the 10*" harmonic of its related fundamental
frequency. From the candidates to be the fundamental frequency
so obtained, the set of harmonic frequencies regarding each one is
calculated:
fr,m = mFog, VYm=1,2,..., Ny (19)
where N, is the higher integer that satisfies N For < fs/2, being
fs the sampling rate.

In the next step, for each fx m, its related partial is searched.
A partial of mean frequency f; is the m*" harmonic of a certain
fundamental frequency Fyy if:

ﬁ _ fk,m
Fox Fox

<0, (20)

where 0, is the harmonicity threshold. Taking 6,=0.01, the par-
tials of an inharmonic instrument like the piano [20] are correctly
analyzed. This way, the set of harmonic partials (SHP) of each
candidate is computed.

The decision of the Fpy associated with the selected MIP is
made using three selection criteria:

1. At least one of the first two partials of the SHP must have
high energy.

2. The number of energetically important partials within the
first 10 harmonics must be as high as possible.

3. The total energy of the SHP must be the highest.

The first two criteria are evaluated first. In doubtful cases
(when these criteria offer the same output for different candidates),
the third criterium is taken in account. This way we avoid the use
of ad-hoc weighted functions, which tend to present some kind
of signal dependance. The fundamental frequency related to the
current MIP is the only winner of these three criteria.

The algorithm stores the set of harmonic partials or spectral
pattern, P, = {Pi,x, P2k, .. , Pn,,k} With respective energies
Er = {Eix,FE2,... ,FEn, 1} (this set includes the obtained
fundamental partial, P; ;). Over this set, following the proposal of
Pertusa and Ifiesta [21], we apply a Gaussian spectral smoothing
to its energy distribution:

Eip = GuxEg @1

where G, = {0.212,0.576,0.212} is a truncated normalized
Gaussian window wiElL three components, % is the convolution
product operator and Ey, is the part of the scalogram centered on
each F;  containing its two closest neighbors. The fundamental
partial is erased from the spectrum. The smoothed energy E; ;. for
each one of the other harmonic partials is calculated as:

. — (22)
0 if B, — FEip <0

o { Eix—Eix it Eig—Eig >0
Eir=

Substituting these new energy values into its corresponding
partials of the original energy distribution, the smoothed energy
distribution is calculated, from which a new MIP can be obtained.
The process is iterated until the energy of the distribution descends
under a threshold (the remaining energy level, E, = 5%) or the
maximum number of sources (MNS in Figure[d) is reached. This
information will be used to separate the different sources. As the
numerical and acoustical quality of the separation decreases while
the number of sources increases, we have limited the number of
sources to MNS=10. Repeated Fp are not taken in account more
than once.

Using this technique, it is possible to obtain the fundamental
frequencies even in signals with harmonic relations between fun-
damental frequencies and in the case of suppressed fundamentals.
Overlapping fundamentals will not be detected.
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3.1. The inharmonic limit

Inharmonicity is a phenomenon occurring mainly in string instru-
ments due to the stiffness of the string and nonrigid terminations.
As a result, every partial has a frequency that is higher than the
corresponding harmonic value. For example, the inharmonicity
equation for a piano can be written [20] as:

fn = nFo\/1+ pn? (23)

where n is the harmonic number and f is the inharmonicity pa-
rameter. In Equation (23), 3 is assumed constant, although it can
be modeled more accurately by a polynomial up to order 7 [22].
It means that the parameter 5 has different values depending on
the partials used to calculate it. Partials situated in the 6-7 octave
provide the optimal result. Using two partials of order m (lower)
and n (higher), it is:

p=_2°¢ (24)
£

n? — dm?2
where § = (mf,/nfm)? and ¢ is an induced error due to the
physical structure of the piano which cannot be evaluated [20]. If
partials m and n are correctly selected, € ~ 1.

With the inharmonic model of Equation (24), it is possible to
calculate the inharmonicity parameter 3 for each detected source,
using (when possible) two isolated partials situated in the appro-
priate octaves. A priori, this technique includes inharmonic instru-
ments (like piano) in the proposed model.

As advanced before, the Fj of inharmonic instruments like
piano can be correctly estimated through an appropriate harmonic
threshold 6.

4. RESULTS

First of all, we will show the experimental results of this technique
evaluated over a 6 note polyphony signal. As the other analyzed
signals, this signal have been synthetically generated using the mu-
sical instrument samples of the University of Iowa [23ﬂ

In this signal, the six fundamental frequencies are: Fp1 =
130Hz (03), Foz = 137Hz (0#3), F03 = 145Hz (D3), F()4 =
155Hz (D#3), Fos = 163Hz (E3) and Fos = 181Hz (F'#3).
Observe that there are no harmonic relations between these fre-
quencies. The scalogram of a 256 samples frame of this signal is
presented in Figure ] (blue line). The detected partials are also
marked, specifically the most important partial of the first step of
the analysis (MIP, with a frequency f ~ 726.6Hz). From this
partial, applying the estimation criteria 1 to 3, the fundamental
frequency obtained is fop1 = 181Hz= Fpys. The set of harmonic
partials (SHP of Figure ) is smoothed using Equations (22) and
(ZI). The fundamental partial is completely erased from the en-
ergy distribution. This information have been presented in Figure
[l where the original scalogram is the grey line, while the original
energy distribution of the detected partials is also shown (blue line,

Each original archive of the database consists of a certain number of
notes played by different musical instruments. Each note is approximately
two seconds long and is immediately preceded and followed by ambient
silence. The instruments were recorded in an anechoic chamber. Some
instruments were recorded with and without vibrato. All samples are in
mono, 16 bit, 44.1 kHz, AIFF format. We have resampled them at 16 bits,
22.05kHz, WAV format. Original excerpts consist of isolated notes. Some
of these notes have been synthetically mixed, generating the signals with
polyphony 2 to 6.

each blue dot is the energy of a partial). The red line is the new en-
ergy distribution, obtained after the smoothing process. Observe
how the fundamental frequency (fo1) has been erased, while its
harmonics (in the Figure only 2fo1 and 3 fo1 are visible) present
lower energies.

Scalogram and energy distribution of partials. Smoothing process (step 1). Detail.
Signal polyphony: 6
T T

Energy (dB)

-60 Signal scalogram
—s— Original partial distribution

— After 1°' f0 estimation
L | | | | T
100 200 300 400 500 600 700
Frequency (Hz)

Figure 6: Blue line: original energy distribution of a signal with 6
notes of polyphony. The energy (dB) of the partials is marked with
blue dots. In red (line and dots): the new scalogram, obtained from
the first one applying the smoothing process. The fundamental
frequency fo1 is marked with an arrow. The original scalogram is
the grey line. Detail (up to 700Hz).

After this first smoothing, a new MIP is found and the pro-
cess described in Section |§| is repeated, obtaining a new funda-
mental and performing a new smoothing. The process is iterative,
and ends automatically,as advanced before, when the maximum
number of sources (MNS = 10) is reached or when the remain-
ing energy of the signal os lower than a threshold associated with
the maximum number of sources (MNS) of the algorithm. In our
case, E,, =100/(2 MNS) = 5%. In Figure [/| the scalogram of
the original signal, the first smoothed energy distribution (see Fig-
ure[6) and the remaining energies after 4 smoothing processes are
presented. Observe that most of the partials have been at least par-
tially smoothed, while foo = 163Hz= Fys, fos = 145Hz= Fo3
and fos = 137THz= Fp2 have been found.

Scalogram and energy distribution of partials. Smoothing process (step 4). Detail.
Signal polyphony: 6
40 T T T

200 f, W R
ol
20

-40

Energy (dB)

-60 Original scalogram
—*— After 1°' f0 estimation

—— After 4™ f0 estimation
T

-80

-100

| | | —
300 400 500 600 700
Frequency (Hz)

160 260
Figure 7: In blue: energy distribution (dB) of a signal with 6 notes
of polyphony after the first smoothing process (see Figure[6). In
red (line and dots): the scalogram after 4 smoothing processes.
The fundamental frequencies fo2 to foa are also marked. The orig-
inal scalogram is the grey line. Detail (up to 700Hz).

We must remark again that the estimation of Fj is evaluated
each 256 samples of the signal (that is, each 0.012 seconds approx-
imately). The estimated fy; can be stored and plotted in a graphic
which shows the temporal evolution of the detected fundamentals.
This evolution can be seen in Figure[§]for the 6 notes signal.

In the figure, the trajectories of the 6 detected fundamental
frequencies are clearly marked. Observe that the estimation error
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Fundamental frequency estimation. Results by frame.
Signal polyfony: 6
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Figure 8: Evolution of the fundamental frequency estimation along
the duration of a signal of 6 notes. The errors tend to concentrate
at the beginning and at the end of the signal, where energy is low.
The trajectories of the 6 detected (and existing) fundamental fre-
quencies can be easily followed.

concentrate at the beginning and at the end of the signal. These
errors are due to the low energy of the signal during the attack and
decay (and/or during the ambient silence before and after the note
playing).

As explained before, this algorithm has been tested using a
set of signals, synthetically obtained from the musical instrument
samples of the University of lowa [23]], which presents 2 to 6 notes
of polyphony. The results here shown are preliminar, after the
analysis of 13 signals, concretely 3 signals with polyphonies 2 to
4 and 2 signals with polyphonies 5 and 6.

The accuracy of the detection can be numerically evaluated.
As the execution of each isolated note can start (and end) in dif-
ferent times, we count the number of successful detections and the
number of errors (missing fundamentals or false detections) exclu-
sively where the notes are clearly present (frames 50 to 200, or
seconds 0.58 to 2.32 for most of the signals). Proceeding this way,
an accuracy percentage measurement can be obtained per signal.
These numerical results are shown in Table[l

In that table, the first column indicates the frequencies in-
volved in the input signal. The numbers of the second column
are the theoretical number of detections (that is, the number of
frames multiplied by the number of sources). In the third column,
the number of experimental detections is shown. In the fourth and
fifth columns there appear the number of missed detections and
false fundamental detections, respectively. In the last column of
the table, the accuracy percentage taking in account the total num-
ber of errors. As can be seen, the experimental results show the
strength of the technique.

The analyzed signals include harmonic relations between fun-
damentals, (5" and 12" intervals, minor and major chords). The
obtained results are promising.

5. CONCLUSIONS AND FUTURE WORK

In this work, a new estimator of Fp in polyphonic single-channel
signals has been presented. This estimator is based on a modifi-
cation of the Complex Continuous Wavelet Transform, namely the
Complex Wavelet Additive Synthesis, which calculates the wavelet
coefficients of the input signal and clusters this information in the
scale (frequency) axis, obtaining the partials of the signal. Instan-

taneous amplitudes, phases and frequencies of the detected partials
can be obtained with high accuracy, and this information is used
to automatically obtain the set of present fundamental frequencies
of a polyphonic signal. The decision of when to stop the iterations
is taken using energy criteria or when the maximum number of
sources (MNS=10) is reached. This algorithm estimates the differ-
ent Fy present in the signal each 256 samples. This way, the Fp
evolution can be easily tracked.

This technique has some limitations. Firs of all, overlapping
fundamentals are not detected. Secondly, the F{ estimator needs a
certain energetic presence of the different Fy to detect it correctly,
that is, some detection errors are observed before the attack and af-
ter the decay of the present sources. Sometimes false fundamentals
can be obtained.

This technique can be improved minimizing the number of er-
rors (missed and false fundamental detections). Two possible im-
provements are the use of statistical information and a double de-
tection using accumulated information. For example, a fundamen-
tal with duration lower than a certain limit could be easily rejected.
On the other hand, we can obtain a more energetic scalogram (for
example in segments of 4096 samples) and to use it to correct spu-
rious detections.

Once optimized the number of errors, a F tracking algorithm
could be easily implemented. Proceeding this way, we could an-
alyze an store the different Fp present in a larger musical signal,
calculating for each note its onset and offset time in order to obtain
a first approximation to note detection and segmentation. The set
of harmonic partials associated with each estimated £y can also be
used to separate the isolated sources of the mixture, as presented
in [14].
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