
Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

SCATTERING REPRESENTATION OF MODULATED SOUNDS

Joakim Andén,∗

CMAP, Ecole Polytechnique
Palaiseau, France

anden@cmap.polytechnique.fr

Stéphane Mallat,∗

CMAP, Ecole Polytechnique
Palaiseau, France

ABSTRACT

Mel-frequency spectral coefficients (MFSCs), calculated by aver-
aging the spectrogram along a mel-frequency scale, are used in
many audio classification tasks. Their efficiency can be partly
explained by their stability to deformation in a Euclidean norm.
However, averaging the spectrogram loses high-frequency infor-
mation. This loss is reduced by keeping the window size small,
around 20 ms, which in turn prevents MFSCs from capturing large-
scale structures. Scattering coefficients recover part of this lost
information using a cascade of wavelet decompositions and mod-
ulus operators, enabling larger window sizes. This representation
is sufficiently rich to capture note attacks, amplitude and frequency
modulation, as well as chord structure.

1. INTRODUCTION

Mel-frequency spectral coefficients (MFSCs) are defined as the
spectrogram averaged along a mel-frequency scale. They have
proven useful in many audio classifiers, which can be partly at-
tributed to their stability to deformation. To explain this concept,
we consider an audio signal x(t), deformed using a time-warping
τ(t) to yield x̃(t) = x(t − τ(t)). A feature representation Φ,
mapping x to Φx, is stable to deformation if the Euclidean dis-
tance ‖Φx − Φx̃‖ is small for τ small. Since small deformations
cause small changes in perception, such distances provide useful
measurements in a variety of tasks.

The Fourier transform and the spectrogram are unstable to de-
formation since high-frequency components are more sensitive to
deformation than the in low frequencies. Averaging using a mel
scale that is logarithmic above a certain frequency removes this
instability.

However, mel-scale averaging loses information in the high
frequencies. To reduce this loss the window size is kept small,
around 20 ms. MFSCs thus cannot capture large-scale structures.
Methods such as modulation spectra [1], correlograms [2], and sta-
bilized auditory images (SAIs) [3] attempt to remedy this. Unfor-
tunately, modulation spectra are calculated using a Fourier trans-
form, so they inherit its instability. Correlograms and SAIs are
equally unstable since their high-frequency channels are better re-
solved in time than their low-frequency channels and thus more
sensitive to deformation.

Scattering coefficients [4] recover the information lost in MF-
SCs while remaining stable through a cascade of wavelet decom-
positions and modulus operators. Using larger window sizes, larger-
scale structures are thus captured. In a music classification task,
scattering coefficients performed significantly better than standard
MFSC methods [5]. The representation also resembles various
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neurophysiological models of auditory processing in the brain [6,
7]. In addition, scattering coefficients have proven useful in image
classification tasks [8].

Despite discarding information to obtain deformation stabil-
ity, scattering coefficients succeed in capturing important auditory
phenomena such as note attacks, amplitude and frequency modu-
lations, as well as chord structure.

Section 2 describes the deformation stability and information
loss properties of MFSCs. In Section 3, this information is par-
tially recovered while remaining stable to deformation using the
scattering transform. Section 4 shows that scattering coefficients
capture important timbral information in modulated sounds.

A MATLAB software package is available at http://www.
cmap.polytechnique.fr/scattering/.

2. MEL-FREQUENCY SPECTRAL COEFFICIENTS

MFSCs stabilize the spectrogram to deformation by averaging ac-
cording to a scale that is logarithmic in the high frequencies. Rewrit-
ing this using a wavelet modulus decomposition, the information
lost in the average can be seen as the high-frequency temporal vari-
ation of the decomposition.

The Fourier transform of x is x̂(ω) =
R
x(u)e−iωudu. Using

a window φ such that
R
φ(t)dt = 1, we define the windowed

Fourier transform as

x̂(t, ω) =

Z
x(u)φ(u− t)e−iωudu. (1)

While informative, the spectrogram |x̂(t, ω)| is rarely used for
classification due to instability in the high frequencies.

To illustrate this, we consider a signal of harmonic structure
x(t) =

P
n an cos(nξt) and a deformed version x̃(t) = x(t −

τ(t)), where τ(t) = εt is a scaling for small ε. As shown in
Figure 2, this shifts the frequency component at nξ by εnξ to (1−
ε)nξ. The low frequencies therefore move little compared to the
high frequencies, so the Euclidean distance between |x̂(t, ω)| and
|ˆ̃x(t, ω)| is large even for a small ε. This instability occurs in any
representation based on the Fourier transform.

To remedy this, MFSCs average along the frequency axis, giv-
ing

Mx(t, λ) =

Z
|x̂(t, ω)|ψ̂λ(ω)dω, (2)

where ψ̂λ is a mel-frequency filter centered at λ. The bandwidth of
these filters is constant for λ ≤ ω0 and proportional to λ for λ >
ω0, where ω0 = 1 kHz. To cover the frequency domain, MFSCs
are calculated for λ ∈ Λ, where Λ is linearly spaced below ω0 and
logarithmically spaced above. We use Gabor filters to define

ψ̂λ(ω) = exp

„
− (ω − λ)2

2σ2Q−2 max(λ, ω0)2

«
, (3)
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Figure 1: Time-frequency resolution of a spectrogram |x̂(t, ω)| in (a), a mel-spectrogram Mx(t, λ) in (b), and a scalogram |x ? ψλ| in (c).
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Figure 2: Spectrogram of a musical note x(t) and a scaled version
x̃(t) = x(t−εt). The plot to the right shows the Fourier transform
of x(t) in blue and x̃(t) in red.

where σ is chosen so that λ/Q is the half-power bandwidth for
λ > ω0. For the examples in this paper, Q = 16. MFSCs thus
transform a representation of uniform time-frequency resolution
(Figure 1a) into one of varying frequential resolution (Figure 1b).

The mel-spectrograms of x(t) and x̃(t) are shown in Figure 3.
Since the bandwidth of ψ̂λ in (3) is proportional to λ for λ > ω0

and nξ is shifted by εnξ, the averaging yields the same overlap
for each pair of frequency components. The Euclidean distance
between the mel-spectra of the signals is thus proportional to ε.

We can rewrite the information loss incurred by frequency-
scale averaging as a loss of temporal resolution. The filters in (3)
are dilations ψ̂λ(ω) = ψ̂(λ−1ω) of a mother wavelet ψ(t) for λ >
ω0, so we consider {ψλ}λ∈Λ as a wavelet filter bank. Convolving
x with these filters and computing the modulus yields a scalogram
|x ?ψλ|. The scalogram is of mel-scale frequential resolution (see
Figure 1c), so averaging in time using φ yields

|x ? ψλ| ? φ(t), (4)

which is of uniform temporal resolution (see Figure 1b). Since
they are both measures of energy in the same time-frequency grid,
MFSCs are equivalent to (4).

3. SCATTERING WAVELETS

By calculating a cascade of wavelet decompositions and modulus
operators, part of the information lost in MFSCs can be recovered
while maintaining deformation stability.

The information lost in (4) consists of the high frequencies
of |x ? ψλ1 |. These are described by the wavelet coefficients
|x ? ψλ1 | ? ψλ2 . Since the high frequencies are extracted us-
ing wavelets, taking the modulus and averaging using φ stabilizes
them to deformation, giving

||x ? ψλ1 | ? ψλ2 | ? φ. (5)

The high frequencies of ||x?ψλ1 |?ψλ2 | are now lost after convolv-
ing with φ, so another wavelet transform is computed to recover
them, and the process is repeated indefinitely.

For a path of frequencies p = (λ1, λ2, . . . , λm), we call

S[p]x = || · · · ||x ? ψλ1 | ? ψλ2 | ? · · · | ? ψλm | ? φ (6)

ω

t

Figure 3: Mel-spectrogram and mel-frequency plots of the notes
x(t) and x̃(t) in Figure 2 for Q = 4.

the windowed scattering coefficient of x at p. We define the or-
der of p as its length m. First-order scattering coefficients thus
correspond to MFSCs while higher orders provide complementary
information.

The maximum temporal bandwidth of the wavelets is propor-
tional toQ/ω0. To capture larger-scale structure, we thus decrease
ω0 in (3) and enlarge the window φ. For a window size of N sam-
ples, one can show that the number of filters |Λ| is of the order of
Q log2 N . According to (6), the number of mth-order |Λ|m paths
is therefore of the order of (Q log2 N)m.

The calculation of (6) can be viewed as a cascade of a wavelet
modulus propagator U , defined as Ux = {x ? φ, |x ? ψλ|}λ∈Λ.
This cascade is illustrated in Figure 4. Its first layer is Ux, and
each successive layer is generated from the previous by applying
U to each wavelet modulus coefficient. The output then consists
of the coefficients averaged using φ from all layers.

We suppose that the filters in (3) and φ satisfy

1− ε ≤ |φ̂(ω)|2 +
1

2

X
λ∈Λ

|ψ̂λ(ω)|2 + |ψ̂λ(−ω)|2 ≤ 1, (7)

for all ω where 0 ≤ ε < 1. For ‖Ux‖2 = ‖x ? φ‖2 +
P
λ∈Λ ‖x ?

ψλ‖2, Plancherel’s theorem and the contractivity of the modulus
together with (7) show that U is contractive, that is ‖Ux−Uy‖ ≤
‖x − y‖. If ε = 0, the same argument gives ‖Ux‖ = ‖x‖. The
contractivity of U ensures that the above cascade does not diverge.

This cascade of wavelet decompositions and non-linearities is
found in several neurophysiological models which simulate audi-
tory processing in the brain [6, 7]. Similar cascades have also been
used to in generative models of auditory textures [9] and in con-
volutional networks [10]. The mathematical framework presented
here can thus provide theoretical insights for these models.

Letting P be the set of all paths, the windowed scattering rep-
resentation is Sx = {S[p]x}p∈P . Defining a Euclidean norm
through ‖Sx‖2 =

P
p∈P ‖S[p]x‖2 on Sx, it can be shown that S

is stable to deformation [4].
Since S is a repeated application of U , S is also contractive.

For appropriate wavelets, it can also be shown that if U preserves
the norm, so does S and ‖Sx‖ = ‖x‖ [4].

The sound x can be reconstructed from its scattering represen-
tation Sx by inverting U using a phase retrieval method. When re-
constructing from first-order coefficients, the quality is acceptable
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xS[∅]x = x ? φ
|x ? ψλ1 |S[λ1]x = |x ? ψλ1 | ? φ

||x ? ψλ1 | ? ψλ2 |

|||x ? ψλ1 | ? ψλ2 | ? ψλ3 |

S[λ1, λ2]x

Figure 4: The scattering cascade decomposes an input signal x into its wavelet modulus coefficients |x ? ψλ1 |, which are in turn averaged
to yield |x?ψλ1 |?φ and redecomposed, giving ||x?ψλ1 |?ψλ2 |. The latter are again averaged and redecomposed, furthering the cascade.
The output of the cascade is contained in the averages (the boxed expressions).

for window sizes N such that N < |Λ| = O(Q log2 N), so N .
200. Second-order coefficients, characterizing larger structures,
allow for good reconstruction whenN < |Λ|2 = O([Q log2 N ]2),
hence N . 29000. Examples can be found at http://www.
cmap.polytechnique.fr/scattering/audio/.

4. MODULATED SOUNDS

While first-order scattering coefficients extract the pitch and filter
structures of sounds, second-order coefficients can be shown to
characterize different types of modulation.

4.1. Amplitude modulation

Let us consider an impulse train of fundamental frequency ξ1

e(t) =
2π

ξ1

X
n

δ

„
t− 2πn

ξ1

«
=
X
k

ekξ1t, (8)

filtered by a filter h and modulated in amplitude by a to give

x(t) = (e ? h)(t) · a(t). (9)

Since h is often highly localized in time, ĥ is smooth and so for
λ1 small enough, ĥ(ω) ≈ ĥ(λ1) on the support of ψ̂λ1 . Similarly,
a is constant on the support of ψλ1 for λ1 large enough. When
calculating |x ? ψλ1 |, we thus get

|x ? ψλ1 |(t) ≈ |ĥ(λ1)||e ? ψλ1 |(t) · a(t). (10)

If λ1 � ξ1Q, only one frequency component is contained in
the support of ψ̂λ1 so e ? ψλ1(t) ≈ ψ̂λ1(k1ξ1)ek1ξ1t for some k1

such that |k1ξ1 − λ1| is minimized. As a result, we can approx-
imate S[λ1]x(t) = |x ? ψλ1 | ? φ(t) by plugging |e ? ψλ1 |(t) ≈
|ψ̂λ1(k1ξ1)| into (10) and averaging using φ, which yields

S[λ1]x(t) ≈ |ĥ(λ1)||ψ̂λ1(k1ξ1)|(a ? φ)(t). (11)

As with MFSCs, first-order scattering coefficients describe the fil-
ter and pitch structure of h and e, respectively. We can also ap-
proximate S[λ1, λ2]x(t) = ||x?ψλ1 |?ψλ2 |?φ(t) using the same
method, giving

S[λ1, λ2]x(t) ≈ |ĥ(λ1)||ψ̂λ1(k1ξ1)|S[λ2]a(t), (12)

since S[λ2]a(t) = |a ? ψλ2 | ? φ(t). Hence the second order is
proportional to the scalogram of the envelope averaged in time.

Let e(t) be a Gaussian white noise process of unit variance in
(9), giving an unvoiced sound. The approximation (10) still holds

and we can further decompose |e ? ψλ1 |(t) into E(|e ? ψλ1 |) +
ε(t). Using the fact that e ? ψλ1(t) is normally distributed, one
can show that E(|e ? ψλ1 |) = C

√
λ1 where C =

p
π/4‖ψ‖ for

λ1 > ω0. When convolving |x ? ψλ1 | with φ, it can be shown that
C
√
λ1a ?φ(t) dominates over (εa) ? φ(t) for large window sizes,

provided the support of a is large. We thus have

S[λ1]x(t) ≈ C|ĥ(λ1)|
√
λ1(a ? φ)(t). (13)

To obtain the second order, we convolve |x ? ψλ1 | with ψλ2 . The
term C

√
λ1a ? ψλ2(t) dominates over (εa) ? ψλ2(t) when the

variation of a is large with respect to its average. Specifically, one
can show that when λ1|a ? ψλ2 |2(t)� a2 ? |ψλ2 |2(t), we have

S[λ1, λ2]x(t) ≈ C|ĥ(λ1)|
√
λ1S[λ2]a(t). (14)

We thus have results analogous to the impulse train case.
To illustrate the effect of the envelope in (12) and (14), we

consider four sounds. The first two are tones with a smooth and
sharp attack, respectively. The third is a tone with a smooth attack
and exhibiting a tremolo, during which a(t) = 1 + ε cos(ξ2t) for
some ε < 1. Finally, the fourth is a white noise modulated by a
sharp attack. Figure 5 shows the first-order scattering coefficients
for a small window of 20 ms as well as first- and second-order
scattering coefficients of window size 256 ms for these four and
other sounds.

Despite noticeable differences in timbre, the first-order coeffi-
cients S[λ1]x(t) of the first three sounds are similar since the dif-
ference in a is averaged out in (11). However, for λ1 equal to the
third partial, 2080 Hz, the second order S[λ1, λ2]x(t) provides a
clear distinction between the notes: the sharp attack excites higher
frequencies λ2 than does the smooth attack while the tremolo gives
rise to a maximum at λ2 = ξ2. The attack of the white noise in the
fourth sound is also captured by the second order.

4.2. Frequency modulation

Frequency modulation, or vibrato, is created by applying a peri-
odic deformation τ(t) = ε cos(ξ2t) to a pitched source e, such as
(8), yielding ẽ(t) = e(t− ε cos(ξ2t)). Let x(t) = ẽ ? h(t).

Calculating |x ? ψλ1 |, we can move h outside as in (10). Car-
son’s rule on the bandwidth of frequency-modulated sinusoids gives
that the bandwidth at λ1 is of the order of ελ1ξ2. To ensure that
the partials do not overlap, we therefore suppose λ1 � ξ1/εξ2.
As in the previous case, we also suppose λ1 � ξ1Q to isolate one
partial. For the partial at frequency k1ξ1 closest to λ1, the instan-
taneous frequency is k1ξ1[1 + εξ2 sin(ξ2t)]. If λ1 is large enough,
sin(ξ2t) varies little on the support of ψλ1 , so

|x ? ψλ1 |(t) ≈ |ĥ(λ1)||ψ̂λ1(k1ξ1[1 + εξ2 sin(ξ2t)])|. (15)
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Figure 5: Top: S[λ1]x(t) for small window size 20 ms of a regular note, a note with a sharp attack, with tremolo, a white noise with
a sharp attack, a note with vibrato, a chord and its arpeggio. Middle: S[λ1]x(t) for window size 256 ms. Bottom: S[λ1, λ2]x(t) for
λ1 = 2080 Hz, corresponding to the third partial of the first three sounds.

The wavelet modulus coefficient is thus periodic in time, with fre-
quency ξ2. As a result, its spectrum exhibits a harmonic structure
of fundamental frequency ξ2, which is reproduced in S[λ1, λ2]ẽ(t).
For λ1 fixed, S[λ1, λ2]ẽ(t) is thus characterized by peaks at fre-
quencies λ2 = k2ξ2 for positive integers k2.

In Figure 5, the fifth sound exhibits a vibrato, but cannot be
distinguished from the first three using the first order since the os-
cillations in |ẽ ? ψλ1 | have been averaged out by φ. However, the
second order reveals a harmonic structure in the fourth note that is
not present in the others.

4.3. Interference modulation

In the previous examples, the modulation was specified explicitly.
Here, we consider the modulations implicit in a chord due to inter-
ference between frequency components.

Let us consider x(t) = 2a1 cos(ξ1t)+2a′1(ξ′1) cos(ξ′1t). Since

x ? ψλ1(t) = eiξ1t
“
a1ψ̂λ1(ξ1) + a′1ψ̂λ1(ξ′1)ei[ξ

′
1−ξ1]t

”
, (16)

the wavelet modulus

|x ? ψλ1 |(t) =
˛̨̨
a1ψ̂λ1(ξ1) + a′1ψ̂λ1(ξ′1)ei[ξ

′
1−ξ1]t

˛̨̨
(17)

is periodic with frequency |ξ′1 − ξ1|. Thus S[λ1, λ2]x(t) exhibits
a harmonic structure in λ2 of fundamental frequency |ξ′1 − ξ1|, as
described in the previous subsection.

Next we consider the sum of two impulse trains of fundamen-
tal frequencies ξ1 and ξ′1, a chord. Whenever two partials nξ1 and
n′ξ′1 share the support of ψ̂λ1 we obtain an interference modula-
tion at multiples of |nξ1 − n′ξ′1|. In addition, for a single note of
fundamental frequency ξ1, we have a modulations at multiples of
ξ1 whenever two partials are in the support of ψ̂λ1 .

The sixth and seventh sounds in Figure 5 are a two-note chord
and its associated arpeggio. In the second order, a modulation
at λ2 = 131 Hz (the difference in fundamental frequency of the
notes) is found for the chord which is not present in the arpeggio.

5. CONCLUSION

The value of MFSCs in audio classification can be partly explained
by their stability to deformation which is not found in the spectro-
gram. To reduce the loss of information at high frequencies, they

are calculated on small windows and cannot capture large-scale
structures. Scattering coefficients extend MFSCs to recover these
high frequencies while maintaining stability to deformation. This
allows larger windows and captures timbral structures, such as at-
tacks, amplitude and frequency modulation, as well as chords.
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