
Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

MULTI-CHANNEL AUDIO INFORMATION HIDING

J M Blackledge, ∗

Audio Research Group
Dublin Institute of Technology

jonathan.blackledge@dit.ie

A I Al-Rawi,†

Audio Research Group
Dublin Institute of Technology

abdulrahman.alrawi@gmail.com

R Hickson,‡

Audio Research Group
Dublin Institute of Technology
notruairi@gmail.com

ABSTRACT

We consider a method of hiding many audio channels in one host
signal. The purpose of this is to provide a ‘mix’ that incorpo-
rates information on all the channels used to produce it, thereby
allowing all, or, at least some channels to be stored in the mix
for later use (e.g. for re-mixing and/or archiving). After provid-
ing an overview of some recently published audio water marking
schemes in the time and transform domains, we present a method
that is based on using a four least significant bits scheme to embed
five MP3 files into a single 16-bit host WAV file without incurring
any perceptual audio distortions in either the host data or embed-
ded files. The host WAV file is taken to be the final mix asso-
ciated with the original multi-channel data before applying mini-
mal MP3 compression (WAV to MP3 conversion), or, alternatively,
an arbitrary host WAV file into which other multi-channel data in
an MP3 format is hidden. The embedded information can be en-
crypted and/or the embedding locations randomized on a channel-
by-channel basis depending on the security protocol desired by the
user. The method is illustrated by providing example m-code for
interested readers to reproduce the results obtained to date and as
a basis for further development.

1. INTRODUCTION

The approach to information hiding discussed in this paper re-
lates to an investigation into the design of ‘intelligent’ coding al-
gorithms for audio post-production based on research undertaken
jointly between the Audio Research Group [1] and the Digital Me-
dia Centre [2] at Dublin Institute of Technology and Tamborine
Productions Limited, London [3]. This includes the use of wa-
termarking methods for audio signal authentication and multiple
audio signal embedding techniques using computational solutions
based on image information hiding and authentication techniques,
e.g. [4] and [5].

While there are a number of different approaches for hiding
a signal in another ‘host signal’, inclusive of encryption, or oth-
erwise, there are relatively few published methods that consider
a multi-signal to host signal approach. In this paper we consider

∗ Stokes Professor, Science Foundation Ireland
† Research Assistant, School of Electrical Engineering Systems
‡ Research Assistant, School of Electrical Engineering Systems

the problem of embedding many audio signals provided in MP3
formats into a single wave of WAV file under the following con-
ditions: (i) the embedded MP3 audio data can be recovered with-
out any loss of information; (ii) the host signal has no perceptual
change in its audio fidelity. An algorithm is presented based on a
time domain method in which five MP3 files are hidden in a single
WAV file using a four least significant bit scheme which satisfies
these conditions. The MP3 files may be encrypted prior to appli-
cation of the algorithm with the option of encrypting the host data
as required.

The method considered has applications in covert information
transmission with applications in areas such as communications
security, signal authentication and DRM (Digital Rights Manage-
ment), for example. However, in the context of this paper, the
method focuses on an audio post-production product that allows a
stereo ‘mix’ to incorporate information on all or some of the chan-
nels used to produce the same mix, thereby allowing all or selective
channels to be embedded in the mix for re-mixing at a later date
and/or for data storage. Current scenarios usually involves a post-
production centre having to maintain records of all the data used to
generate a mix with the view that this same data may be required
at a later date, thereby necessitating the need for a data base man-
agement infrastructure which may require significant overheads.

After providing a detailed overview of recently published works
that focus on the area of audio information hiding in the time and
transform domains (Section 2), we present a time domain solution
to the problem as given in Section 3 which is based on a four least
significant bits embedding scheme. We include prototype m-code
for interested readers to test the algorithms developed to-date and
as a basis for developing and extending the method further.

2. AUDIO INFORMATION HIDING

Audio information hiding or Audio Steganography is based on two
specific and distinct approaches which consider the development
of algorithms using time domain data or transform domain data
such as the cosine transform, for example. In order to appreciate
the context of the algorithms reported in this paper, we provide a
brief overview of some of the more recently published material in
this area, publications that have been studied by the author’s in the
context of developing a multi-channel information hiding scheme.

DAFX-1

http://blackledge.sharepoint.com
mailto:jonathan.blackledge@dit.ie
http://http://www.audioresearchgroup.com
mailto:abdulrahman.alrawi@gmail.com
http://http://www.audioresearchgroup.com
mailto: notruairi@gmail.com

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

2.1. Audio Hiding in the Time Domain

Time domain audio hiding has the advantage of being relative sim-
ple to implement and computationally efficient. However, the ap-
proach does not yield algorithms that are as diverse and robust as
those developed for the transform domain. This is because of the
relatively limited number of ways in which data can be manipu-
lated in the time domain, subject to the generation of an output
that is perceptually compatible with the original audio signal. In
the literature survey that follows, it is clear that all the methods
conceived are based on some form of data manipulation by modi-
fying the binary representation of the audio signal, i.e. variations
on the basic theme of modifying the Least Significant Bits of a
data stream. For example, in [6], the authors propose a novel audio
embedding method using amplitude differencing. It involves em-
bedding a covert message of any format into two cover audio files
which are of a similar size. The difference in amplitude values be-
tween the two signals is compared to the maximum range index of
the range (ranging from 0 to 255 where all audio values are rep-
resented as bytes). The covert message is divided into a series of
4-bits and new amplitude difference values calculated for the two
cover audio files which contain the message. This process hides 2-
bits per audio file with a total capacity of 4-bits in both files. The
data extraction process follows the same embedding procedure (in
the inverse sense). The main advantage of using two cover audio
files is to distribute the payload equally among more than one file
which prevents the introduction of noise into the cover files.

In [7] the authors propose two novel approaches of Least Sig-
nificant Bit (LSB) substitution to improve the capacity of the au-
dio hiding methods. The first approach increases the number of
bits that can be used for hiding from 4 LSBs to 7 LSBs by using
the first and second Most Significant Bits (MSB), respectively, as
follow: (i) if the MSB-1 and MSB-2 values are 00 then 4 LSBs are
used for data embedding; (ii) if the values are 01 then 5 LSBs are
used; (iii) if the values are 10 then 6 LSBs are used; (iv) if the val-
ues are 11 then 7 LSBs are used for data embedding. The second
approach shifts the maximum limit by only considering the first
MSB where 6 LSBs are used for data hiding if its value is 0 and 7
LSBs are used if its value is 1. The data extraction procedure uses
the same scenario for retrieving the embedded data (in an inverse
sense).

Audio watermarking schemes based on amplitude modifica-
tion are presented in [8] using a similar approach to that reported
in [9] but with increased hiding capacity. The proposed method
embeds the watermark data by modifying the AOAA (Average Of
Absolute Amplitude) differences calculated from three sections in
a GOS (Group Of Samples). In the watermark embedding pro-
cess, the original audio signal is divided into consecutive lengths of
GOSs where each GOS contains three non-overlapping sections.
The AOAAs of these sections are calculated as detailed in [8], the
values being sorted in descending order and the differences be-
tween them computed. Bit stream embedding is undertaken using
a dynamic procedure that depends upon a fixed threshold and the
extraction procedure is predicated on knowing the GOSs and us-
ing the same principal processing steps coupled with a comparative
bit-by-bit analysis as given in [8]. This method is highly robust to
attacks including MP3 compression and low-pass filtering.

An encrypted watermarking scheme is discussed in [10]. The
‘secrete message’ (watermark) is encrypted using a bit exchange
encryption method and the encrypted data embedded into the LSB
and LSB+3 bits of the cover file. The embedding process starts by

dividing each byte of the secret message into groups of two bits,
the first 2-bits are embedded into the LSB and LSB+3 bits of the
cover file leaving one byte intact. 2-bits are then again embedded
into the LSB and LSB+3 bits leaving one byte intact. The same
process is repeated for all bits of the secret message yielding an
algorithm that embeds one byte of the secret message into 8 bytes
of the cover file.

In [11] the author’s present two methods to improve the con-
ventional LSB modification method for Audio Steganography. The
first method is based on randomizing the LSB bit number of the
host file, the bit selection being based on the 1st and 2nd MSBs,
respectively. If the MSB-1 and MSB-2 values are 00 then the 3rd

LSB is used for embedding a secret bit; if the values are 01 then
the 2nd LSB is used, and if the values are 10 or 11 then the 1st

LSB is used. The second approach randomizes the sample num-
bers containing the next secret bit of the data, the decision criterion
relying on the first, second and third MSB: If the MSB-1, MSB-2
and MSB-3 values are 000 then the sample containing the next se-
cret bit is i+1; if their values are 001 then the sample containing
the next secret bit is i+2; if their values are 010 then the sample
containing the next secret bit is i+3, and so on. In both cases (i.e.
the methods considered) data extraction is performed by compar-
ing the MSB values to find the LSBs with the hidden data.

Different low-bit coding methods for Audio Steganography
are considered in [12]. Conventional low-bit coding methods em-
bed the bits of the watermark into the LSBs of the host audio data.
This can be improved by using variable low-bit coding via two ap-
proaches. The first approach defines two thresholds T1 and T2,
say, based on the standard level about a mid-range of 128 where
the samples are taken to be bytes with a maximum value 255. If
the audio amplitude value is greater than T2, two bits are used for
embedding. If the amplitude value is between T1 and T2, one bit is
used to embed, no embedding being undertaken if the watermark
data has a value less than T1. The second approach calculates the
average amplitude data of the surrounding audio signal to provide
a threshold. If the amplitude level is greater than the average value,
then 2-bits are embedded in the host signal, else, no embedding is
undertaken, the amplitude level being considered to be too low.

In [13] an audio hiding method is proposed that is based on the
escape sequences of ACC (Advanced Audio Coding) audio files.
The secret information is transformed into a bit stream and XORed
with a pseudo random generator sequence to obtain an encrypted
data sequence. The AAC file is unpacked and the escape sequences
located and used as a ‘carrier’ for data hiding. The embedding pro-
cess is performed based on the matrix encoding described in [13].
The LSBs of each escape sequence are extracted as carrier data, the
LSBs of every 15 escape sequences constituting a 15 dimensional
carrier vector a. Every 4-bits of the secret data are taken to form a
4-dimensional vector b and a 4-dimensional column vector cT . b
is XORed with c to generate the vector d. A new vector e is then
calculated and tested as follows: If e=0, then no bits are modified,
else, the dth bit of the carrier vector is modified so that the LSB
of the dth escape sequence is modified. This means that 4-bits of
the secret data is embedded (i.e. 4-bits of the secret information
is embedded into 15 bits of the carrier). The process is repeated
until the secret information is completely embedded or the end of
the host audio is reached.

DAFX-2

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

2.2. Audio Hiding in the Transform Domain

Using the transform domain provides the potential to generate a
wider class of audio information hiding methods than are avail-
able using time domain techniques. However, any transform do-
main technique comes at the expense of the computational costs
involved in computing the transform and its inverse. The trans-
form concerned include the Fourier transform computed using a
Fast Fourier Transform (FFT) and transforms such as the Discrete
Wavelet Transform and the Discrete Cosine Transform. For exam-
ple, in [14], an audio watermarking algorithm is considered based
on a RSVD (Reduced Singular Value Decomposition) of the FFT
of the audio signal. The method relies on manipulating the coeffi-
cients of one of the resulting unitary matrices for watermark em-
bedding. The audio signal is split into frames of length L, a FFT
applied to compute the magnitude spectrum in each frame, and,
finally, the frequency components of each frame organized into a
RSVD input matrix (RSVD being applied to a matrix rather than a
vector). RSVD decomposes each input matrix into three matrices
U, S and V [15]. The coefficients of U are changed to embed the
watermark bits by creating a local peak in u1..p,2. If the water-
mark bit to embed is of type 1, the magnitude of the element uc,2

is increased (where c is a user defined key value that represents
the peak value) and the surrounding elements uc−1,2 and uc+1,2

reduced to insignificant amplitude values φ. If the watermark bit
to be embedded is of type 0, then the magnitude of the element
uc+1,2 (which represents the peak value) and the surrounding ele-
ments uc,2 and uc+1,2 are reduced to the same insignificant ampli-
tude value φ. To extract the hidden watermark, the watermarked
signal is split into frames, the FFT applied to each frame and the
frequency components organized into a matrix A. RSVD is then
applied to this matrix and the following process applied: if uc,2-
uc+1,2 > 0, then the watermark is taken to be of bit-type 1, other-
wise it is taken to be of type 0.

An audio watermarking algorithm based on the Fast Fourier
Transform and a Quadratic Matrix is considered in [16]. A non-
singular quadratic form is chosen to obtain a corresponding quadratic
matrix Q and the secret data converted into a matrix M which is
taken to be equivalent to Q. These matrices are multiplied to gen-
erate an encrypted data matrix E. The cover audio data is trans-
formed into the frequency domain using a FFT and the secret infor-
mation E embedded into the frequency domain of the cover signal.
Retrieval is performed by recovering the hidden data E to regen-
erate the audio cover frequency domain and decryption performed
by multiplying E by the inverse matrix Q−1 to recover the original
watermark.

A speech signal watermarking method that uses sinusoidal mod-
eling and QIM (Quantization Index Modulation) is presented in
[17]. The principal idea is to hide the watermark data in the phase
information of an appropriate sine wave because the human audi-
tory system is insensitive to the absolute phase. The QIM water-
marking method [18] for embedding the watermark data divides
the speech signal into voiced and unvoiced parts. The voiced part
S is segmented into L overlapped frames and a STFT (Short Time
Fourier Transform) applied to each frame. The amplitude and fre-
quency of each component is estimated by locating the peaks of the
STFT and the phases computed using the corresponding real and
imaginary parts. The appropriate sine wave components are se-
lected and the watermark embedded by changing the phase value
of selected components as detailed in [17]. The watermarked sig-
nal is synthesized based on the amplitude, frequency and quan-

tized phase value and the watermark data recovered by comparing
the phase values with the quantization levels.

Application of multiple scrambling and amplitude modula-
tion is considered in [19]. The watermark data is scrambled with
a coded-image instead of a chaotic or pseudo-random sequence
since the extracted coded-image can be post-processed to enhance
the quality of the recovered watermark. The embedding procedure
is initiated by applying a pre-selection process on the host audio
file to select only those regions whose power exceeds a certain
threshold, thereby preventing the selection of silent potions of the
audio signal. The selected segments are then divided into adjacent
frames with a 50% overlap and a Short Time Fourier Transform
(STFT) applied to them to obtain their frequency spectrum. These
segments are further subdivided into N two-dimensional blocks,
each block being used to embed one sub-watermark B where B is
a part of the watermark W) as detailed in [19]. Each block N is seg-
mented into different levels of granularities, unit, slot, tile and bin
and the watermark bits embedded through the process of amplitude
modulation as discussed in [20] and [21]. Finally, the watermarked
signal for each frame is constructed in the frequency domain using
the magnitude, phase, and the sign of the signal spectrum which
is then added to the host frame after its transformation to the time
domain. To increase the security of the method, another scram-
bling operation can be applied by randomly selecting N’ blocks
from N blocks and then randomizing their order for encoding. The
watermark bits are detected by examining whether there is an in-
crease or decrease in the magnitude of the corresponding tiles of
the received signal [21], [22].

A blind audio watermarking algorithm using the wavelet trans-
form and chaotic encryption is presented in [23]. Chaotic encryp-
tion is used for encrypting the watermark data and randomizing its
(hiding) location. The watermark bit stream is encrypted and the
original audio signal divided into non-overlapping frames. Ran-
domization of the order of the frames is undertaken using chaotic
sequences and each frame processed with an L grade wavelet trans-
form. Finally, the encrypted watermark bits are embedded into the
L grade detail value by choosing M coefficients from the abso-
lute values located between the detail values. The coefficients are
then modified according to the watermark bit value as given in
[23]. Watermark extraction is performed by applying the inverse
process, segmenting the watermarked signal into non-overlapped
frames and applying the L grade wavelet transform to the frames
selected by the chaotic sequence used, the hidden bits being ex-
tracted as detailed in [23] followed by decryption to recover the
original watermark.

A further example of the application of the wavelet transform
is considered in [24] based on an adaptive wavelet packed modi-
fication. The embedding method consists of four components: (i)
Wavelet packet decomposition is applied to decompose the audio
signal using a three level wavelet packet, where the ‘HLH band’ is
used for data embedding; (ii) Binary mapping is applied where the
coefficients in the selected band are sampled to evenly distribute
the hidden data over the entire host audio data for improving au-
dio imperceptibility. The coefficients are converted from a one-
dimensional vector to a two-dimensional matrix and each matrix
further subdivided into 2× 2 blocks B. A pseudorandom sequence
is applied to select the B block to be used for secret data embed-
ding and the selected blocks mapped to binary form using trend
detection. If the block values follow an increasing trend, then they
are mapped into a bit of type 1 and if the values follow a decreasing
trend they are mapped into a bit of type 0, each binary block being

DAFX-3

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

referred as a pattern matrix which is classified accordingly [25];
(iii) Adaptive wavelet packet modification is used for embedding.
To embed the secret bits, the pattern matrix B is modified to ob-
tain B’ making sure that B and B’ belong to the same class whose
range maintains the modified bits with regard to their neighbours;
(iv) The inverse wavelet packet is applied to the modified packets
to generate a ‘stego-audio’ signal [24].

Application of an integer wavelet transform is considered in
[25]. The scheme is based on two essential ideas: The first is to
use a pseudorandom sequence to scramble the secret signal bits
and randomize the wavelet coefficients used for data embedding.
The second idea is to calculate the ‘hearing threshold’ to be used as
an embedding threshold. The estimation of the hearing threshold
is very important because low values lead to low payloads while
high values cause auditable distortion. The embedding process
begins by performing a Haar DWT (Discrete Wavelet Transform)
on the cover audio signal and then converting the DWT coefficients
into integer form. The encrypted data is then embedded into the
integer DWT coefficients (the number of bits embedded in each
coefficient being determined by the hearing threshold). Finally, the
modified coefficients are converted into the wavelet domain and
the resulting coefficients transformed back into the time domain to
generate the ‘stego-signal’. The data extraction steps are generally
similar to the embedding process.

Application of the Discrete Cosine Transform (DCT) for audio
watermarking is considered in [26]. A Hamming error correcting
code and a Neural Network (NN) are applied. The cover audio
signal is divided into non-overlapped frames of size 512 samples
and the DCT applied to each frame. The watermark is divided
into sets of length 8 and each set is encoded with a Hamming er-
ror correcting code [27], the encoded sets being processed using a
pseudorandom sequence for increased security. The bands of the
middle frequencies are then located for insertion of the watermark
bits. Each band is trained using a BPNN (Back-Propagation Neu-
ral Network). The located bands and the NN training result are
compared prior to watermark insertion in order to maintain the re-
lationship between the sample to be modified and its neighborhood
samples. Following watermark bit insertion an inverse DCT is ap-
plied to generate the watermarked audio signal. The extraction
process is performed by adopting the equivalent inverse embed-
ding process with knowledge of the the NN weights, pseudoran-
dom sequence and the band positions. The extracted watermark
bits are corrected using Hamming decoding to increase the accu-
racy of the recovered watermark.

Application of the wavelet transform coupled with higher-order
statistics are considered in [28]. The two dimensional watermark
data (image or audio samples organized into a matrix) is initially
scrambled using an Arnold transform and converted into a one di-
mensional sequence of zeros and ones. A wavelet de-noising al-
gorithm is applied to the host audio data to remove as much noise
as possible and recover its original characteristics. The de-noised
audio signals are divided into segments, each segment A being fur-
ther sub-divided into two parts A1 and A2 of length L1 and L2

elements, respectively. The embedding process starts by embed-
ding a synchronization code into the average value of the audio
samples of A1 as described in [28] which is required to survive de-
synchronization. The watermark is embedded into A2 as follows:
sub-divide A2 into audio sub-segments of length L2/(M×N sam-
ples (where L2 is the length of A2 and M×N is the watermark size),
perform an H-level DWT on each sub-segment, embed the water-
mark into the DWT coefficients based on the higher-order statis-

tics computed using the Hausdorff distance and finally apply an
inverse DWT to obtain the watermarked audio segment. The syn-
chronization code and watermark bits are embedded into each au-
dio segment to increase the robustness of the method. The water-
mark detection is performed by de-noising the watermarked audio
signal, detecting the synchronization code and using the detected
codes to locate the watermark into audio sub-segments based on
higher-order statistics.

An approach using SVD-DCT (Singular Value Decomposition-
Discrete Cosine Transform) and synchronization codes is consid-
ered in [29]. The host audio signal is partitioned into two parts,
the first for synchronization code insertion and the second for wa-
termark embedding. A logistic chaotic sequence with an initial
value in the interval [0, 1] is used to generate the synchronization
code. To embed the watermark, the host audio signal is organized
into a 2D matrix which is then segmented into non-overlapping
blocks. An 8×8 block based SVD is used and the first SVD co-
efficients arranged to form a new matrix where most of the signal
energy is concentrated in the largest singular values. This matrix
is partitioned into 4×4 sub-blocks and the DCT applied to each
block to generate the SVD-DCT coefficient blocks, each block
being ‘zigzagged’ [29]. The watermark embedding starts by se-
lecting the coefficient pairs to be modified (the selection is based
on a pseudo-random sequence) from the potential location of each
SVD-DCT block. The frequency mask is computed to weight the
watermark amplitude (the frequency mask is used to determine the
level of tolerance against distortion caused by embedding the wa-
termark), and, finally, the watermark is embedding by modifying
the magnitude difference of the selected pairs.

3. MULTI-CHANNEL INFORMATION EMBEDDING

None of the audio watermarking methods discussed in the pre-
vious section and other recent publications studied by the authors
consider the problem of embedding multiple channels into a single
channel. Compared with single channel information hiding, multi-
channel watermarking has a number of potential advantages. The
most obvious of these is that a number of entirely independent and
uncorrelated sources of (audio) information can be embedded into
a single audio host signal either as Plaintext or Ciphertext data
streams (depending upon whether data encryption of the hidden
information is required).

We consider the 5:1 (the limit for maintaining audio impercep-
tibility with the current algorithm) multi-channel audio embedding
and extraction process illustrated in Figure 1 and Figure 2, respec-
tively, The scheme is based on embedding five MP3 files into a
single WAV file using 4 LSB coding. It focuses on the use of five
MP3 files in terms of the optimum number of channels that can be
embedded subject to the following conditions:

• minimal perceptual distortion of the host WAV file accord-
ing to the Perceptual Evaluation of Audio Quality (PEAQ
ITU-R recommendation BS.1387) discussed in [31];

• high integrity on the fidelity of all channels after extraction
from the host signal based on 4-bit LSB coding.

The use of 4-bit LSB is the minimum required to satisfy the
second of these conditions and is predicated on experimental re-
sults associated with the first condition. This approach follows on
from the method reported in [32] which uses a Frequency Mod-
ulation method called ‘Chirp-Coding’, originally designed for the

DAFX-4

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Key-1

Read 5 stereo wav

files of 44.1 KHz 16 bit

(wav1 .. wav5)

Loosely compress

the input files

(vec1 .. vec5)

Arrange (vec1..vec5)

into one vector B

with bytes entries

Divide B into two

parts of 4-bits each

(B1,B2)

Split C into two

channels

(C1,C2)

Read a stereo host

wav file of 44.1 KHz

16 bit (C)

Randomize the embedding

locations in C1 using

pseudorandom sequence-1

Key-2
Randomize the embedding

locations in C2 using

pseudorandom sequence-2

Embed B1 into C1 using 4-LSBs

Embed B2 into C2 using 4-LSBs

Combine C1 and C2 to generate

the stereo stego-audio S

Figure 1: High level data flow diagram for the 5:1 multi-channel
audio embedding process.

purpose of self-authenticating audio signals [33] modified to em-
bed up to four ‘information packets’ subject to minimal perceptual
distortion. The information capacity of these packets is low com-
pared to the method proposed in this paper. However, unlike the
technique reported here, the method given in [32] is robust to var-
ious attacks subject to the carrier frequency of the chirp where a
low frequency sweep provides greater robustness when compared
to a high frequency sweep. In this case, the watermark sequence
is derived from sub-band energies which are unique and signal de-
pendent. Due to the different processes associated with informa-
tion extraction, an additional advantage of self-authentication is
achieved, thereby making this multi-level watermarking scheme
simultaneously robust and fragile (to an attack). By comparison,
the method proposed in this paper, is not taken to be robust but rel-
atively fragile. In other words, the watermarked WAV file can not
be subjected to any form of lossy compression or other processes
which involves data degradation although lossless encryption is
possible if required. The method reported in [32] is designed for
signal authentication using limited information embedding and fo-
cuses on issues associated with Digital Right Management and
Copyright Protection. The approach considered in this paper fo-
cuses on attempting to pack many audio channels into a single au-
dio signal with minimal loss of information while sustaining audio

Key-2

De- compress

(vec1 .. vec5)

to recover

the input files

(wav1 .. wav5)

Split the vector B

into 5 vectors

(vec1 .. vec5)

Arrange B1 and B2 to

re-generate the byte

vector B

Split S into two

channels

(S1,S2)

Read the stereo

stego-audio (S)

Determine the extracting

locations in S2 using

pseudorandom sequence-2
Key-1

Determine the extracting

locations in S1 using

pseudorandom sequence-1

Extract B1 from S1

Extract B2 from S2

Figure 2: High level data flow diagram for the 5:1 multi-channel
audio extraction process.

fidelity of the host signal.
Referring to Figure 1, the input audio channels are taken to be

MP3 files which may by loosely compressed WAV files. The MP3
data vectors are concatenated to form a single vector expressed in
bytes. This vector is split into two component vectors composed
of 4-bit entries. The host WAV file is decomposed into two compo-
nent vectors representing the left and right channels of the stereo
data stream. An additional step can then be considered whereby
each channel is randomized in terms of the embedding locations
for the input data as illustrated in Figure 1. A further security
feature is possible by encrypting the input data vector before em-
bedding is undertaken. This extra step can be executed by using a
pseudo-random or pseudo-chaotic cipher which is either converted
to binary form or output in binary form based on the methods dis-
cussed in [34], for example.

The information hiding process is accomplished in the time
domain by embedding the 2-part input vector into the 2-component
host vector using 4-bit LSB in both cases. The stereo stego-audio
signal is then constructed by combining the two component output
into a single WAV file.

The algorithm for reconstruction of the embedded data is illus-
trated in Figure 2. After reading the stereo stego-audio WAV file,
the data is split into two channels and, as required, the keys used to

DAFX-5

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

obtain the position of the embedded data in the channels. Recon-
struction of the embedded data is then undertaken by extracting the
4-bit LSBs and arranging the data to regenerate the original (byte)
vector. This vector is then split into the five original channels and
decompressed as required, thereby recovering the original WAV
files.

Prototype m-code for executing these processes is given in Ap-
pendix A and Appendix B which provide software solutions for
the embedding and extraction of data, respectively. In this exam-
ple, embedding position randomization and encryption of the input
data is not included. It is assumed that users have access to WAV-
MP3 conversion software (e.g. [35]) and an encryption application
that encrypts MP3 files to a file of the same type, i.e. MP3 exten-
sion.

4. SUMMARY

Multi-channel information hiding has a range of applications but
the method presented in this paper is focused on problems asso-
ciated with audio post-production, in particular, the problem of
embedding the audio signals used to produced a stereo mix in that
same mix. Clearly, the current solution is limited in that it only
provides a 5:1 embedding scenario and relies on the input WAV
files being loosely MP3 compressed. However, by double, triple
and quadruple sampling the host file (by ‘sinc interpolation’, for
example), it is clearly possible to embed 10, 15 and 20 channels
into the mix using the proposed approach by concatenation on a
5-by-5 multi-channel basis.

From an information theoretic point of view, it is clearly not
possible to embed many channels into one channel without some
loss of information in terms of both the embedded data and the
host. However, provided the result does not lead to distortions that
are perceptible on an audio basis, such distortions can be made ac-
ceptable. In the context of the algorithms presented in this paper,
tests have been undertaken using the Perceptual Evaluation of Au-
dio Quality (PEAQ ITU-R recommendation BS.1387) discussed in
[31] following those reported in [32].

Appendix A: m-Code for Multi-Channel
Information Hiding in a WAV file
The following code has been written to accommodate a two-column
format and consequently uses the MATLAB continuation syntax
‘...’. The code is somewhat condensed to minimize space. For
simplicity, the data is not encrypted and the embedding positions
are not randomized.

% Program to watermark one host WAV file
% with 5 MP3 files. The basic steps are:
% (i) Read 5 mp3 files; (ii) combine the
% files into a single vector; (iii) embed
% the vector into a host WAV file.
clear; clc;
fprintf(’Combining 5 MP3 files...’);
% Combine 5 MP3 files into 1 binary file
% Read 5 name MP3 files as binary files
% of type uint8
filename1 = ’filename_1.mp3’;
filename2 = ’filename_2.mp3’;
filename3 = ’filename_3.mp3’;

filename4 = ’filename_4.mp3’;
filename5 = ’filename_5.mp3’;
fid1 = fopen(filename1,’r’);
Signal_1 = fread(fid1,’uint8=>uint8’);
fclose(fid1); fid2 = fopen(filename2,’r’);
Signal_2 = fread(fid2,’uint8=>uint8’);
fclose(fid2); fid3 = fopen(filename3,’r’);
Signal_3 = fread(fid3,’uint8=>uint8’);
fclose(fid3); fid4 = fopen(filename4,’r’);
Signal_4 = fread(fid4,’uint8=>uint8’);
fclose(fid4); fid5 = fopen(filename5,’r’);
Signal_5 = fread(fid5,’uint8=>uint8’);
fclose(fid5);
% Combine 5 MP3 files into a single
% vector: the array "Signal_5MP3"
Len_1 = length(Signal_1);
Len_2 = length(Signal_2);
Len_3 = length(Signal_3);
Len_4 = length(Signal_4);
Len_5 = length(Signal_5);
Signal_5MP3 = uint8(zeros(Len_1+Len_2+...
Len_3+Len_4+Len_5,1));
Signal_5MP3(1 : Len_1,1) = Signal_1;
Signal_5MP3(Len_1+1 : Len_1 + Len_2,1) =...
Signal_2;
Signal_5MP3(Len_1+Len_2 + 1 : Len_1+Len_2...

+ Len_3,1) = Signal_3;
Signal_5MP3(Len_1+Len_2+Len_3 + 1 : Len_1+...

Len_2+Len_3 + Len_4,1) = Signal_4;
Signal_5MP3(Len_1+Len_2+Len_3+Len_4 + 1 :...
Len_1+Len_2+Len_3+Len_4 + Len_5,1) = Signal_5;
% Save "Signal_5MP3" as a binary file
fid = fopen(’Signal_5MP3_file.bin’,’w’);
fwrite(fid,Signal_5MP3,’uint8’); fclose(fid);
fprintf(’(DONE)\n’);
fprintf(’Embedding the 5 MP3 files...’);
% Embed 5 MP3 files into 1 host WAV file
[Signal_host,SamplingRate_Host,...

NumofBits_Host]= wavread(’host.wav’);
fid = fopen(’Signal_5MP3_file.bin’ , ’r’);
Signal_Secret = fread(fid,’uint8=>uint8’);
fclose(fid); Signal_embed = Signal_Secret;
RemSamples = length(Signal_host)...

-length(Signal_Secret);
if (RemSamples >= 0)

Len_5mp3 = length(Signal_Secret);
% Begin the Embedding Process
Signal_stego = Signal_host;
Signal_stego = ((Signal_stego+1)./2).*...
65535; % quantize to [0,65535]
% Embedding the signal
for i = 1:length(Signal_embed)
bit4_1 = bitand(uint8(Signal_embed(i)),...

uint8(15));
bit4_2 = bitand(bitshift(uint8(...

Signal_embed(i)),-4) , uint8(15));
% Embed the first 4-bit signal
Signal_stego(i,1) = bitand(uint16(...

Signal_stego(i,1)),uint16(65520));
Signal_stego(i,1) = bitor(uint16(...

Signal_stego(i,1)),uint16(bit4_1));

DAFX-6

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

% Embed the second 4-bit signal
Signal_stego(i,2) = bitand(uint16(...

Signal_stego(i,2)),uint16(65520));
Signal_stego(i,2) = bitor(uint16(...

Signal_stego(i,2)),uint16(bit4_2));
end
Signal_stego = ((Signal_stego./65535) .*2)...

- 1; % quantize to [-1,1]
% Write the stego signal into a WAV file
wavwrite(Signal_stego,44100,16,...

’Stego_5MP3.wav’);
else
fprintf(’Process failed...\n’);
fprintf(’Secret Signal length exceeds the\n’);
fprintf(’Host Signal length\n’);
end % related to the statement

% "if (RemSamples >= 0)" given above
fprintf(’(DONE)\n’);
fprintf(’Embedding Process Completed.\n\n’);
% Write length of MP3 files to TXT file.
Length_Data=[Len_1,Len_2,Len_3,Len_4,Len_5];
fid = fopen(’MP3_File_Lengths.txt’,’w’);
fwrite(fid,Length_Data,’long’); fclose(fid);

Appendix B: m-Code for Multi-Channel
Extraction from a Stego-Audio WAV file
% Program to extract 5 MP3 from host WAV file
% The basic steps are as follows:
% 1. Extract a vector from the host WAV file.
% 2. Separate the 5 MP3 files from the vector.
clear; clc;
fprintf(’Extracting 5 MP3 files...’);
% Extract 5 MP3 files from the host WAV file.
[Signal_stego] = wavread(’Stego_5MP3.wav’);
Signal_stego = ((Signal_stego+1)./2).*65535;
% Quantize host signal to range [0,65535].
Len_5MP3 = length(Signal_stego);
Signal_extract = zeros(Len_5MP3,1);
% Extract the first signal.
for i = 1:Len_5MP3

% Extract the first 4-bit signal
s4_1_ext = bitand(uint16(...

Signal_stego(i,1)),uint16(15));
% Extract the second 4-bit signal
s4_2_ext = bitand(uint16(...

Signal_stego(i,2)),uint16(15));
% Combine the two 4-bit signals to
% generate the extracted 8-bit signal.
Signal_extract(i,1) = bitor(...

uint8(0) , uint8(s4_2_ext));
Signal_extract(i,1) = bitor(...

bitshift(uint8(...
Signal_extract(i,1)),4),...
uint8(s4_1_ext));

end
fprintf(’(DONE)\n’);
fprintf(’Extraction Process Completed...\n’);
fprintf(’Seperating the 5 MP3 files...’);
% Seperate 5 MP3 files from the extracted

% vector "Signal_extract".
% Read MP3 original file length data
fid = fopen(’MP3_File_Lengths.txt’,’r’);
Length_Data=fread(fid,’long’); fclose(fid);
Len_1=Length_Data(1); Len_2=Length_Data(2);
Len_3=Length_Data(3); Len_4=Length_Data(4);
Len_5=Length_Data(5);
Signal_1_sep = Signal_extract(1 : Len_1);
Signal_2_sep = Signal_extract(Len_1...

+ 1 : Len_1 + Len_2);
Signal_3_sep = Signal_extract(Len_1+Len_2...

+ 1 : Len_1+Len_2+Len_3);
Signal_4_sep = Signal_extract(Len_1+Len_2+...

Len_3 + 1 : Len_1+Len_2+Len_3 + Len_4);
Signal_5_sep = Signal_extract(Len_1+Len_2+...

Len_3 + Len_4 + 1 : Len_1+Len_2+Len_3+...
Len_4 + Len_5);

fprintf(’(DONE)\n’); % Write MP3 data to file.
fid1=fopen(’extracted_filename_1.mp3’,’w’);
fwrite(fid1,Signal_1_sep,’uint8’);fclose(fid1);
fid2=fopen(’extracted_filename_2.mp3’,’w’);
fwrite(fid2,Signal_2_sep,’uint8’);fclose(fid2);
fid3=fopen(’extracted_filename_3.mp3’,’w’);
fwrite(fid3,Signal_3_sep,’uint8’);fclose(fid3);
fid4=fopen(’extracted_filename_4.mp3’,’w’);
fwrite(fid4,Signal_4_sep,’uint8’);fclose(fid4);
fid5=fopen(’extracted_filename_5.mp3’,’w’);
fwrite(fid5,Signal_5_sep,’uint8’);fclose(fid5);

5. REFERENCES

[1] Audio Research Group, Dublin Institute of Technology
http://www.audioresearchgroup.com/

[2] Digital Media Centre, Dublin Institute of Technology
http://www.dmc.dit.ie/

[3] Tamborine Productions Limited, London
http://www.tamborine.co.uk/

[4] J M Blackledge and A Al-Rawi, Application of Stochastic
Diffusion for Hiding High Fidelity Encrypted Images, ISAST
Transaction on Computing and Intelligent Systems, Vol. 3,
No. 1, 24-33, 2011.

[5] J M Blackledge and A Al-Rawi, A, Steganography using
Stochastic Diffusion for the Covert Communication of Digi-
tal Images, IANEG International Journal of Applied Mathe-
matics, Vol. 41, Issue: 4, 270 - 298, 2011.

[6] K. Shafi, A. Sankaranarayanan, G. Prashanth and A. Mohan,
A Novel Audio Steganography Scheme using Amplitude Dif-
ferencing, Trends in Information Sciences and Computing
(TISC), 163-167, 17-19 Dec. 2010.

[7] H. B. Kekre, A. Athawale, B. S. Rao and U. Athawale,
Increasing the Capacity of the Cover Audio Signal by Us-
ing Multiple LSBs for Information Hiding, Emerging Trends
in Engineering and Technology (ICETET), 196-201, 19-21
Nov. 2010.

[8] A. Ogihara, H. Murata, M. Iwata, and A. Shiozaki, Multi-
Layer Audio Watermarking Based on Amplitude Modifica-
tion, Fifth International Conference on Intelligent Informa-
tion Hiding and Multimedia Signal Processing, IIH-MSP
’09, 68-71, 12-14 Sept. 2009.

DAFX-7

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

[9] W. N. Lie and L. C. Chang, Robust and High-Quality Time-
Domain Audio Watermarking Based on Low-Frequency Am-
plitude Modification, IEEE Transactions on Multimedia, Vol.
8, No.1, 46- 59, Feb. 2006.

[10] A. Dutta, A. K. Sen, S. Das, S. Agarwal and A. Nath, New
Data Hiding Algorithm in MATLAB Using Encrypted Secret
Messages, International Conference on Communication Sys-
tems and Network Technologies (CSNT), 262-267, 3-5 June
2011.

[11] M. Asad, J. Gilani and A. Khalid, An Enhanced Least Signif-
icant Bit Modification Technique for Audio Steganography,
International Conference on Computer Networks and Infor-
mation Technology (ICCNIT), 143-147, 11-13 July 2011.

[12] M. Wakiyama, Y. Hidaka and K. Nozaki, An Audio Steganog-
raphy by a Low-Bit Coding Method with Wave Files, Sixth
International Conference on Intelligent Information Hiding
and Multimedia Signal Processing (IIH-MSP), 530-533, 15-
17 Oct. 2010.

[13] Y. Wang, L. Guo, Y. Wei and C. Wang, A Steganography
Method for AAC Audio Based on Escape Sequences, Inter-
national Conference on Multimedia Information Networking
and Security (MINES), 841-845, 4-6 Nov. 2010.

[14] J. Wang, R. Healy and J. Timoney, A Novel Audio Water-
marking Algorithm Based on Reduced Singular Value De-
composition, Sixth International Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIH-
MSP), 143-146, 15-17 Oct. 2010.

[15] L. Trefethen and D. Bau, Numerical Linear Algebra, SIAM:
Society for Industrial and Applied Mathematics, PA, USA,
1997.

[16] A. C. Sekhar, C. Suneetha, G. NagaLakshmi and B. RaviKu-
mar, Fast Fourier Transforms and Quadratic Forms for Dig-
ital Audio Watermarking, International Conference on Ad-
vances in Recent Technologies in Communication and Com-
puting, ARTCom ’09., 449-452, 27-28 Oct. 2009.

[17] M. Narimannejad, S. M. Ahadi, Watermarking of speech Sig-
nals Through Phase Quantization of Sinusoidal Models, 19th
Iranian Conference on Electrical Engineering (ICEE), 1-4,
17-19 May 2011.

[18] B. Chen, G. W. Wornell, Quantization Index Modulation: A
Class of Provably Good Methods for Digital Watermarking
and Information Embedding, IEEE Transactions on Informa-
tion Theory, Vol.47, No.4, 1423-1443, May 2001.

[19] Y. Lin and W. H. Abdulla, A Secure and Robust Audio Wa-
termarking Scheme using Multiple Scrambling and Adap-
tive Synchronization, 6th International Conference on Infor-
mation, Communications and Signal Processing, 1-5, 10-13
Dec. 2007.

[20] R. Tachibana, S. Shimizu, and S. Kobayashi, An Audio
Watermarking Method using a Two-dimensional Pseudo-
random Array, Signal Processing, Vol. 82, No. 10, 1455-
1469, 2002.

[21] Y. Q. Lin and W. H. Abdulla, Robust Audio Watermarking
Technique Based on a Gamma-tone Filter Bank and Coded
Image, International Symposium on Signal Processing and
Its Application (ISSPA’07), 2007.

[22] Y.Q. Lin and W.H. Abdulla, Robust Audio Watermarking
for Copyright Protection, Technical Report (No. 650), Dept.
of Electrical and Computer Engineering, The University of
Auckland, 2006.

[23] X. S. Chen, Y. T. Yang, H. Zhang and X. J. Lu, An Audio
Blind Watermarking Algorithm in the Wavelet Domain Based
on Chaotic Encryption, International Conference on Wavelet
Analysis and Pattern Recognition, ICWAPR ’07. 470-473,
2-4 Nov. 2007.

[24] P. Shah, P. Choudhari and S. Sivaraman, Adaptive Wavelet
Packet Based Audio Steganography using Data History,
IEEE Region 10 and the Third international Conference on
Industrial and Information Systems, ICIIS 2008, 1-5, 8-10
Dec. 2008.

[25] A. Delforouzi and M. Pooyan, Adaptive Digital Audio
Steganography Based on the Integer Wavelet Transform,
Third International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, IIHMSP 2007,
Vol. 2, 283-286, 26-28 Nov. 2007

[26] C. Maha, E. Maher, K Mohamed and B. A. Chokri, A DCT
Based Blind Audio Watermarking Scheme, Proceedings of
the 2010 International Conference on Signal Processing and
Multimedia Applications (SIGMAP), 139-144, 26-28 July
2010.

[27] W. Hamming, Error Detecting and Error Correcting Codes,
Bell Systems Technical Journal 26(2), 137-160, 1950.

[28] H. Y. Yang, X. Y. Wang and T. X. Ma, Robust Digital Audio
Watermarking using Higher-order Statistics, AEU - Interna-
tional Journal of Electronics and Communications, Vol. 65,
Issue 6, 560-568, June 2011.

[29] B. Y. Lei, I. Y. Soon and Z. Li, Blind and Robust Audio Wa-
termarking Schemes Based on SVD-DCT, Original Research
Article: Signal Processing, Vol. 91, Issue 8, 1973-1984, Au-
gust 2011.

[30] F. Han, X. Yu and S. Han, Improved Baker Map for Image
Encryption, Proceedings of the First International Sympo-
sium on Systems and Control in Aerospace and Astronautics,
ISSCAA 2006, 1273-1276, 2006.

[31] P. Kabal, An Examination and Interpretation of ITU-R
BS.1387: Perceptual Evaluation of Audio Quality, Technical
Report, McGill University, Version 2, 2003.

[32] J. M. Blackledge and O. Farooq, Audio Data Verification
and Authentication using Frequency Modulation based Wa-
termarking, International Society for Advanced Science and
Technology, Journal of Electronics and Signal Processing,
Vol. 3, No 2, (ISSN 1797-2329), 51 - 63, 2008.

[33] J. M. Blackledge and E. Coyle, Self-Authentication of Au-
dio Signals by Chirp Coding, Proceedings of the 12th In-
ternational Conference on Digital Audio Effects (DAFx-09),
Como Italy, 2009.

[34] J. M. Blackledge, Cryptography and Steganography: New
Algorithms and Applications, (Ed. Stanislaw Janeczko), Cen-
tre for Advanced Studies, Textbook Series 1, Warsaw Univer-
sity of Technology, Poland ISBN: 978-83-61993-05-6, 2012.
http://eleceng.dit.ie/papers/195.pdf

[35] WAV MP3 Converter. http://www.wav-mp3.com

DAFX-8

	1 Introduction
	2 Audio Information Hiding
	2.1 Audio Hiding in the Time Domain
	2.2 Audio Hiding in the Transform Domain

	3 Multi-Channel Information Embedding
	4 Summary
	5 References

