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ABSTRACT

Wavetable synthesis is a popular sound synthesis method enabling
the efficient creation of musical sounds. Using sample rate conver-
sion techniques, arbitrary musical pitches can be generated from
one wavetable or from a small set of wavetables: downsampling is
used for raising the pitch and upsampling for lowering it. A chal-
lenge when changing the pitch of a sampled waveform is to avoid
disturbing aliasing artifacts. Besides bandlimited resampling al-
gorithms, the use of an integrated wavetable and a differentiation
of the output signal has been proposed previously by Geiger. This
paper extends Geiger’s method by using several integrator and dif-
ferentiator stages to improve alias-reduction. The waveform is in-
tegrated multiple times before it is stored in a wavetable. During
playback, a sample rate conversion method is first applied and the
output signal is then differentiated as many times as the waveta-
ble has been integrated. The computational cost of the proposed
technique is independent of the pitch-shift ratio. It is shown that
the higher-order integrated wavetable technique reduces aliasing
more than the first-order technique with a minor increase in com-
putational cost. Quantization effects are analyzed and are shown
to become notable at high frequencies, when several integration
and differentiation stages are used.

1. INTRODUCTION

Wavetable synthesis [[1} 2} 3| 14] is a widely used technique for pro-
ducing musical tones. Its basic form stores one period of recorded
or synthetic sound in a look-up table and retrieves it for playback.
Wavetable synthesis enables the playback of arbitrary sounds, in-
cluding those with a rich harmonic structure, without increasing
the computational complexity. It is consequently often more effi-
cient for such sounds than other synthesis techniques, for instance
additive synthesis [2}13].

There are two different strategies for implementing waveta-
ble synthesis with time-varying timbre: 1) wavetable cross-fading
[1} 2] in which two wavetables are playing at the same time and
2) multiple wavetable synthesis [5] in which many wavetables are
mixed together with their own temporal envelope function. Sam-
pling synthesis is a related method, which uses longer recordings
than one cycle, such as an entire sound event, e.g., a dog bark.

Interpolation can be used during the reading of a wavetable
for changing the pitch of the stored sound, and thus, a large range
of pitches can be generated from just one or from a small set of
wavetables [2]. In this context, interpolation is often called pitch
shifting, but in this paper we call it sample rate conversion to high-
light the change in the spectrum of the sound. Downsampling is
used for raising the pitch and upsampling for lowering the pitch
of a stored waveform, and since the sample rate of the system is
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kept unchanged, such alterations of the sampling period lead to a
change in the fundamental frequency of the tone.

The sound quality of wavetable synthesis is directly related to
the quality of the sample rate conversion algorithm. As in gen-
eral sample rate conversion problems, two classes of errors oc-
cur: imaging and aliasing [6l[7]]. Imaging errors occur independent
of the conversion ratio. In the case of upsampling (pitch-shifting
down), images of the signal spectrum at high frequencies become
audible. These errors can be attenuated below a given limit using
well-established interpolation techniques or lowpass filtering.

Aliasing artifacts arise when a wavetable is downsampled (pitch-
shifting up) and some high-frequency components get shifted above
the Nyquist limit, or half of the sampling frequency. Then the im-
age copy of each such high-frequency component is reflected down
to the audible band. Aliasing ruins sound quality, because it leads
to particularly disturbing audible effects, such as inharmonicity,
beating, and heterodyning [8].

A few different approaches have been proposed to reduce alias-
ing errors in wavetable synthesis. In general, the suppression of
aliasing artifacts requires a variable lowpass filter whose cutoff fre-
quency depends on the conversion ratio. Smith and Gossett have
proposed a bandlimited interpolation algorithm, which explicitly
implements an anti-aliasing filter enabling both the increase and
the decrease of the pitch [9]. Massie has described its application
to wavetable synthesis [3]].

More recently, Geiger suggested a different approach to anti-
aliasing in wavetable synthesis [10]]. It is based on integrating the
signal stored in the wavetable and differentiating the resampled
output signal. This technique was inspired by an alias-reduction
algorithm for bandlimited synthesis of classical analog waveforms
using a differentiated parabolic waveform [11]].

This paper generalizes Geiger’s scheme by using several inte-
grator and differentiator stages for improved alias-reduction. This
work is also motivated by the respective extension of the alias-sup-
pression techniques by high-order differentiated polynomial wave-
forms [[12]. In this paper we consider the new method in the con-
text of basic wavetable synthesis, but it is straightforward to ap-
ply it to wavetable cross-fading, multiple wavetable synthesis, and
sampling synthesis.

The remainder of this paper is outlined as follows. In Section
[2 the interpolation or pitch-shifting needed in wavetable synthesis
is interpreted as a sample rate conversion problem. Section[3]intro-
duces the new higher-order integrated wavetable synthesis method
and considers FIR differentiator designs. In Section ] the effects
of the number of integration and differentiation stages, the order of
the interpolator used, and quantization effects are evaluated. Sec-
tion 5] concludes this paper.
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Figure 1: Hybrid analog/digital model for resampling.

2. WAVETABLE SYNTHESIS AS A RESAMPLING
PROBLEM

2.1. Hybrid Analog/Digital Model for Resampling

Altering the pitch of a waveform by arbitrary ratios corresponds
to accessing, i.e., sampling, the wavetable with different sampling
frequencies. Therefore, artifacts of wavetable synthesis systems
are best characterized in the framework of arbitrary sample rate
conversion.

The hybrid analog/digital model [6}|13] is the most convenient
model to describe arbitrary resampling methods. It is schemati-
cally depicted in Figure A discrete-time input signal z[n], with
input sampling period 7T; or sampling frequency f; = 1/7; is con-
verted into a continuous-time signal by an ideal discrete-to-contin-
uous converter D/C. In the frequency domain, this corresponds to
a replication of the original spectrum, shifted by multiples of the
input sampling frequency f;. These replications are referred to as
images.

This signal is filtered by a continuous-time combined anti-
aliasing/ anti-imaging filter h.(t), yielding the bandlimited signal
z.(t). Sampling with the output period T, corresponding to the
output sampling frequency f, = 1/75, results in the discrete-time
output sequence y[m]. In the frequency domain, sampling corre-
sponds to the superposition of spectral replications of x(t) that
are shifted by multiples of f,. Overlap between these spectra re-
sults in aliasing.

Notwithstanding this continuous-time modeling, resampling
filters are generally implemented entirely in the digital domain.
The main advantage of the hybrid analog/digital model is that the
complete behavior of a resampling algorithm is described by the
impulse response of the continuous-time filter h.(t) or, equiva-
lently, its continuous-time frequency response H.(f).The purpose
of this filter is to attenuate both imaging and aliasing components.
The ideal anti-imaging/anti-aliasing filter is a lowpass filter

A.(f) = {OT

Thus, the cutoff frequency f. depends on the relation between f;
and f,, which is conveniently described by the conversion ratio
R = f,/fi = Ti/T,. If R > 1, corresponding to increasing the
sample rate, the cutoff frequency is constant: f. = f;/2. In case
of downsampling, i.e., R < 1, f. varies as a function of the output
rate: fo = fo/2.

Figure [2] depicts the continuous frequency response of a typ-
ical resampling system for the downsampling case R < 1. The
frequency components between f,/2 and f; /2 are part of the base-
band of the input signal. Incomplete attenuation of these compo-
nents results in aliasing. The components above f;/2 cause an
incomplete attenuation of signal images.
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Figure 2: Continuous frequency response of an ASRC system.

2.2. Application to Wavetable Synthesis

The application of the hybrid analog/digital model to wavetable
synthesis is straightforward, yet it requires some consideration as
there is no explicit sample rate conversion visible from the outside.
The output sampling frequency f, of a wavetable synthesizer is the
fixed sampling rate of the discrete-time signal processing system,
e.g. 44.1kHz for consumer electronics. Likewise, the discrete-
time signal stored in the wavetable has been sampled with a fixed
sampling frequency f;. The conversion ratio used in the resam-
pling process is determined by the ratio between the pitch of the
output signal, termed f in the following, and the original pitch of
the sampled waveform fyz.

To achieve this output pitch, the read pointer within the wave-
table is incremented by f/f.: sample values between successive
output samples. This pitch ratio corresponds to a resampling ratio
R = fuwt/f. Thatis, a decrease of the output pitch with respect
to the original pitch corresponds to an increasing conversion ra-
tio, while an increase of the pitch requires a decreasing conversion
ratio.

The number of wavetables and the respective length of these
tables to represent a single tone are important choices in designing
a wavetable synthesis system. They directly affect the fundamental
pitch of the signals stored in the wavetables and consequently the
used conversion ratios. A particular important question is whether
increasing or decreasing conversion ratios are used. This choice
is also influenced by the spectral content, such as the contained
harmonics, in the stored wavetable signal as well as in the output
signal.

According to the sampling theorem, each wavetable must con-
tain spectral components, for instance harmonics, only up to half
the sampling frequency, thus having a cutoff frequency f. < f;/2.
If the conversion ratio is increasing (R > 1), corresponding to
a decreased pitch, the number of harmonics in the output signal
is not increased. Instead, the output signal is bandlimited with a
cutoff frequency f. = f./R. Thus, higher-order harmonics are
missing in the output. To generate sounds with rich spectral con-
tents, it is therefore necessary to use a relatively large number of
wavetables to avoid such large resampling ratios [[14}[15].

In contrast, increasing the pitch of a sound with respect to the
wavetable corresponds to a decreasing conversion ratio. In this
case, the wavetable may contain rich spectral contents. Conse-
quently, the resampling algorithm must provide effective lowpass
filtering to prevent aliasing, i.e., folding, of signal components
above f,/2 into the output signal. In this case, the output sig-
nal contains all harmonic components of an ideally bandlimited
representation of this sound. Thus, resampling using decreasing
conversion ratios is an attractive choice for wavetable synthesis, as
it does not impose constraints either on the harmonic contents of
the output signal or on the number of required wavetables.

It is noted that the properties of the resampling algorithm is
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not the only factor that determines the number of required waveta-
bles. Depending on the instrument, the characteristics of the sound
event may change too much over the range of desired pitches, thus
preventing the use of a single wavetable. As an example, the un-
desirable rescaling of formants in signals as speech may mandate
the use of multiple wavetables [3]. Nonetheless, we consider the
availability of efficient anti-aliasing algorithms for wavetable syn-
thesis as an attractive means to reduce the computational resources
of sound synthesis applications.

2.3. Conventional Resampling Algorithms

For downsampling, the resampling algorithm requires a lowpass
filter with a variable cutoff frequency that is controlled by the con-
version ratio. While conventional lowpass filters, either based on
a stored set of coefficients or using online designs, are inappro-
priate in most cases, a few resampling algorithms enable arbitrary
downconversion. Smith and Gossett [9] proposed an algorithm
that enables arbitrary conversion ratios. It is based on an oversam-
pled, linearly interpolated impulse response of a continuous-time
lowpass filter. In case of a sample rate decrease, the impulse re-
sponse is sampled with a step size that depends on the output pe-
riod. Hentschel and Fettweis [[16] introduced the so-called trans-
posed Farrow structure. This algorithm is also based on sampling
a continuous impulse response with a step size depending on the
conversion ratio, but enables impulse responses that are piecewise
polynomials of arbitrary order.

However, application of these algorithms to wavetable syn-
thesis results in an unfavorable computational complexity. As the
conversion ratio decreases, corresponding to a significant increase
of the pitch, the sampling of the stored impulse responses becomes
increasingly dense. Thus, more filter coefficients have to be calcu-
lated and applied for a single output sample. As a wavetable syn-
thesizer operates on a fixed external output sampling frequency,
this implies a varying computational complexity which is approx-
imately proportional to the pitch change. Such a behavior is unfa-
vorable for most real-time applications.

2.4. Integrated Wavetables for Alias Reduction

Geiger [10] proposed an entirely different approach to anti-alias
filtering for table lookup oscillators. It stores an integrated repre-
sentation of the waveform in the wavetable. The signal obtained
from the table lookup is filtered by a discrete-time differentiator.
This yields a significant reduction of the aliasing components com-
pared to a simple table lookup. This method is motivated by the
differentiated parabolic wave (DPW) algorithm [[L1] for synthesiz-
ing the sawtooth wave, a classical analog waveform. The DPW
method evaluates a parabolic waveform, which is obtained from
analytic integration of the sawtooth wave, and applies a discrete-
time differentiator to gain an output signal with reduced aliasing.

There are two basic choices in the implementation of the in-
tegrated wavetable method. First, the interpolation method used
in the table lookup determines the imaging error. In [10], the
requested output time is rounded to the nearest wavetable loca-
tion, corresponding to an interpolation filter of order zero. Sec-
ond, there are different designs for discrete-time differentiator. In
the same way as in the DPW method, the integrated wavetable
algorithm uses first-order differentiators, which are the simplest
differentiator design, but show a considerable magnitude roll-off
towards high frequencies.
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Figure 3: Signal flow of the higher-order integrated wavetable al-
gorithm.

3. HIGHER-ORDER INTEGRATED WAVETABLES

This paper proposes the extension of the integrated wavetable al-
gorithms to higher orders of integration and differentiation. Thus,
it follows the same idea as the extension of the DPW algorithm
proposed in [[12] that synthesizes discrete-time representations of
analog waveforms using higher-order polynomials. However, the
application of this algorithms to discrete-time signals stored in
wavetables requires a set of specific decisions and solutions which
are described in the following.

The general structure of the higher-order integrated waveta-
ble synthesis algorithm is depicted in figure[3] The discrete-time
waveform s[n| is K times integrated to form the integrated signal
5" [n] which is stored in the wavetable of length L. This process
is performed offline and does not contribute to the runtime com-
putational complexity. Without loss of generality, the table lookup
process is modeled as an arbitrary resampling process. Thus, it is
represented by the continuous-time interpolation filter h.(¢). The
resulting resampled signal z[m)] is filtered by the discrete-time dif-
ferentiator component, which differentiates the signal K times, to
yield the synthesized output signal y[m].

3.1. Integration of Wavetable Signals

Without loss of generality, we assume that the discrete-time wave-
form s[n] is obtained from sampling a continuous-time signal s(¢)
with sampling period 7. To fulfill the requirements of the sam-
pling theorem, s(¢) is assumed to be bandlimited to the Nyquist
limit f = f;/2 = 2/T;. Under these conditions, a discrete-time
integration of s[n] is identical to an integration of the continuous-
time signal s(t). Let s*)[n] denote the sequence obtained by a
k-fold integration of s[n]. This implies s*)[n] = s[n].

The transfer function of a discrete-time integrator is given by

[e9]

Hi(z) = # => hlklz"", )

k=0
with the associated causal impulse response
hlk]=1 0<k<oo. 3)
Thus, a discrete-time integrator can be stated as a convolution
oo
sMn] =T Zs(k_l)[n] +ea k<1, C))
1=0

where ci denotes an integration constant, a free parameter as known
from integrating continuous functions. Note that the scaling fac-
tor 75 in is required since the differentiator corresponding to
this integration operates at a different sampling period. Thus, the
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wavetable synthesizer is a multirate system, which requires ex-
plicit handling of the scaling factors associated with discrete rep-
resentations of continuous-time signals (e.g. [6}[7]).

By a suitable choice of the integration constants, the infinite
summation (IZ_I]) can be transformed into a finite expression. In [12]],
the constants used in the integration of continuous waveforms are
obtained by solving a linear system. In this paper, we use a differ-
ent approach that determines the free parameter cy, for each of the
successive integrations independently.

As wavetables are typically played back repeatedly, the wave-
form s[n| can be interpreted as a single cycle of a periodic signal
with period L, which can be stated as a condition

s[n+ L] = s[n] forn € Z. ®)
This periodicity should also hold for integrated wavetables, i.e.,
s+ L) =sMn] forneZ. (©6)

This condition can be enforced if the waveform s(*) [n] contains
no DC component, that is,

L-1
Z s®n]=0. N
n=0

The removal of the DC component is a necessary precondition for
the integration, since the integrator has an infinite DC gain, e.g.
[17]. As the waveform is known beforehand, it can be performed
offline using the integration constant

1 Lol
=7 Z‘B 5% [n]. (®)
If the sequence s*~1)[n] is DC-free, then the infinite summation
(@) is reduced to a finite number of terms

sMn) =T, <Zs(k_1)[n] +ck> fork<1,0<n<L.
1=0
)

For s(©) [n], removal of the DC component must be performed, if
necessary, by adding the negative mean () prior to the first inte-
gration.

3.2. Design of the Discrete-Time Differentiators

The ideal discrete-time differentiator of order K has the frequency
response

H; (ejW) = ()5 for —m<w< . (10)

Because this ideal differentiator is not realizable, approximations
of this filter are used in practical implementations (see, e.g., [18]).
These approximations generally deviate from the ideal frequency
response and also induce an implementation delay for causal im-
plementation. In the following, only linear-phase FIR differen-
tiators are considered, which introduce a delay of N/2 samples,
where N is the filter order.

First-order FIR differentiators are widely used in alias reduc-
tion algorithms [L1}[10]. Its transfer function is given by 1 — 2™,
possibly subject to a scaling. In case of higher-order differentia-
tors, cascades of first-order differentiators are used, for instance,

[ H ()|
10 -
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4
2
O()ﬂ 1 1 3 ;uc 171—
el P el

Figure 4: Magnitude response of discrete-time FIR differentiators
of order K = 2. Ideal frequency response: H, id(ej“’), Maximally
Sflat design: Hp, ¢ (ej“), Minimax design: Hpm (ej“’). Parameters
Sfor minimax design: filter length 5K, cutoff frequency w. = 0.97.

in [12]]. It can be shown that a cascade of K first-order differen-
tiator forms a K'th-order differentiator with filter order K that is
maximally flat at w = 0. Its impulse response is determined by

h[k] = (Ik()(—n’“ for0 <k < K. (11
Due to the property of maximum flatness, the frequency response
is very good for low frequencies, but shows a significant roll-off
towards higher frequencies, especially for higher differentiator or-
ders. In wavetable synthesis, this leads to amplitude errors, but
also an inherent reduction of high-frequency aliasing components
(L1, 12].

In this paper, we focus on K-th order FIR differentiators that
are specifically designed to minimize the approximation error over
a wide frequency range. Specifically, we use design methods that
minimize the maximum error, which is referred to as the minimax,
Chebyshev, or Lo, norm. Such filters are obtained using convex
optimization techniques or variants of the Parks-McClellan algo-
rithm [7]. Here, first-order minimax differentiators are designed
by the Matlab firpm method with the ’differentiator’ option, and
higher-order differentiators are obtained by convolving these ba-
sic differentiators. Minimax differentiators are an attractive choice
for higher-order integrated wavetables. On the one hand, they vir-
tually avoid errors of passband components. On the other hand,
minimax differentiators are more sensitive to aliasing errors than
maximally flat designs, as they do not attenuate high-frequency
components.

Figure [d] shows the magnitude frequency response of the con-
sidered differentiators for order K = 2. While the maximally
flat differentiator shows a large magnitude error for higher fre-
quencies, the minimax design approximates the ideal frequency
response very well up to the cutoff frequency w. = 0.97 used in
this example.

To recover the correct amplitude, the output of the differen-
tiator must be scaled by a factor T, %, where T}, is the sampling
period used in the wavetable lookup. This corresponds to the mag-
nitude scaling used in the integration of the wavetable (@).

3.3. The Interpolation Filter

Interpolation filters h.(t) are used to determine the value of the
waveform stored in the wavetable at arbitrary output times. Like
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in conventional wavetable synthesis algorithms, the main purpose
of this filter is the suppress imaging artifacts that otherwise would
be aliased into the output signal. The most simple way to perform
interpolation is to truncate the requested output time, which is re-
ferred to as zero-order hold or drop zero tuning [3]]. Rounding the
output time to the nearest wavetable index is a similar choice that is
used, for instance, in [[10]. More sophisticated methods determine
the output value by interpolation between two or more wavetable
samples adjacent to the requested output time. Without loss of
generality, all interpolation methods used for wavetable synthesis
can be considered as FIR filters with variable coefficients.

Lagrange interpolation is an attractive choice for the integrated
wavetable algorithm, because it has very good quality for lower
frequencies, and allows very efficient implementation [19120]. La-
grange interpolation of order 1 corresponds to linear interpolation.
For resampling applications, only Lagrange interpolators of odd
orders are of interest, since even-order interpolators exhibit infe-
rior image suppression.

3.4. Computational Complexity

Two operations determine the computational complexity of the in-
tegrated wavetable algorithm: the interpolation filter and the dis-
crete-time differentiator. Integration of the wavetables is performed
offline and therefore does not contribute to the computational ef-
fort. The number of interpolation operations is determined by the
external output sampling frequency, which is constant. The dis-
crete-time differentiator also operates at the external output rate.
Thus, the higher-order integrated wavetable algorithms offers a
constant computational effort independent of the pitch change. For
real-time implementations with fixed resource limits, this is a sig-
nificant improvement compared to wavetable synthesis using con-
ventional arbitrary downsampling methods, such as those described
in Section[2.3]

4. PERFORMANCE EVALUATION

This section provides an evaluation of the performance of the in-
tegrated wavetable synthesis algorithm and investigates the influ-
ence of several parameters, such as the integration or interpolation
orders, on the quality of the output signal.

As test signal, we use the sawtooth wave, a classical analog
waveform ubiquitously used in sound synthesis, e.g. [21} 14} [15].
The sawtooth wave is also a common example for alias-suppres-
sion algorithms [[11} 10, [12]]. The wavetable contains a single pe-
riod of the integrated sawtooth wave, thus the wavetable synthe-
sizer is used in the style of a table lookup oscillator. The analog
sawtooth wave has a rich, non-bandlimited spectrum and its har-
monics fall off with a relatively low rate of about 6 dB per octave.
Consequently, algorithms for synthesizing sawtooth waves require
effective anti-aliasing capabilities, thus making it a sensible, criti-
cal test signal for the methods considered here.

Throughout this evaluation, a sawtooth wave with a funda-
mental frequency of f = 1245 Hz is used with a sampling rate
of f; = 44.1kHz and a wavetable length of L = 1024 samples,
corresponding to a conversion ratio of R = f,/(f x L) ~ 0.0346.
The signals are synthesized in the time domain. As in [[11}12]], the
output spectra are obtained by windowing the time-domain signal
with a Chebyshev window having a sidelobe attenuation of 120 dB
and a discrete Fourier transform. The spectra are compensated for

the magnitude loss due to windowing, i.e., the coherent gain [22],
which is about 9.4 dB for this Chebyshev window.

4.1. Integration and Interpolation Order

Figure[5]shows the output spectra of the integrated wavetable syn-
thesis algorithm for different integration and interpolation orders.

The ideal bandlimited sawtooth wave is illustrated in Figure
[5a] Its harmonics are truncated to half the sampling frequency.
Thus, this signal is conveniently represented by the Fourier series

2N ()R orfn fs
s[n] ﬂ'kZ:l A sin( 7. ) with K \‘QfJ .
12)
Figure [5b] shows the spectrum generated by a trivial table lookup
algorithm where the samples are obtained by rounding the out-
put instants to the nearest wavetable index. This round-to-nearest
scheme can be also considered as interpolation of order zero. The
resulting spectrum contains are large number of spectral compo-
nents, caused by aliased harmonics contained in the wavetable.

The spectrum generated from an integrated wavetable of or-
der K = 1 combined with round-to-nearest wavetable lookup is
shown in Figure This is basically the algorithm proposed by
Geiger [10], although a minimax differentiator is used here instead
of a first-order differentiator. Due to the integration/differentiation
scheme, the amount of aliasing is significantly reduced compared
to the simple table lookup. However, as observed in Figure [5d} an
increase of the integration order to K = 2 does not increase the
quality of the output signal, but increases the amount of aliased
components. An analysis reveals that these components are due to
the lack of an effective anti-imaging (or interpolation) filter in the
resampling process. Replacing the round-to-nearest table lookup
with a linear interpolator, which is equivalent to a Lagrange inter-
polator of order N = 1, yields a considerable reduction of aliasing
components. This is shown in Figure[5¢}

As depicted in Figure [5] an increase of the integration order
to K = 3 yields a further reduction of aliasing components. Most
notably, the rate of decay of the dominant errors, which result from
the first reflection of alias components, increases as a function of
the integration order K. At the same time, the minimax differ-
entiator design preserves the amplitudes of the harmonics of the
bandlimited sawtooth wave irrespective of the integration order.
This is an advantage over existing algorithms based on maximally
flat differentiators, e.g. [12] that exhibit a roll-off towards higher
frequencies which increases as a function of the integration order.

However, for K = 4, new aliasing components are introduced
into the output spectrum as depicted in Figure[5g] Again, increas-
ing the quality of the anti-imaging interpolation filter eliminates
these artifacts. This is shown in Figure[Sh] which shows the output
of an integrated wavetable synthesis algorithm of integration order
K = 4 combined with a Lagrange interpolator of order N = 3.

Figures [51] and [5]] show the spectra for integrated wavetables
of order K = 5 and K = 6, respectively. It is observed that the
increase of the order results in an increased rate of decay of the
dominant aliasing components.

These examples show that integrated wavetable synthesis with
higher integration orders may yield significant performance im-
provements over trivial table lookup algorithms or first-order in-
tegrated wavetables. However, as the integration order increases,
effective interpolation filters become mandatory in order to exploit
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Figure 5: Discrete-time spectra of integrated wavetable synthesis. Sawtooth wave as test signal, fundamental frequency f = 1245 Hz,
sampling frequency f; = 44.1kHz, discrete-time differentiators designed according to the minimax (Loo) norm. K denotes the order of
integration/differention, and N is the order of the Lagrange interpolator.
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this potential performance gain. The quality (or order) of the in-
terpolation filter should be matched to the integration order. While
a higher-order integrated wavetable requires a good interpolation
method, increasing the quality of interpolation does not improve
the image-suppression properties of a low-order integrated wave-
table.

4.2. Quantization and Roundoff Errors

The structure of the integrated wavetable synthesizer makes it sus-
ceptible to quantization and arithmetic roundoff errors. From the
frequency-domain viewpoint, the basic working principle is an
attenuation of high-frequency components by the integrator fol-
lowed by the restoration of these components by the discrete-time
differentiator. Thus, depending on the order of integration, the
differentiator provides large gains of high frequency components.
Consequently, errors in these frequency regions, which are intro-
duced by quantization of the wavetables or arithmetic errors in the
interpolation process, are amplified in the output signal.

This section analyzes the influence of a quantized wavetable
on the quality of the output signal. To avoid the effect of magni-
tude scalings of the wavetable, this analysis operates on a float-
ing-point algorithm. As in the classical quantization model for a
uniform quantizer, e.g. [23| (7], the quantization noise is modeled
as a uniformly distributed noise signal. The quantization step size
Q of the wavetable signal x[n] is given by
max(z[n]) — min(z[n])
Q= = :
where b denotes the quantization wordlength in bits. Then, the
quantization is modeled as additive noise e[n] that is uniformly
distributed in the interval [—Q/2, Q/2] [23]

13)

zq[n] = z[n] + e[n] with e[n] = %rect(e/@) . (14)

The effects of quantizing the integrated wavetables on the spec-
trum of the output signals are demonstrated in Figure[6] For this
analysis, the sawtooth wave introduced in the preceding section
with a fundamental frequency of f = 1245 Hz and a FIR differen-
tiator designed with respect to a L, (minimax) error norm is used.
Figure [6a] depicts the spectrum obtained from a third-order inte-
grated wavetable with 3rd-order Lagrange interpolation and quan-
tization corresponding to a wordlength of 24 bit. It is observed that
this quantization introduces some additional high-frequency noise
to the output signal compared to the unquantized version (Figure
[Bh). Figures [6b] shows the spectrum for a wordlength of 20 bit.
It is apparent that the power of the deteriorating noise increases
relatively rapidly as the wordlength decreases.

To observe the influence of the integration order, Figure
shows the spectrum of a fifth-order integrated wavetable algorithm
quantized to 24 bit. While the quality of the unquantized algorithm
(Figure |51)) is superior to the corresponding fourth-order waveta-
ble (Figure[5h), this relation reverses even for very small levels of
quantization noise. This is observed by comparing Figures [6a] and
Decreasing the wordlength to 20 bit results in a disproportion-
ate increase of the noise, as shown in Figure[6d]

Thus, the sensitivity to quantization errors increases with the
integration order. As conjectured above, this effect is due to the
large high-frequency amplification of higher-order discrete-time
differentiators. This implies that errors due to finite-accuracy arith-
metic or imperfections of the interpolation algorithms are ampli-
fied in the same way.

While the magnitude of the quantization effects depends on
the specific differentiator design, the underlying problem is inher-
ent to the integrated wavetable algorithm. Additional tests with
maximally flat differentiators have shown a reduced level of quan-
tization noise at the expense of an increased roll-off of higher-or-
der harmonics, but the qualitative effect remains.

5. CONCLUSIONS

In this paper, we considered the application of higher-order inte-
grated wavetables to provide efficient anti-aliasing for wavetable
synthesis, including table lookup oscillators. Wavetable synthe-
sis algorithms with decreasing conversion ratios are an attractive
choice, as they enable the synthesis of spectrally rich sounds from
a small set of wavetables. However, the use of such conversion
ratios requires effective anti-aliasing techniques.

‘We show that integrated wavetables with higher orders of inte-
gration can achieve significantly improved anti-aliasing compared
to first-order integration. This technique is particularly interesting
because, unlike existing anti-aliasing solutions known from sam-
ple rate conversion, its computational effort is independent of the
conversion ratio. Moreover, the use of discrete-time differentia-
tors designed according to the L, norm avoids amplitude errors
of the harmonics of the bandlimited signal, avoiding the magni-
tude roll-off often associated with algorithms based on cascades of
first-order differentiators.

However, two important issues must be considered when im-
plementing higher-order integrated wavetables. First, unlike the
first-order case, an effective interpolation filter must be used, and
the order of the interpolation filter must be adapted to the order of
integration. Second, the combination of higher-order integration
followed by a higher-order differentiator may show an increased
sensitivity to quantization effects in the stored wavetables as well
as the arithmetic accuracy. Thus, the use of higher-order integrated
wavetables requires careful trade-offs between the order of integra-
tion, the quality of the interpolation filter, and the wordlength and
the numerical accuracy used in the implementation.

Audio examples and supplementary material related to this
work are available online athttp://www.idmt . fraunhofer.
de/andreasfranck/dafx2012hoiws|
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