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ABSTRACT

We describe techniques for implementing real-time partitioned con-
volution algorithms on conventional operating systems using two
different scheduling paradigms: time-distributed (cooperative) and
multi-threaded (preemptive). We discuss the optimizations applied
to both implementations and present measurements of their perfor-
mance for a range of impulse response lengths on a recent high-end
desktop machine. We find that while the time-distributed imple-
mentation is better suited for use as a plugin within a host audio
application, the preemptive version was easier to implement and
significantly outperforms the time-distributed version despite the
overhead of frequent context switches.

1. INTRODUCTION

Partitioned convolution is a technique for efficiently performing
time-domain convolution with low inherent latency[1]. It is partic-
ularly useful for computing the convolution of audio signals with
long (>1 second) impulse responses in real time, as direct con-
volution becomes too computationally expensive and block-FFT
convolution incurs unacceptable latency.

Much of the existing work on partitioned convolution has fo-
cused on optimizing the computational pieces of the algorithm, i.e.
efficiently implementing FFTs and spectral multiplications[1][2][3]
and finding computationally optimal partitionings[4]. In this pa-
per, we focus on how to most effectively schedule the necessary
computations on a personal computer using a conventional operat-
ing system.

We investigate the performance of two scheduling approaches
for non-uniform partitioned convolution: a multi-threaded, pre-
emptive approach and a cooperative, time-distributed approach. Is-
sues we explore include performance, compatibility with existing
audio hosts, and programming effort.

In Section 2, we cover the basics of non-uniform partitioned
convolution. Sections 3 and 4 cover the implementation of the pre-
emptive and cooperative approaches, respectively, and Sections 5
and 6 present and discuss the performance results and their impli-
cations.

2. ALGORITHM OVERVIEW

Convolution is a mathematical operation commonly used to per-
form finite impulse response (FIR) filtering on a signal:

y[n] =

L−1∑

k=0

x[k]h[n− k] (1)

Where x and y are the input and output signals, respectively, and
h is the length-L impulse response of the FIR filter.

The above direct method of convolving two signals has no in-
herent latency but carries with it a large computational cost per
output sample (O(L) multiply-adds per output sample). Because
of this, real-time convolution with larger impulse responses is usu-
ally carried out using block FFT-based methods, like overlap-add
and overlap-save. These methods take the FFTs of the impulse
response and a buffered portion of the input signal, multiply them
together in the frequency domain, and take the inverse FFT of their
complex product to compute a portion of the output signal [5].
Computing convolution in this way requires significantly less com-
putation (O(logL)) at the expense of increased latency due to
buffering.

2.1. Uniform Partitioned Convolution

In order to obtain a compromise between computational efficiency
and latency, we can partition the impulse response into a series
of smaller sub-filters which can be run in parallel with appropri-
ate delays inserted. Each sub-filter’s output is computed using a
block-FFT method, and the outputs of all sub-filters are summed
to produce a block of the output signal, as shown in Figure 1.
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Figure 1: Top – Partitioning of an impulse response into 3 parts.
Bottom – Steps involved in computing the above 3-part uniform
partitioning.

If the original length-L filter is partitioned into sub-filters of
size N , we perform O(logN) operations per sub-filter per output
sample but have reduced the latency from L to N . This scheme
works well but can become infeasible if low latency is required
for filters longer than a second or two. For example, if 1.5ms pro-
cessing latency is desired (64 samples at 44.1kHz), a 92ms (4096

DAFX-1

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-313



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

sample) filter would need to be cut into 64 sub-filters, while a 6sec
(262144 sample) filter would require 4096 sub-filters.

Within this uniform partitioning scheme, we can save previ-
ously computed forward FFTs for reuse in subsequent sub-filters.
Additionally, linearity of the FFT allows us to sum the complex
frequency domain output of each sub-filter before taking the in-
verse FFT, which reduces the number of inverse FFTs required to
one. In Figure 1, these optimizations would be made by replacing
the FFT/IFFTs with a single FFT before the delays and a single
IFFT after the sum as shown in Figure 2. Because we are now
delaying frequency-domain data, Garcia refers to this method of
computing a uniform partitioning as a Frequency-domain Delay
Line (FDL) [4].
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Figure 2: Frequency-domain Delay Line (FDL)

Even with this FDL optimization, the computational cost of
uniform partitioned convolution (influenced primarily by the num-
ber of complex multiplications and additions of frequency domain
coefficients) scales linearly with the impulse response length and
its use becomes impractical for very long impulse responses.

2.2. Non-Uniform Partitioned Convolution

Non-uniform partitioned convolution attempts to improve upon the
computational efficiency of the uniformed partitioned convolution
method by dividing the impulse response into partitions of various
sizes. The approach is to use shorter partitions near the beginning
of the impulse response to achieve low latency and longer parti-
tions towards the end to take advantage of increased computational
efficiency. In [1], Gardner describes how to use such a mix of par-
titions sizes to improve efficiency without sacrificing latency.

Gardner suggests a partitioning scheme that increases the par-
tition size as quickly as possible, as shown at the top of Figure 3.
However, Garcia [4] points out that since the FDL optimization
can be applied to each block size used in a non-uniform partition-
ing, it is usually more efficient to use more partitions of a given
size (bottom Figure 3) before moving to a larger partition size [1].
Therefore, we can view a non-uniform partitioning as a parallel
composition of FDLs of increasing block size.

In longer FDLs, execution time is dominated by complex mul-
tiplication and summation. These operations can be optimized by
viewing the complex multiplications as convolutions performed
in the frequency domain and applying techniques described by
Hurchalla [3] for efficiently performing running convolutions with
short to medium length sequences. It is also possible to reduce
FFT-related computations by computing the larger FFTs from the
intermediate values of smaller FFTs [1]. Additional computational
improvements include enhancing FFT and complex arithmetic ef-
ficiency via system-specific optimizations such as using SIMD in-
structions and cache-aware tuning [6].

FDL-based non-uniform partitioned convolution is a very com-
putationally efficient approach to low-latency real-time convolu-

128x2, 256x2, 512x2, 1024x2, 2048x2, 4096x2

128x14,  1024x14

Figure 3: Two non-uniform partitionings of an impulse response
of length 16128 with N = 128. Top – Gardner partitioning with 6
FDLs. Bottom – Optimal Garcia partitioning with 2 FDLs.

tion; however, a real-world implementation of this approach still
leaves many decisions to be made, the most important being: how
should we schedule all of this computation on a conventional op-
erating system? We cover two approaches to scheduling in the
following two sections.

3. PREEMPTIVE IMPLEMENTATION

A non-uniform partitioning consists of multiple FDLs which ex-
ecute concurrently but perform their processing during different
time periods. The shortest period, which should be equal to the
audio callback interval, is associated with the primary FDL. Sub-
sequent FDLs use larger block sizes and therefore have longer pe-
riods. In order to avoid having to process longer FDLs within a
single callback interval, Gardner suggests that longer FDLs be al-
lowed to run for a time interval equal to their period, rather than
within a single callback period. This helps to preserve uniform
processor loading. Figure 4 illustrates processing boundaries in
time (arrivals and deadlines) for a partitioning with 3 FDLs.

Impulse Response Partitioning

FDL 3

FDL 2

FDL 1

Time

Callback

FDL Scheduling Deadlines

Figure 4: Top – Example non-uniform partitioning with 3 FDLs.
Bottom – Scheduling boundaries of FDL tasks. Arrivals/deadlines
are denoted by vertical lines.

3.1. Computation

In order to maintain a dropout-free audio stream, we must ensure
that all of an FDL’s computations are complete by its processing
deadline. In our case, the bulk of the processing time is spent
computing FFTs and performing complex arithmetic. A popular
choice for a portable FFT library is FFTW[7], which performs well
on a wide variety of platforms by performing an “auto-tuning” step
where it measures the performance of many FFT sub-routines and
picks the fastest combination for the target system.
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For longer FDLs (those containing more partitions), the com-
plex multiply-add (Cmadd) routine becomes the computational bot-
tleneck. We implemented several versions of the Cmadd routine,
with the performance of each shown in Figure 5. The slowest rou-
tine uses the built-in complex type defined in GCC’s complex.h
in a simple for-loop. Our “naive” version computes the real and
imaginary components in separate lines of code. The “SIMD”
version makes full use of Intel’s SSE/SSE3 SIMD instructions.
The “naive” and “SIMD” versions were further optimized using 4x
manual loop unrolling (“+unroll”), which reduces indexing arith-
metic and helps the compiler better take advantage of instruction
level parallelism. The “complex.h” version saw no improvment
from loop unrolling. Performance numbers in this section were
produced using Apple’s version of GCC 4.2 and our Mac OS X
10.6 test platform, which consists of a MacBook Pro running a
2.66GHz Intel Core 2 (Penryn) processor. On this platform, the
“SIMD+unroll” routine performed 4x–15x faster than the com-
plex.h routine and 2x–8x faster than the naive routine
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Figure 5: Cmadd routine running time as a percentage of FDL
period

To put the absolute execution times of these routines in per-
spective, for an audio I/O buffer size of 32 samples at 44.1kHz,
the callback interval is 725µs. A first level FDL will do one FFT
and one inverse FFT each of size 64, and it will run the Cmadd
routine once for every partition in the FDL. On our Mac test plat-
form, FFTW’s out-of-box forward and reverse FFT routines take
1.1µs and 0.32µs respectively, while the routines chosen using
“FFTW_PATIENT” auto-tuning take 0.27µs and 0.25µs. The naive
Cmadd routine takes 0.18µs per partition, while the optimized rou-
tine takes 0.075µs. At this block size, the optimized Cmadd rou-
tine allows this first-level FDL to handle more than two times as
many partitions with the same processor load.

Finally, buffering operations in our Linux implementation greatly
benefited from the use of asmlib[8], which includes optimized
memory movement routines (memset, memcpy, etc) which can
perform up to 10x faster than the default versions used by glibc
for properly aligned memory regions.

3.2. Scheduling

As shown in Figure 4, the FDLs run concurrent tasks with differ-
ent execution periods and deadlines. Because of this, we run each

FDL in its own thread, which allows an FDL with an earlier dead-
line to preempt one with a later deadline. However, as we will
discuss later, the inclusion of preemptive multi-threading within
this implementation can cause problems when sharing computing
resources with other audio processing tasks.

In our implementation, we use the POSIX threads (pthreads)
API[9], to create and manage the execution and scheduling of
worker threads. For each FDL, we create a worker thread that is re-
sponsible for executing the FFTs and complex artithmetic required
by the FDL. Synchronization of the worker threads and buffer-
ing/mixing operations are performed in the audio callback thread,
which has the highest priority in the system and should preempt
any other running threads. Since the primary FDL has the same
period as the callback, we have the option of running it in the call-
back thread to avoid unnecessary context switches.

In order to get the worker threads to respect the real-time dead-
lines of one another, we use a fixed-priority scheduling policy with
higher priorities assigned to FDLs with shorter periods. On Linux,
we use the “SCHED_FIFO” real-time policy with a max prioritiy
of 99, and on Mac, we use the “precedence” policy with a max
priority of 63. We avoid using OS X’s “time constraint” policy
(except when running the first FDL in a separate thread from the
callback) because, even though this is the highest-priority policy
recommended for real-time performance, the way that it schedules
multiple threads is unpredictable, and using the precedence policy
yielded much more stable audio output.

3.3. Thread Synchronization

Thread synchronization mechanisms typically rely on operating
system calls, which can adversely affect real-time performance
due to the variability in their execution times. Because of this,
optimizing the synchronization between threads yielded the most
significant performance improvements to our preemptive imple-
mentation.

We use two basic synchronization tasks in this implementa-
tion. In the first sync task, the main thread sends signals to worker
threads telling them when to start. In the second, the worker threads
signal the main thread when they are done. To implement these
operations, we use condition variables (condvars) and mutex locks
from the pthreads library. Condition variables provide a mecha-
nism for a thread to sleep until it receives a signal from another
thread, and mutexes enable a thread to lock a shared memory re-
gion to prevent other threads from simultaneously accessing it.
Signaling and waiting on a condvar require system calls, as does
locking and unlocking a mutex, so we would like to minimize our
use of these routines.

In a naive approach to these sync tasks, each of the worker
threads would have its own condvar to wait on, and the main thread
would have its own set of condvars to wait on (one for each worker
thread). The main thread would signal each of the worker threads
that need to be started during the current callback via their cond-
vars. Then the main thread would wait on the condvars that corre-
spond to the worker threads that have deadlines during the current
callback. Worker threads communicate their completion by sig-
naling the corresponding condvar belonging to the main thread.

The problem with this approach is that if we have T worker
threads, the main thread may need to send up to T condvar signals
or wait on up to T condvars during a single callback. Using system
traces, we measured these condvar operations to take between 3µs
and 40µs (not including actual waiting time), so a few condvar ops
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could fill a significant portion of the callback period, leaving no
time for actual computation or audio I/O.

In order to reduce the number of condvars required, we can re-
organize the synchronization so that all worker threads that need to
be started during a single callback are waiting on a single, specific
condvar. Then only a single broadcast condvar signal is needed
from the main thread to start the workers. Likewise, the main
thread can wait on a single condvar that is signaled by the worker
thread that is last to finish. The problem with this approach is that
in order for the worker threads to keep track of which is last to
finish, they must all access a shared counter. If we protect this
counter with a mutex, lock contention between the threads is in-
troduced which can significantly stall their completion.

To remedy this lock contention problem, we can use atomic
operations (we use the gcc builtin routines [10]), which elimi-
nates all system calls caused by lock contention. If the worker
threads atomically increment the shared counter when they com-
plete, changing the value of the counter and getting its new value
appear to occur instantaneously, negating the need for locks. This
guarantees that the last thread to increment the counter will see the
target counter value and know that it should send the completion
signal to the condvar of the main thread. In addition, using atomic
ops here allows the main thread to simply check if the counter has
reached its target without having to acquire a mutex and before
waiting on a condvar.

These synchronization methods allow us to get close to 100%
CPU utilization on a single core without audio dropouts. Figure 6
shows how this approach works on a machine with 3 processor
cores for a partitioning that uses 3 FDLs with the first FDL exe-
cuting in the main callback thread. The period of the second FDL
is twice that of the callback, and the third FDL has a period four
times that of the callback.

3.4. Processing Multiple Channels

If we simply duplicated the scheduling and synchronization tech-
niques outlined above for every channel when processing multiple
channels, we would end up with a lot of redundant synchroniza-
tion and probably a lot more threads than processor cores. To avoid
this, FDLs belonging to different channels but with the same block
size can be run in the same thread, since these FDLs all have the
same arrivals and deadlines. Then the synchronization operations
are shared amongst the channels, there is no extra synchronization
overhead, and we keep the thread count low.

3.5. Targeting Multi-Core Architectures

The methods described above work fine when running on a sin-
gle processor, because the thread priority assignments discussed
in Section 3.2 will grant the processor to the thread with the most
imminent deadline. When we have more than one processor core
to work with, we can decide which core each thread should run on.
Normally, the operating system will decide this for us, but this can
yield suboptimal performance.

In Linux, we have the option of pinning threads to specific
cores using non-portable (NP) extensions to the POSIX threads
API. If we have at least as many cores as FDL levels, we could pin
each FDL thread to its own core. This should minimize the number
of preemptions and context switches. If we don’t have enough
cores to do this, we could still achieve a significant reduction in
context switching by distributing the FDL threads evenly across
the cores.

When processing multiple channels, another approach would
be to create multiple worker threads per FDL level. This allows us
to put the work belonging to a subset of the channels on each core,
which would yield better load balancing across cores and possibly
better memory locality. Because we would still be running all FDL
levels on each core, there would still be lots of context switching,
as in the single core case. We report on the performance of these
thread pinning approaches in Section 5.

3.6. Choosing the Partitioning

After making all the low-level computational and scheduling de-
cisions, we still have to decide how we will partition our impulse
response(s). The approach in the Gardner paper is to double the
block size every two partitions[1], but this approach fails to take
advantage of FFT reuse and linearity within FDLs. Garcia has pro-
posed a dynamic programming algorithm that determines an opti-
mal partitioning in terms of number of mathematical operations[4];
however, this method fails to take into account actual execution
time on the target system. The actual execution times of FFTs and
Cmadd routines operating on variably sized arrays can vary widely
across hardware architectures and software implementations. This
is why we feel it is important to measure the actual performance
of the FDL work we are doing when choosing a partitioning, not
unlike FFTWs “auto-tuning” stage.

Since we have real-time constraints, we must consider the worst-
case performance of each FDL. In order to estimate the worst-
case performance of an FDL of a certain block size and number
of partitions, we pollute the L2 cache of our target machine prior
to each execution of the FDL. The maximum-observed execution
time then becomes our worst-case estimate.

To determine a best partitioning from these performance num-
bers, we search for the valid combination of FDLs that has the
lowest overall worst-case processor load. The processor load of
each FDL is calculated by dividing its maximum-observed execu-
tion time by its period. We found that it was unnecessary to search
the entire FDL space since – for a specific block size – the search
would always choose the minimum number of partitions required
by the block size of the subsequent larger FDL; therefore, the num-
ber of partitions in each FDL was restricted to powers of two.

4. TIME-DISTRIBUTED IMPLEMENTATION

An alternative implementation strategy for non-uniform partitioned
convolution is to perform all the necessary computation within a
single thread, manually partitioning the work such that the work-
load is spread as evenly as possible across processing frames. This
requires that during each frame, in addition to doing the processing
for the smallest FDL, we also perform a fraction of the processing
for each larger FDL. Implementing this approach required signifi-
cantly more programmer effort and a deeper understanding of the
underlying mathematics than the previously described preemptive
approach, since we cannot rely on existing external libraries (e.g.
FFTW) to perform all of the computational “heavy lifting.” Al-
though our time-distributed implementation isn’t as flexible as the
preemptive version (it only supports partitionings with two FDLs),
it has the benefit of fitting the existing model of plugins executing
within an audio host application, where a plugin is expected to do
its real-time processing within the context of a single high prior-
ity thread. Currently none of the audio host applications we are
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Figure 6: Preemptive-version synchronization walkthrough for a 3-FDL partitioning running on 3 cores.

aware of provide mechanisms for plugins to create and schedule
the execution of additional high priority threads.

Our time-distributed implementation utilizes a technique de-
scribed by Hurchalla in [2] to perform the work associated with
a two level partitioning within the context of a single thread in a
load balanced manner. Hurchalla describes how to apply radix-2
and radix-4 decimation in frequency (DIF), possibly in a nested
fashion, to distribute the computation of a single channel of non-
uniform partitioned convolution with two FDLs (where the sec-
ondary FDL is 4, 8, or 16× the size of the primary FDL) rela-
tively evenly across multiple frames. DIF decomposes an input
sequence into multiple subsequences which have the property that
their FFT coefficients are a subset of the the FFT coefficients of
the input sequence. FFT-based block convolution involves three
steps: calculating the forward FFT of an input sequence, perform-
ing a complex multiplication of the resulting FFT coefficients with
those of a stored impulse response, and finally computing an in-
verse FFT to produce an output sequence. By applying DIF to an
input sequence and performing the three aforementioned steps on
the resulting subsequences during multiple frames, it is possible to
distribute the calculations for the secondary FDL across multiple
callbacks.

When using only a single stage of DIF, the work can be dis-
tributed across frames as shown in Figure 7(a). In this example, a
single stage of radix-2 DIF is used to distribute the work associ-
ated with a secondary partition that is 4× the size of the primary
partition across 4 frames.

During frames 1–4, incoming samples are buffered and a radix-
2 DIF is applied to transform the input sequence Ain into the two
subsequencesA1 andA2. During frame 5, the FFT of subsequence
A1 is calculated and half of the resulting FFT coefficients are mul-
tiplied with those of the impulse response. The second half of the
complex multiplications are performed during frame 6, after which
the IFFT of the resulting coefficients is computed. The same op-
erations are performed on the subsequence A2 during frames 7
and 8. Finally, an inverse DIF is applied to the two subsequences
computed during frames 9–12 and the resulting real sequence is
the output sequence Aout. In this example, the workload is per-
fectly balanced across frames since the same amount of work is
performed for each of the 3 steps (input, intermediate, output) that
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Figure 7: Time-distributed processing walkthrough. (a) Secondary
partition 4x primary partition (b) 8x primary partition

are performed during each frame.
Figure 7(b) illustrates one way to distribute the work for a sec-

ondary partition that is 8× the size of the primary partition by
using two nested stages of radix-2 DIF. During frames 1–8, input
samples are buffered and DIF is applied as in the previous exam-
ple, but the work is spread out over twice as many frames. During
frame 9, the first part of a radix-2 DIF is applied to subsequenceA1

to generate a new subsequence A11. The FFT of this sequence is
computed, and half of the complex multiplications of the resulting
FFT coefficients with the impulse response FFT coefficients are
performed. The second part of the radix-2 DIF is computed during
frame 10 to produce the subsequenceA12. The FFT and half of the
complex multiplications are performed, as for subsequence A11

during the previous frame. During frame 11, the second half of the
complex multiplications started in frame 9 are completed, the IFFT
is computed and half of the inverse DIF is performed. Finally dur-
ing frame 12 the complex multiplications started in frame 10 are
finished and the second portion of the inverse DIF calculation is
concluded, resulting in a complete output sequence corresponding
to the input sequence A1. The same computations are performed
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on the sequence A2 during frames 13–16, and the resulting output
sequence is combined with the one from frames 9–12 to produce
the output sequence Aout during frames 17-24. Unlike the pre-
vious example, in this case the workload isn’t perfectly balanced
because the work associated with the nested forward and inverse
DIF steps varies somewhat across frames. For more details, see
[2].

The time-distributed partitioned convolution implementation
we evaluate in Section 5 uses two stages of radix-4 DIF to de-
compose the input sequence to the secondary FDL into 16 subse-
quences. During each frame of processing, we take the FFT of one
of the input subsequences and perform half of the complex mul-
tiplications with the impulse response FFT coefficients. During
a subsequent frame, we perform the second half of the complex
multiplications and take the inverse FFT of the resulting values.
This enables us to distribute the FFT, complex multiplication, and
inverse FFT steps relatively evenly across 32 processing frames.
We use FFTW to perform the “leaf-level” FFT calculations. Dur-
ing each frame we also do a portion of the forward and inverse
DIF decomposition for the previous block of input and the cur-
rent block of output. This processing is not perfectly distributed
across frames, resulting in a slight imbalance of the work done
from frame to frame. The measured variation in execution time
across frames for this implementation is less than 5 percent.

In [3], Hurchalla describes a method for applying nested short-
length acyclic convolution algorithms to improve the computa-
tional efficiency of the complex arithmetic performed in the fre-
quency domain. The basic idea is to treat each frequency bin in
each partition of the impulse response as a sequence, and to per-
form a running convolution between this sequence and the corre-
sponding frequency bin of the FFT of the input signal. We imple-
mented a basic version of Hurchalla’s scheme, using a single stage
of 3-partition acyclic convolution. These convolution routines, as
well as the routines used to perform the forward and inverse radix-
4 decomposition steps, were hand optimized in assembly using
the SSE extensions to the x86 ISA. While this scheme did reduce
the overall amount of work done (in terms of the total number of
floating point operations executed), we found that the variation in
execution time from frame to frame was greater than when using
a naive implementation of convolution. This resulted in a longer
worse case execution time, which meant that the version of the
code that included the optimized convolution routines was never
able to concurrently process as many independent channels of con-
volution as the version using the naive convolution routines. For
this reason, we do not include an evaluation of the code using this
optimization in the following section. Hurchalla also discusses
various techniques to time distribute work across multiple frames
when working with multiple channels. We did not implement any
of these techniques – when operating with multiple channels, our
implementation processes each channel independently.

5. EXPERIMENTAL RESULTS

In this section we present and analyze performance measurements
of our preemptive and time-distributed implementations of parti-
tioned convolution. The machine used to perform the benchmark-
ing was a Mac Pro with two 2.66 GHz 6-core Intel Xeon “West-
mere” processors and 12GB of memory, running Linux 2.6.35
with low-latency realtime patches applied. We only enabled one
of the two sockets and disabled Hyperthreading for all the ex-
periments described in this section. A 10-channel ethernet audio

interface[11] was used for I/O. This audio device behaves simi-
larly to a Firewire or USB based device but uses Ethernet as its
transport. All experiments were performed at a sample rate of
44.1 kHz using a 64 sample frame size. The impulse response
lengths we considered range from 16,384–524,288 samples (0.4–
11.9 seconds). To make our results as deterministic as possible, we
disabled all frequency scaling mechanisms present in the operat-
ing system, as well as Turbo Boost (hardware based opportunistic
frequency scaling) in the CPU.

Each implementation was written as a standalone application
that takes arguments specifying the number of channels (instances)
of convolution to perform and the impulse responses to use. For
the preemptive implementation the partitioning must be specified
whereas for the time-distributed version it is fixed (two partitions,
the second being 32× the size of the first). All implementations in-
terface with the audio subsystem using the ALSA API (the Linux
audio interface standard) directly – as opposed to using a cross-
platform library (such as PortAudio) or daemon (such as JACK) –
in order to minimize overhead. Communication between the appli-
cation and OS is done through shared regions of memory mapped
into the application’s address space, and the OS notifies the appli-
cation that a new frame of audio is ready by executing a callback
function asynchronously in a high priority thread.

5.1. Single-Core Measurements

For our first experiment, we disabled all but a single core in the
system and recorded the reported CPU utilization (averaged over
one second) for three different configurations executing the same
workload. The workload was 16 independent channels of parti-
tioned convolution, and the three configurations were: preemptive
using two FDLs, preemptive using the empirically derived optimal
partitioning (ranging from 3–5 FDLs), and time-distributed. The
results are presented in Figure 8.

The time-distributed and preemptive two-level implementa-
tions use the same partitioning so we might expect them to exhibit
a similar computational load. This is true for the smaller parti-
tion sizes, but for larger partition sizes with more computationally
intensive workloads, the time-distributed implementation appears
to have a clear advantage. We hypothesize that this is due to the
overhead of context switches and system calls needed for preemp-
tion and synchronziation in the preemptive version. Each context
switch or system call requires a trap into supervisor mode and the
operating system kernel which incurs significant overhead. The
preemptive version using the optimal partitioning scheme outper-
forms all others by a wide margin.

Our second experiment was to measure how many instances
(independent channels of convolution) each implementation was
capable of running without experiencing any missed deadlines or
dropouts. This experiment was also performed using only a sin-
gle core. We increased the number of instances until we reached
the highest point that ran dropout-free for 60 seconds. Figure 9
illustrates the results, which are quite different from what the re-
sults of the previous experiment would suggest. In this case, the
two-level preemptive implementation is able to achieve more con-
current instances without dropouts than the time-distributed ver-
sion. We believe this is due to several factors: the imperfect load
balancing of the time-distributed version, the greater regularity and
predictability of the memory access patterns in the preemptive ver-
sion, and the reduced sensitivity to the timing of callback function
arrivals in the preemptive version. The previous graph reported
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Figure 8: CPU utilization for a single core performing 16 channels
of convolution.

average CPU load over many frames, but what is important in de-
termining the maximum number of sustainable instances without
missed deadlines is the worst-case execution time (WCET) during
any individual frame. For the time distributed version, the WCET
is higher than the average execution time. Whereas the time dis-
tributed version only performs a portion of the computation related
to the secondary FDL during each frame, the worker threads of the
preemptive version process higher-level FDLs to completion (un-
less they are preempted). This results in long streams of memory
accesses with a constant stride, and the code is therefore able to
benefit from the hardware prefetching mechanisms in the mem-
ory hierarchy to reduce the latencies caused by cache misses. The
time distributed version is also more sensitive to variations in exe-
cution time of the callback function, since it must complete all of
its work before the arrival of the next callback. The preemptive
version only has to complete a fraction of the total work associ-
ated with the convolution during the callback since much of the
work is being done in different threads. This means that it is better
able to tolerate jitter in the arrival times of the callback functions.
Once again, the preemptive implementation using the optimal par-
titioning scheme is the clear winner, outperforming the others by a
factor of 4× for the longest impulse response.

5.2. Multi-Core Measurements

Our final experiment was to benchmark the preemptive implemen-
tation running on multiple cores. We assigned a single thread to
process each FDL and pinned each thread to its own core to mini-
mize disturbances from the OS scheduler. Any cores that weren’t
necessary for a given experiment were disabled. Since the optimal
number of FDLs varies with impulse response length, so do the
numbers of cores we used in these experiments. As mentioned in
Section 3.5, we also considered an alternative scheme where chan-
nels (instead of FDLs) were distributed amongst the cores. In this
case, one thread per FDL level was pinned to each core – so for N
FDLs andM cores there would be a total ofN×M threads active
in the system. However, the pin-by-FDL scheme outperformed the
pin-by-channel scheme in all measurements, so we only present
the results from the former here.

A plot comparing the performance of the code running on sin-
gle and multiple-core configurations is presented in Figure 10. By
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Figure 9: Maximum number of independent channels of convolu-
tion possible without dropouts for various implementations run-
ning on a single core. Points are labeled with reported CPU uti-
lization.

using additional cores, we were able to run between 1.3× and 1.7×
as many instances without experiencing dropouts. While our work
partitioning scheme is most likely not optimal (there is significant
variation in the computational load across FDLs), we believe the
factor that ultimately limits the maximum achievable number of
independent instances is memory bandwidth, not computational
crunch. The processor used for these experiments has 12MB of
last level cache and 256KB of private level 2 cache per core. A
524,288 sample impulse response represented as single precision
floating point values occupies 2MB of memory. Clearly for the
large number of concurrent instances we are able to run, the work-
ing set doesn’t fit into the on-chip cache and the latency of DRAM
accesses becomes a bottleneck for achievable performance.
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Figure 10: Maximum number of independent channels of convo-
lution possible without dropouts for single and multi-core cases
(preemptive implementation). Points are labeled with the number
of FDLs used.

6. DISCUSSION

In all of the scenarios we investigated, the preemptive implemen-
tation of partitioned convolution, using an empirically determined
optimal partitioning, outperformed all of the others by a wide mar-
gin. Our motivation for implementing the time-distributed version
was to be able to use it in the context of an audio processing envi-
ronment such as Max/MSP[12] or Pd[13]. However, this is just a
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stop-gap solution, and in the future we hope that audio host appli-
cations will provide mechanisms for plugins or objects to schedule
their execution across multiple concurrent threads.

Another advantage of the preemptive approach lies in the pro-
grammer effort required to implement it. While efficiently manag-
ing the scheduling of multiple threads is not trivial, it affords us the
opportunity to use existing highly optimized libraries to perform
necessary computations without needing to worry about manually
partitioning the work. Optimizing the time-distributed FFT to the
point that it was competitive with FFTW’s FFT routines required
hand tuning assembly code and carefully managing data layout
which was an arduous task. Also, the techniques used to imple-
ment the time-distributed FFT don’t scale well to larger (greater
than 32x) FDL partition sizes, which limits the performance of the
time-distributed partitioned convolution algorithm for very long
impulse response lengths.

6.1. Further Optimizations

Despite the fact that our time-distributed implementation performed
worse in nearly every aspect, this approach still has room for im-
provement – though the obvious improvements, such as taking ad-
vantage of the regularity across channels to more optimally dis-
tribute the computation [2], would take significant programmer ef-
fort and restrict the implementation to specific use cases.

For the preemptive version running FDLs on separate cores,
the computational load on each core is not evenly balanced. We
could attempt to balance the load on each core during our op-
timal partitioning search; however, this is only likely to yield a
slight improvement due to the fact that none of the CPUs approach
100% utilization when dropouts begin to occur. This points to the
fact that the implementation, in its current state, is limited by the
memory bandwidth between the cores as mentioned at the end of
Section 5; therefore, we feel that further multi-core optimizations
would be best geared toward reducing memory traffic and optimiz-
ing cache usage amongst the FDLs.

6.2. The Need to Support Preemption and Multi-threading

Partitioned convolution is but one example of a class of multi-
rate audio processing and analysis tasks, others include score fol-
lowing, rhythm and pitch extraction, and algorithmic composition.
Generally speaking, it can be quite cumbersome (if not impossible)
for the programmer to time-distribute long-running tasks evenly
across multiple short time periods, particularly when those tasks
call external libraries. For this particular case (FFTs) there are
clever tricks that allowed us to accomplish this in a limited man-
ner but other computations (for example, those related to machine
learning algorithms) may not be as amenable to such treatment.

While it is possible for us to spawn worker threads and attempt
to manage them, even while running in the context of existing au-
dio host applications, there is no guarantee that other plugins run-
ning on the host won’t do the same thing. This would result in
pollution of our “thread ecosystem” and force our threads to com-
pete with others for processor time and cache space. Ultimately,
when there are more threads than cores in the system, the respon-
sibility for scheduling the threads falls onto the operating system,
which can only do so well given that it has very limited knowledge
about the relationships and dependencies between threads.

If the audio host itself were able to manage its hardware re-
sources (processor cores and caches) by arranging the execution

of plugin tasks on multiple cores, then plugin programmers and
end users could benefit from improved parallel performance, pro-
grammability, and quality of service. On-going research into the
development of an operating system that enables applications with
real-time constraints running on multi-core machines to more ex-
plicitly schedule and “micro-manage” the execution of their con-
stituent threads is described in [14].
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