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ABSTRACT
The FAUST Synthesis ToolKit is a set of virtual musical instru-
ments written in the FAUST programming language and based on
waveguide algorithms and on modal synthesis. Most of them were
inspired by instruments implemented in the Synthesis ToolKit (STK)
and the program SynthBuilder.

Our attention has partly been focused on the pedagogical as-
pect of the implemented objects. Indeed, we tried to make the
FAUST code of each object as optimized and as expressive as pos-
sible.

Some of the instruments in the FAUST-STK use nonlinear all-
pass filters to create interesting and new behaviors. Also, a few
of them were modified in order to use gesture data to control the
performance. A demonstration of this kind of use is done in the
Pure Data program.

Finally, the results of some performance tests of the generated
C++ code are presented.

1. INTRODUCTION

The FAUST Synthesis ToolKit1 is set of virtual musical instruments
programmed in the FAUST2 programming language. Most of them
are based on physical models inspired from the algorithms imple-
mented in the Synthesis ToolKit (STK)3 [1] and the program Syn-
thBuilder [2].

The STK has been developed since 1996 by P. R. Cook and
G. P. Scavone. It is a set of open source audio signal processing
and algorithmic synthesis classes written in the C++ programming
language that can be used in the development of music synthesis
and audio processing software.

SynthBuilder was a program developed at Stanford’s CCRMA4

in the nineties to implement sound synthesis based on physical
models of musical instruments. Most of its algorithms use the
waveguide synthesis technique but some of them are also based
on modal synthesis [3].

An important part of our work consisted of improving and sim-
plifying the models from these two sources in order to make them

∗ CCRMA visiting researcher from Saint Étienne University, France.
Work carried out in the frame of the ASTREE Project (ANR-08-CORD-
003).

1<faust-distribution>/examples/faust-stk/
2Functional AUdio STream is programming language that proposes an

abstract, purely functional approach to signal processing. It has been de-
veloped at Lyon’s GRAME (Groupe de recherche en Acoustique et en
Musique Electronique) since 2002: http://faust.grame.fr/.

3https://ccrma.stanford.edu/software/stk/
4Center for Computer Research in Music and Acoustics

more efficient thanks to the FAUST semantic. All FAUST code in
the FAUST-STK is commented, including frequent references to
external bibliographical elements. Finally, many of the algorithms
from the STK and SynthBuilder were upgraded with nonlinear all-
pass filters [4].

First, we discuss the different models of musical instruments
implemented in the FAUST-STK, noting problems encountered and
how they were resolved. Finally, we’ll present performance mea-
surements for the generated C++ code.

2. WAVEGUIDE MODELS

Waveguide synthesis of string and wind instruments was intro-
duced during the 1980s [5, 6, 3]. It can be viewed as a general-
ization of either the Kelley-Lochbaum vocal-tract model [7, 8] or
Karplus-Strong “digitar” algorithm [9, 3]. Waveguide synthesis
makes it possible to model any kind of string, bore, or vibrating
structures with a network of delay lines and filters. Waveguide in-
struments are very suitable for implementation in the FAUST lan-
guage because of their 1D “stream like” architecture.

We now give a brief overview of the FAUST-STK waveguide
instruments.

2.1. Wind Instruments

The algorithms used in the FAUST-STK are almost all based on
instruments implemented in the Synthesis ToolKit and the program
SynthBuilder. However, it is important to observe that some of
them were slightly modified in order to adapt them to the FAUST
semantic.

An attempt was made to use functions already defined in the
default FAUST libraries to build our models. However, new sup-
port functions were written as needed in order to be able to use
parameters from the STK classes and the SynthBuilder patches
verbatim, without transformation or embedding within more gen-
eral functions. The added functions were placed in a file called
faust-stk/instrument.lib.

All the wind instruments implemented in the FAUST-STK are
based on a similar architecture. Indeed, in most cases, the breath
pressure that corresponds to the amplitude of the excitation is con-
trolled by an envelope. The excitation is used to feed one or several
waveguides that implement the body of the instrument. For exam-
ple, in the case of a clarinet, the excitation corresponds to the reed
that vibrates in the mouthpiece, and the body of the instrument is
the bore and the bell. In Figure 1, it is possible to see the block dia-
gram of one of the two clarinet models that are implemented in the
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FAUST-STK. In that case, an ADSR5 envelope that is embedded
in the breathPressure box controls the breath pressure.

The other clarinet implemented in the FAUST-STK is a bit
more complex as it has a tone hole model that makes it possible
to change the pitch of the note being played in a more natural way.
Indeed, in the algorithm shown in Figure 1 and as in most of the
basic waveguide models, the pitch is modulated by changing the
length of the loop delay line which would correspond in “the real
world” to changing dynamically the size of the clarinet’s bore dur-
ing the performance, as if it were a trombone.

breathPressure

filter

-0.95

*
-

reedTable
*

+

delayLine

process

Figure 1: clarinet.dsp algorithm drawn by FAUST using
faust2svg.

The reed table employed with the two clarinets to excite the
model was also used to create a very simple saxophone model that
is even more comparable to a violin whose strings are excited by a
reed.

Two models of flute are implemented in the FAUST-STK. The
first one is based on the algorithm used in the Synthesis ToolKit
that is a simplified version of [10]. The other model is showed in
Figure 2. It uses two loops instead of one.
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Figure 2: flute.dsp algorithm drawn by FAUST using
faust2svg.

A simple model of a brass instrument inspired from a class of
the Synthesis ToolKit and with a mouthpiece based on the model
described in [11] is implemented in the FAUST-STK. It can be
used to emulate a wide range of instrument such as a french horn,
a trumpet or even a trombone. Its algorithm can be seen in Figure
3.

5Attack - Decay - Sustain - Release.

Finally, a tuned bottle in which it is possible to blow through
the neck to make sound is also implemented in the FAUST-STK.

2.2. String Instruments

Some waveguide synthesis algorithms for plucked strings have
previously been implemented in FAUST [12], and elements of these
ports appear in the libraries filter.lib and effect.lib
within the FAUST distribution. Going beyond these, the FAUST-
STK includes models of stringed instruments from the STK such
as a Sitar, bowed-string instrument, and SynthBuilder patches (run-
ning on a NeXT Computer) for an acoustic bass, piano, and harp-
sichord. Most of these models were furthermore extended with
the new nonlinear allpass for spectral enrichment [4]. Further dis-
cussion regarding the nonlinear allpass and synthesis of keyboard
instruments is given below in §3 and §6, respectively.

2.3. Percussion Instruments

Four objects in the FAUST-STK use the banded waveguide synthe-
sis technique (described in [13]) to model the following percussion
instruments:

• an iron plaque;

• a wooden plaque;

• a glass harmonica;

• a tibetan bowl.

Each of them can be excited with a bow or a hammer.

3. USING NONLINEAR PASSIVE ALLPASS FILTER
WITH WAVEGUIDE MODELS

Some of the instruments implemented in the FAUST-STK are us-
ing nonlinear passive allpass filters in order to generate nice natural
and unnatural sound effects [4]. Nonlinear allpass filters can add
interesting timbral evolution when inserted in waveguide synthe-
sis/effects algorithms. The nonlinearities are generated by dynam-
ically modulating the filter coefficients at every sample by some
function of the input signal. For the instruments that use this kind
of filter in the FAUST-STK, the user can decide whether the co-
efficients are modulated by the input signal or by a sine wave. In
both cases, a “nonlinearity factor” parameter scales the range of
the modulation of the filter coefficients. This parameter can be
controlled by an envelope in order to make the modulated behav-
ior more natural.

We adjust the length of the delay line of the instruments that
use nonlinear allpass filters in function of the nonlinearity factor
and of the order of the filter as follows:

DL = (SR/F )− FO ×NF (1)

where DL is the delay length in samples, SR is the sampling rate, F
is the pitch frequency, FO is the filter order and NF the nonlinearity
factor (value between 0 and 1).

The nonlinear allpass filter can be placed anywhere in the wave-
guide loop, for example just before the feedback as showed in Fig-
ure 4.

Finally, it is interesting to mention that we were able to imple-
ment a frequency modulation synthesizer in the FAUST-STK by
using this kind of filter on a sine wave signal. A related result is
reported in [14].
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Figure 3: brass.dsp algorithm drawn by FAUST using faust2svg.
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Figure 4: Modified version of clarinet.dsp (Cf. figure 1) that
uses a nonlinear allpass filter in its feedback loop.

4. MODAL MODELS

A set of instruments using modal synthesis can be found in the
FAUST-STK. They are all implemented in the same code as they
are based on the same algorithm.

Modal synthesis was developed primarily by J-M. Adrien in
the 1980s [15] and is very similar to the banded-waveguide tech-
nique (§2.3), as it consists of exciting a filter-bank with an impulse
(Figure 5). The source-filter approach to sound synthesis has long
been used for voice synthesis [16].

Implementing modal synthesis with FAUST was a bit challeng-
ing, as it requires handling a large number of parameters and an ex-
citation signal stored in a wave file. The first problem was solved
by using the foreign-function primitive in FAUST which allows us-
ing a C++ function within FAUST code. The different values were
stored in an array of floats used in a function that takes an index as
an argument and that returns the corresponding number.

To solve the other problem of importing a wavetable from a
sound file in a FAUST object, we first tried to use the libsndfile
library developed by E. de Castro Lopo [17] that makes it possible
to easily handle wave files in C++. Unfortunately, it appears that
this solution was not compatible with all the FAUST architectures.
Based on this observation and the fact that the wave tables used in
the STK had a maximal size of 1024 samples, we decided to use
the same technique as the one previously explained. Indeed, the
raw data were extracted from the wave file to be put in an array of
floats that can be used in a C++ function to return the values with

an index. This C++ function can then be called in FAUST using
the foreign-function mechanism to fill a buffer with the rdtable
primitive.

5. VOICE SYNTHESIS

A very simple voice synthesizer based on the algorithm from the
Synthesis ToolKit is implemented in the FAUST-STK. It uses a
lowpass-filtered impulse-train to excite a bank of 4 bandpass fil-
ters that shape the voice formants. The formant parameters are
stored in a C++ function in the same way described in §4 as a set
of center frequencies, amplitudes, and bandwidths. This function
is then called in the FAUST code using the foreign function primi-
tive. The thirty-two phonemes stored in this function are the same
as in the Synthesis ToolKit.

6. KEYBOARDS

A SynthBuilder patch implementing a commuted piano [18] was
written in the late 1990s at Stanford’s CCRMA. This patch was
partly ported in 2006 by Stephen Sinclair at McGill University in
the Synthesis ToolKit [19]. A big part of his work consisted of ex-
tracting parameter-values from the SynthBuilder patch and storing
them in a set of C++ functions. We reused them to build our FAUST
commuted piano version by using the foreign function mechanism
as described in §4.

In this piano model, the keyboard is split into two parts, each
using a different algorithm: The tones below E6 use the commuted
waveguide synthesis technique [3] while tones above or equal to
E6 use modal synthesis (a series of biquad filters) to generate the
sound (Figure 6).

A commuted harpsichord has also been implemented in the
FAUST-STK. It was inspired by another SynthBuilder patch that
uses a very similar algorithm to the one described above.

The current FAUST versions of the commuted piano and harp-
sichord are not polyphonic. However, the faust2pd program devel-
oped by Albert Gräf [20] makes it possible to automatically pro-
duce Pure Data patches that implement polyphonic synthesizers
that use FAUST generated Pd plug-ins. They can then be controlled
via MIDI or OSC directly in Pure Data.
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Figure 5: modalBar.dsp algorithm drawn by FAUST using faust2svg.
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Figure 6: Commuted piano algorithm drawn by FAUST using
faust2svg. The upper figure is the beginning of the model and the
lower figure the end.

7. USING A FAUST-STK PHYSICAL MODEL WITH
GESTURE-FOLLOWING DATA

Parameter values are very important when dealing with physical
modeling. Indeed, even if in most cases it is possible to produce
nice sounds with static values for each parameter, the sound quality
can be improved a lot by using dynamic values that can describe
better the state of the model as a function of the note and the am-
plitude being played.

E. Maestre worked during his PhD on modeling the instrumen-
tal gesture for the violin [21] at the MTG.6 With his help, it was
possible to modify the algorithm of the bowed instrument from the
STK in order to make it compatible with gesture data. The follow-
ing changes were performed on the model:

• the ADSR used to control the bow velocity was removed;

6Music Technology Group, University Pompeu Fabra, Barcelona
(Spain).

inlet inlet r $0-read

r $0-all faust-control $0

s $0-writer $0-in

s $0-out

faust-gate 1 piano~

faust-gate 2 piano~

faust-gate 3 piano~

faust-gate 4 piano~

faust-gate 5 piano~

faust-gate 6 piano~

faust-gate 7 piano~

faust-gate 8 piano~

outlet~ outlet~outlet

Figure 7: Synthesis part of the Pure Data polyphonic sub-patch
generated with faust2pd from “piano.dsp”. In the current case, a
height voices polyphony synthesizer is implemented so piano∼.dsp
is called height times.

• a “force” parameter that controls the slope of the bow table
was added;

• a switch was added at the output of the bow table;

• we created a four-string violin where it is possible to modify
the value of the parameters of each string independently;

• the simple body filter was replaced by a bank of biquad
filters that impart a violin body response on the generated
sound;

• an improved reflection filter also based on a bank of biquads
is used.

The FAUST code was used to create a Pure Data plug-in. The
gesture data for each physical parameter (note frequencies, bow
position, bow velocity, bow force, and number of the string to be
used) of the violin model were placed in separated text files that
can be used in a Pd patch. In the example shown in Figure 8, the
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values are changed every 4.167 milliseconds. The gesture dataset
used plays a traditional Spanish song called Muiñeira.

textfile

read pitch.txt

freq $1

textfile

read beta.txt

bowPosition $1

textfile

bowVel $1

read bow_vel.txt read force_newtons.txt

textfile

force $1

metro 4.167

read string.txt

textfile

stringNumber $1

outlet

inlet inlet

inlet

Figure 8: Pure Data sub-patch used to send the gesture data for
Muiñeira in the FAUST generated plug-in.

8. OPTIMIZATION AND PERFORMANCE

8.1. File size

Digital signal processing algorithms can be expressed very com-
pactly in FAUST. The reduction in code size over C++ or even mat-
lab implementations is most of the time very significant. Thereby,
we tried to make the FAUST-STK algorithms as concise and read-
able as possible.

It is difficult to compare the STK C++ and FAUST source, be-
cause most of the physical models in the Synthesis ToolKit were
implemented using several functions spread-out among different
files. Moreover, these functions may contain information not re-
lated to the algorithm itself.

We nevertheless carried out a source-size comparison as a rough
guide, and the results are given in Table 1 (last page). We took into
account, in both FAUST and C++, the implementation of the algo-
rithm itself, and the code concerning parameter-handling. While
the precision of the comparison is open to debate, we see clearly
that the FAUST code is generally more compact than the C++.

8.2. CPU load

The FAUST compiler optimizes the efficiency of its generated C++
code. Thus, we tried to compare for some models the CPU load be-
tween Pure Data plug-ins created using the stk2pd7 program with
Pd plug-ins generated by FAUST using the Pure Data architecture
file.

In both cases, Pd plug-ins were compiled in 32 bits and the
signal processing is scalar. Tests were carried out on a MacBook
Pro with the following configuration:

• processor: 2.2 GHz Intel Core 2 Duo;

• RAM: 2GBytes DDR2.

Results of this comparison can be seen in Table 2.

7stk2pd is a program that was developed at Stanford’s CCRMA by M.
Gurevich and C. Chafe. It converts any C++ code from the STK into a
plug-in for Pure Data [22].

FAUST file STK FAUST Difference
name

blowBottle.dsp 3.23 2.49 22.91
blowHole.dsp 2.70 1.75 35.19

bowed.dsp 2.78 2.28 17.99
brass.dsp 10.15 2.01 80.20

clarinet.dsp 2.26 1.19 47.35
flutestk.dsp 2.16 1.13 47.69

saxophony.dsp 2.38 1.47 38.24
sitar.dsp 1.59 1.11 30.19

tibetanBowl.dsp 5.74 2.87 50

Table 2: Comparison of the performance of Pure Data plug-ins
using the STK C++ code with their FAUST generated equivalent.
Values in the “STK” and “FAUST” columns are CPU loads in
percents. The “difference” column give the gain of efficiency in
percents.

As the original STK C++ code is already very well written
and optimized, this comparison shows how efficient the FAUST
compiler is at generating highly optimized C++ codes.

9. CONCLUSIONS

Even if the primary goal of the FAUST-STK is the use of its phys-
ical models in a musical manner, it was also built to be a pedagog-
ical tool. Indeed, because of its transparency and efficiency, the
FAUST programming language is particularly suitable for teach-
ing digital audio signal processing. Therefore, a clean and well
commented FAUST program is arguably the best way to document
the implemented instruments, especially in view of the automatic
block-diagram facility. FAUST also has the advantage of being
committed to a stable computational specification, unlike C++ in
which the meanings of “long” and “short” may change over time,
for example, or even across computing platforms.

With its continually growing user community, FAUST is be-
coming a high quality tool for the implementation of audio digital
signal processing algorithms. The number of filters, effects and
sound synthesizers available in FAUST is constantly increasing.
The combined forces of JACK8 and FAUST recently upgraded by
the possibility to control the generated programs with the OSC9

communication standard constitute a high efficiency work plat-
form whose limits are only constrained by one’s imagination.
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